Doc# OMA-ARC-2005-0213R02-Evolving-an-enabler's-I0-interface.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC=2005-0213R02-Evolving-an-enabler’s-I0-interface .doc
Input Contribution

Input Contribution

	Title:
	Evolving an enabler’s I0 interface
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC WG

	Submission Date:
	27 June 2005

	Source:
	Michael Brenner, Lucent Technologies, mrbrenner@lucent.com
Ken Henriksen, Sprint, Kenneth.Henriksen@mail.sprint.com
Magnus Alden, TeliaSonera, Magnus.Alden@teliasonera.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution is revised as an Architecture Application Note. The reason for the R02 is to address comments received to R01 via contributions 241 (IBM) and 243 (Oracle).
2 Summary of Contribution

The OSE V1.0 includes the notions of Policy Enforcer, Parameter P and interface categories I0 and I0+P. While these notions have been defined and explained in the OSE V1.0 architecture document, a more detailed exploration, with potential usage examples may be useful to other WGs, and later on to implementers and deployers. This contribution explores a property of the Policy Enforcer to achieve “interface transformation”, and raises awareness to some particular cases.

We would like to thank the companies who provided comments in writing. It helped us assess how/where miscommunication occurred. Most of the comments will be directly addressed through the changes provided in the detailed proposal. Since most of the comments are a result of miscommunication that led to further misunderstandings, this revision will not give an answer to each comment, but instead, if that comment still exists during review – we will point to how it was addressed. That said, we will clarify here in the summary the main causes for miscommunication/misunderstanding, and how they will be addressed through the rest of the contribution – which should facilitate clarification of all the comments received.

The comments received by and large fall into the following categories:

a) wording used in 213 and 213R01 that led to misunderstanding. We used too liberally the word “mandatory” and “options” when in fact, the intent was to mean “the specified interface” vs. “additional messages/parameters”. While in a very particular case, “mandatory” could be the sole content of an enabler’s interface release, and the options could be added in another release as “additional messages/parameters”, this is certainly not the usual case. I thought the context was pretty evident, since the title of the contribution reflected the goal of giving an example of the evolution of the interface, and not how to deal with mandatory vs. options within the same release. However, I realize that this was not so evident, apologize for any confusion I may have created, and will correct this wherever appropriate. It will probably address or partially address more than 50% of all comments received.

b) 213 was clear and modest in its goals (“a more detailed exploration, with potential usage examples may be useful to other WGs, and later on to implementers and deployers”), made no claim that this is something new architecturally, and clearly articulated that this is a particular usage case, For this see sentences “One possible application of this capability is that this architecture can be exploited to allow for an enabler’s interface’s design/definition to change over time (for example from one release to another) - possibly by offering certain messages/parameters as options” and “This contribution explores a property of the Policy Enforcer to achieve “interface transformation”, and raises awareness to some particular cases.”
Despite this, some were looking for more apparently, when there was no more to look at (we are indeed sorry to disappoint). As a result, many comments received either commented on the fact that this is nothing architecturally new (which is correct, and never implied otherwise), or that this is incomplete, because it does not handle all the complex aspects of “interface transformation” (which is correct, but also irrelevant, because it was not claimed to handle all such aspects). However, in order to address such comments, we will change the title, and wherever else applicable to indicate clearer that this ia only a “particular case”. It is the particular case when “interface transformation” through addition/subtraction can be used to support the evolution of an enabler’s interface from one release to another. From our experience, that is exactly what “application notes “ are – they address particular situations. This contribution never intended to cover all aspects of “interface transformation”, and the fact that it became so difficult to understand and agree on the more simple aspects of “interface transformation” makes it obvious why we never thought of attempting directly the more complex situation. That said, we encourage any company to document the more complex cases of “interface transformation” since it would be of great benefit to all. But this contribution should not be the turf for such debate. Whether ARC agrees or mot to the merits of this contribution should be based of its intended goals (which we will better outline to avoid confusion). Note that unless we agree to partial resolutions of a problem, we may never progress too much – hence this is exactly how we build all our Ads, step by step. We have indeed accepted diagrams without all text explanations, or vice versa – or text to start up a section without having it completely ready, and we have done so for the OSE AD and other Ads, all more significant that the target for this application note.

