[image: image1.jpg]Doc# OMA-ARC-2004-0255-intrinsic_and_CF
Submitted to ARCH
06 August 2004
Doc# OMA-<grp>-2004-<num>-<desc>
Submitted to <Group Name>
dd mmm 2004

Input Contribution

	Title:
	intrinsic_and_CF
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARCH

	Source:
	Christian Herzog, Siemens

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Clarification of the author’s understanding of the terms “(non-)intrinsic functionality” and “common function” in response to OMA-ARC-2004-0252-LATE-Clarification-of-key-terms by IBM.

2 Summary of Contribution

It is useful to continue to use the term “common function” for enablers that provide universally reusable functionality that several other enablers are based on because:

· The term “CF” is widely used in OMA already, WG’s have started to work along the CF’s idea

· The CF’s WI assumes there are functions that would be better supplied in separate enablers
· CF’s are about reuse of specifications by other specifications in OMA

· CF’s are common between those enablers that reference / use it as part of their functionality

The current definition of “intrinsic functionality” in the OSE is not sufficient and allows incompatible interpretations. Intrinsic functionality is the core functionality of an enabler. The non-intrinsic functions must not be limited to those that can be controlled by a SP (by means of a PE). Non-intrinsic functions are rather equivalent to common functions.

A common function, once factored out and specified separately, constitutes a new enabler. All CF’s are enablers (when specified separately), but not all enablers are CF’s.

3 Detailed Proposal

Common Functions

One of the major issues in OMA is the silo problem. One way to reduce the silo problem is to achieve greater consistency among specifications, to ensure the same functionality is not duplicated and specified differently in different enabler specifications.

The Common Functions WI [1] is about reuse of specifications by other specifications in OMA to reduce the overall specification and implementation effort. The CF WI describes the work as follows: “… Specifications produced by OMA would show greater consistency and would show other benefits of reuse if they could more easily build on common functions supplied by other OMA Specifications rather than having to reinvent the wheel each time. …” [1].

The underlying assumption of the CF WI is that there are “…common functions that would be better supplied in separate enablers …” [1].

So “common functions” (in a silo world) is a term that describes functionality that is not separately specified, but contained in multiple enablers’ specifications, most likely with slightly different features (because specified independently of each other). In a non-silo world, the common functions are specified separately as own enablers and reused (using the exact same words) or referenced by several other enablers.

A common function, once factored out and specified separately, constitutes a new enabler. The reason why such an enabler may be called a CF is because it is common between those enablers that reference / use it as part of their functionality. They rely on the once-specified functionality instead of specifying it again in their enabler specification(s). So all CF’s are enablers (when specified separately), but not all enablers are CF’s.

CF’s are either part of silo-enablers and identified as potentially reusable by other enablers once factored out, or CF’s are separately specified enablers that are reused by other enablers. Although all enablers should be reusable in principal (e.g. by applications), there are a number of enablers that are not referenced / reused by other enablers’ specifications. Those not-reused enablers are not CF’s. Examples are: Gaming, IM, Presence, Location.

The term “common function” is widely used in OMA, and WG’s have started to work along the CF idea (e.g. PAG: GM, MCC: charging). It is important for OMA to continue to identify the CF’s and encourage maximum reuse of specifications. It would be counter productive to deny the existence of CF’s by stopping to use the term “common function” to describe enablers that provide universally reusable functionality that several other enablers are based on.

(Non-) Intrinsic Functionality and CF’s

The OSE allows enablers only to specify their intrinsic functionality. All non-intrinsic functionality must be delegated to other enablers that provide this functionality as their intrinsic functionality. Intrinsic functionality is defined as one that is essential to an enabler’s core purpose. However, this definition is not precise enough as it allows different interpretations of what an intrinsic function really is.

One interpretation (and the author’s view) is that common functions are the non-intrinsic functions. As explained above, CF’s should be factored out and specified as a separate enabler. All enablers that need this CF delegate it to the separately specified enabler. This delegation may be done in several ways, e.g. by using a policy enforcement mechanism or by simply calling the CF’s I0 interface directly.

A different possible interpretation is that the non-intrinsic functions are only the ones that are to be controlled by a service provider (SP) and not by the enabler. The SP shall be able to determine what functions are used where / when / how (i.e. policies). This interpretation forsees using a policy enforcement mechanism (PEEM) to delegate these functions. This interpretation has, however, the limitation that only a limited set of non-intrinsic functions can be delegated, namely the functions that PEEM can handle. Often refered to examples are authentication, authorization, charging. Functionality that cannot be handled by PEEM (e.g. group management) causes a different definition of what a (non-) intrinsic function is. In this interpretation, GM is (and must be) an intrinsic function because otherwise it does not fit with the concept described (it cannot be delegated using PEEM).

Delegation in this context does not completely mean “reuse of other specifications”. It is limited to what PEEM may provide.

Intrinsic functionality is the core functionality of an enabler.

As an example, GM is not intrinsic to Presence because the intrinsic functionality of Presence is merely to provide the presence status, but not to manage groups (e.g. add someone to a group, or get all members of a group). Presence uses GM, but GM is not the core functionality of Presence.

Charging is not intrinsic to most enablers except for the charging enabler itself. Both GM and charging are common functions because they are not intrinsic and are referenced / reused by other enablers (e.g. Presence, PoC).

To provide location of a user is the intrinsic functionality of the Location enabler, but authentication is a non-intrinsic functionality of the Location enabler. Authentication is a CF that may be delegated to a separately specified authentication enabler, if applicable.

References:

[1]: OMA-WID_0062

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

1. Discuss the above understanding in ARCH and develop a common view on the matter.

2. Clarify the term “(non-)intrinsic functionality” in the OSE based on the result from the discussion requested above.

3. Not to stop using the term “common function” for enablers that provide universally reusable functionality that several other enablers are based on.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040122]