c) Miscellaneous comments on particular wording or explanations – requiring clarifications in the text or figure (examples are use of definitions – sometimes I used the accepted nomenclature for a category of interface, e.g. I0, instead of referring to an instance of the interface and naming it differently). These will be addressed appropriately in the text itself.
d) All the discussion about the use of a Discovery Enabler (not in the original 213, but added in 213R01 because of questions posed during the discussion in San Diego) was removed. Comments received via written contribution, as well as in private led to the conclusion that this is no longer necessary here, although they could be interesting as a subject of a different application note.
e) Some comments were underlining as an issue that this contribution goes from architectural aspects to specification design aspects to implementation aspects to deployment aspects, sometimes mixing them up. Guilty as charged. This is an application note – it has to move between those types of aspects with relative ease in order to evidence impacts to all, and it does not even pretend to characterize them in a certain prescribed category. Application notes are for the use of the real world, not a theoretical exercise. In the real world, one quickly moves from one category to another, as needed to address a certain situation. If the contribution makes technically wrong assertions, those need indeed to be corrected. For example, if we have stated that some issue is architectural, while it is actually a deployment issue. We ask the audience to identify the specific text and we will fix it if appropriate. We did so in this revision, when we could identify such an issue, but we have kept the focus on all different aspects of the development and deployment cycle, since this was the goal of the contribution to start with.
f) Any other comment that was not addressed, it is because the author maintains the initial position on a particular text as being correct, and if needed, will defend that position when we review the document. With one exception – we were amused by the use of certain language in the comments – such as “bastardize”, “perverse aspect of the model”, but we were at a loss as per how to address them, since we did not understand what was being meant. That said, we do have a suggestion for those that have the tendency to use such language:

a. Please consider entering a contribution with definitions for those terms that may then be approved for the OMA Dictionary. Thus we all could benefit from the understanding and use of such terms when appropriate.
3 Detailed Proposal

Evolving an enabler’s interface using transformation – a particular case using addition/subtraction of messages/parameters
Disclaimer: the following is considered an Architecture Application Note. While considered technically correct, it is described here solely for the purpose of information for the standards, vendors, operators and other service providers’ community; it is non-normative and it does not represent a usage recommendation by Architecture WG.
The objectives of this contribution are:

1. explore some of the properties of the Policy Enforcer and the use of P parameters

2. provide a particular use case, by documenting how an enabler’s interface can be transformed, capitalizing on explored properties of the Policy Enforcer and P parameters, through addition/subtraction of messages/parameters from one release to another
3. document some of the potential impact of using such transformation for specification developers, implementers and deployers of a specification. Its intent is to raise awareness to the topic, and to allow all the interested audience to further explore the topic as the audience may see fit.
4. the contribution acknowledges that the process of “interface transformation” is much more complex than the illustrated cases, and invites additional contributions on the topic. The authors recognized that describing a simpler case first is necessary, before engaging in description of the entire complexity – and should we not be able to understand and agree on a simpler case, there will be much more difficulty in understanding and agreeing on a much more complex case.
The OSE V1.0 document defines the Policy Enforcer as an element that can intercept requests/responses to/from a resource in order to enforce the domain owner’s policies before continuing with the request/response.

Applications are presented with an I0+P interface through which to send a request to an enabler. This interface results from a combination between the I0 interface exposed by an enabler and the P parameters needed to satisfy the domain owner’s policies. Applications are blissfully unaware of the fact that this is actually the I0 of the enabler or not, namely they cannot (or rather don’t have to) distinguish between messages and parameters imposed by the I0 of an enabler and messages and parameters imposed by P (as required to satisfy the domain owner’s policies).
Abstracting for a moment from the main intent of the Policy Enforcer, one realizes that the capability and the placement of the Policy Enforcer architecture element in the OSE makes it possible for it to perform other interface transformations, beyond those dictated by domain owner’s policies. What is meant here is that not all written policy rules have to do with what we would normally call “domain owner’s policies”. For example, PEEM RD has requirements that support a 3rd party to introduce additional policies. Another example could be policy rules that have to do with trials of new functionality. What we consider traditional domain owner’s policies are those required by their internal rules with respect to access to resources (e.g. security policies, charging policies, etc). Another way to phrase this would be to consider the P parameters as the superset of all changes performed to the I0 interface, regardless of the reason behind those changes.
One possible application of this capability is that this architecture can be exploited to allow for an enabler’s interface’s design/definition to change over time (for example from one release to another). This can be possibly by offering certain messages/parameters as additional messages/parameters beyond the set exposed in a particular release, or alternatively by removing in a later release an identified set of messages/parameters existing in an earlier release.
The potential changes of an enabler’s interface and of the P parameters (through addition or subtraction between consecutive releases of an enabler’s interface) are depicted in Figure x.

[image: image1.wmf]I0+P = I0+(Op+Pd)

bindings

bindings

I0

’

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

bindings

I0

”

=I0

’

+D

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0

’

+P

’

= I0

’

+(D+P

”

)

I0

”

+P

”

= (I0

’

+D)+P

”

=I0

’

+P

’

I0

”

+P

”

= (I0

’

+D)+P

”

=I0

’

+P

’

I0

’

+P

’

= I0

’

+(D+P

”

)

Legend

P

”

= P parameters in

Rel

2

D = Enabler additional messages/parameters (delta between

Rel

1 and

Rel

2)

P

’

= P parameters in

Rel

1

I0

’

= Instance of enabler

’

s I0 interface in

Rel

1

I0

’’

= Instance of enabler

’

s I0 interface in

Rel

2

Figure x: Enabler interface evolution

The concept is based on the fact that an enabler’s I0 interface can be initially defined anywhere within a range of possibilities, starting from a basic interface including only a minimal set of messages/parameters, and going to a next release of an interface including additional messages/parameters. This would be the evolution of the interface moving from the figure on the left towards the figure on the right. Note that the opposite also can happen (moving from a release represented by the figure on the right towards a release represented by the figure on the left; in this case, the transformation of the interface is through subtraction of the additional messages/parameters).
In order to simplify the explanation of the concept, the already known definitions for I0, Parameter P, I0+P will be re-used, and some new notations will be introduced.
· I0’ will be considered the “basic” I0 interface instance of the enabler in Release 1
· I0” will be considered the “extended” I0 interface instance in Release 2 (including the additional messages/parameters)

· D is defined as the enabler’s interface additional messages/parameters. When those additional messages/parameters are added to the I0’ interface instance, this evolves into an I0”interface instance (i.e. I0” = I0’+D)

· P’ will be considered the instance comprised of all P parameters needed to satisfy policies in Release 1

· P” will be considered the instance comprised of all P parameters needed to satisfy policies in Release 2. P” is in fact the “true” set of domain owner parameters, needed to satisfy the domain owner’s policies. It excludes those parameters needed to satisfy the additional messages/parameters for the target enabler, which existed in P’. In other words, the P” instance is the result of subtracting from the P’ instance, the set of additional messages/paramers (i.e. P’=P”+D).
·
Note that I0’+P’, the interface exposed to applications (which is the same as I0’+D+P”), may remain unchanged, if so desired by the domain owner, regardless whether the enabler’s exposed interface is the basic I0’, or the extended I0”=I0’+D, since the difference can be adjusted using the set of messages/parameters needed to satisfy domain owner’s policies. In the first instance, the set of P’ parameters exposed is P’ = D + P”, in the second instance it is only P”. Also note that an entire range of enabler’s interface releases between I0’ and I0’ is possible, still without changing the interface exposed to applications, if so desired. Same is true for any releases prior to Release 1 or post Release 2.
The advantage of using this concept are reflected in significant flexibility in different development phases and for different entities in the OSE:

1. Impact on enabler’s I0 interface specification:

· There are situations when an enabler’s initial interface is defined as a minimal, basic I0’. The additional messages/parameters may be all known or may have been discussed by the specification developers or not, but there is the distinct possibility that even if they are all known it may be initially difficult to decide whether they all belong in this release or not – hence it may be convenient to consider those as a D set of additional messages/parameters (D could be anywhere from null, to a large set of additional messages/parameters) that may be defined by the development and deployment community between releases, possibly based on discussions that took place during the work on specification for Release 1. For example, a vendor offers a set of additional messages/parameters that an operator is interested, despite the fact that the interface of the enabler is now going beyond the Release 1 specification The operator would deploy the enabler and expose the interface I0’+P’, which includes the additional set of messages/parameters offered by the vendor to the application. Another situation that leads to the same result is when an operator knows what they want to expose as a set of additional messages/parameters, and asks a vendor to provide such a prototype for a trial. As in the previous case, an interface that exposes a richer set of messages/parameters may be presented to the applications. Even if a vendor cannot be found to accommodate this, the operator may still want to expose the richer interface to applications, only to collect statistical information about the use of such additional messages/parameters by the applications. Finally, an application developer could also approach an operator and suggest the use of additional messages/parameters based on their experience elsewhere. Such additional messages/parameters, if not supported by a vendor product, could be supported by a prototype, or implemented through integration services. When enough hands-on experience with the use of such additional messages/parameters has been accumulated, the operator, or vendor or application developer, or a combination of them are better prepared and can sustain the introduction of such additional messages/parameters in a subsequent enabler specification release. When ready to include the entire, or a part of the D set into the enabler’s interface, a new release of the enabler may do so, and the enabler interface would then evolve to the new I0” (or something in-between, if not the entire D set is to be included in the new enabler’s interface). Note that the WG defining the enabler may decide whether the new I0” replaces the I0’, or whether both the initial I0’ and I0” need to be supported. That would be the case if the WG decides that the additional set of messages/parameters is optional only, for example. This mechanism will allow for expedited decisions on the specification, because of the knowledge that an evolution path exists.
· The reverse situation can also exist, in which an enabler’s initial interface is an extended set of messages/parameters represented by the instance I0” = I0’+D. In this case the evolution of the interface could also be through attrition of certain messages/parameters. That would imply transformation of the interface through subtraction. If we reuse the same diagram, that would be moving from the right picture in the diagram to the left picture of the diagram (in other words from Release 2 to Release 1). Please do not let yourself confused by the numbering scheme. In this case, Release 2 is the initial release (ignore the number) and Release 1 is a later release. This situation most likely may exist when the work is starting with a very complete specification for the interface with many messages/parameters. Over time however, this enabler’s interface may evolve in the opposite direction, namely to reduce the number of messages/parameters and allow those to be exposed via P parameters required to satisfy domain owner’s policies instead, until the application development community is adapting to the new needs of the reduced interface, in case that additional set of messages/parameters indeed needs to disappear eventually. That may happen if a more generic, rather than very specific interface is desirable (see deployment impact). As before, note that the WG defining the enabler may decide whether the new I0’ replaces the I0”, or whether both the initial I0” and I0’ need to be supported, as well as whether the D set is to be declared as optional set of messages/parameters, or is to be partially or altogether eliminated. Note that there is also the possibility that Note that there also is a possibility that, although the set of additional; messages/parameters is no longer needed for that particular enabler, the set of messages/parameters may still be needed by the domain owner, therefore still required from applications. This may be the situation were many enablers have changed interfaces, moved responsibilities between them, non-intrinsic functions were moved out to other enablers, etc …This mechanism will allow for expedited decisions on the specification, because of the knowledge that a smooth evolution path exists. .

2. Impact on implementation

· The decision on a particular implementation, from a vendor’s perspective is generally dictated by how the enabler’s interface is defined. But a vendor may be capable of providing more features if adding support for additional parameters/messages, either because of their own initiative, or based on a request from service providers/operators. Knowing that there is a mechanism for such additional messages/parameters to be used/exposed, and then possibly result into a specification that includes such additional messages/parameters, represents an incentive for the vendors to do such work The enabler could be defined in such a way that only one I0 is to be supported going forward, multiple I0 are to be supported and/or one of the supported interfaces may be mandatory and the other optional, or a set of added messages/parameters may become optional
3. Impact on deployment

· This approach will give significant added flexibility to the domain owner. It will practically allow the domain owner to expose a practically unchanged interface, if so desired, to applications, while internally the domain owner may have a variety of deployment choices to explore for the benefit of its own particular situation. The domain owner will ultimately be able to have a range of choices from using a significant set of additional messages/parameters implemented in an enabler, or implemented differently by declaring those additional messages/parameters as part of its P parameters required to satisfy their policies. Among other advantages, a domain owner could deploy a richer interface to the applications, earlier than otherwise expected, and handle the support of such an interface as convenient by distributing messages/parameters between the P parameters and the enabler’s specified interface. The use of early tested messages/parameters exposed to applications via the P parameters may also influence the evolution of the interface’s specification based on practical field results. All this is invaluable for a Service Provider that needs to support, for the same type of applications, multiple underlying network infrastructures, while at the same time trying to optimize performance for all of them. While some may argue that all the implementation in the OSE are based on enablers, and enablers are supposed to be agnostic of underlying technologies, that, in our opinion is an architectural vision that is true in theory, but in a real deployment environment is rarely reached and maintainable. The real deployment environment is a combination of enabler implementations 100% compliant to specifications, enabler implementations that are less than 100% compliant, enabler implementations that offer more than the standard specification, and finally entities that are not at all based on enablers, since there is not yet an appropriate specification available, or there is not yet an implementation available against a recently released specification. The service provider/operator has to deal with this complexity, and it may need/use any number of less-than-agnostic to the underlying network implementation, if it needs to provide services over such network technologies, and the “standard” enabler implementations are not sufficient.
4. Last but not least, impact on applications

· Depending on the domain owner’s decision, use of this concept may ensure minimal or no changes to the exposed interfaces to applications, over time – therefore ensuring stability of the exposed environment, with all its positive revenue-related implications for all segments of the value chain. Also, note that it is expected that over time applications developers may also want to influence the interface exposed to them. We have not explored this situation in the OSE, but it is likely that an application developer may propose to the domain owner a certain interface, that will include messages/parameters as required by a particular enabler, but also other proposed messages/parameters specific to the application, that are not part of the current enabler specification, or part of the P parameter set needed to satisfy domain owner’s policies. Such applications developers may also provide the domain owner with architectural elements (e.g. servers to handle new sets of messages/parameters) to be deployed in the OSE until the new set of messages/parameters is proven useful, and worthy of a new release of the enabler’s interface specification. All such additional messages/parameters need to be detected and directed appropriately when the request enters the OSE, and the Policy Enforcer is a mechanism to do this, given its properties. Over time, if the use of those messages/parameters proves to be widely accepted, they may be added to one or another enabler’s interface specification – thus helping the evolution of the interface.
Note that another possible transformation, mentioned in the OSE V1.0 document is “composition”. While this may be worthwhile of a separate application note, the current application note lays the ground for a larger number of variations, where “composition” is one of them. The case of “composition” is the case where the Policy Enforcer takes the I0 enabler interfaces from several enablers, transforms those as needed, adds to that combined set yet other messages/parameters (including P parameters dictated by domain owner’s policies, but also other potential messages/parameters, as explained in this application note) and exposes the resulting set of messages/parameters to the applications.
In conclusion, this application note describers a particular case of “interface transformation” through additions/subtraction of messages/parameters. Much more complex cases of transformations exist, and may be more useful than the one described. We invite contributors to address such more complex cases. This contribution is intended to start such a process of dissemination and raise awareness to the fact that the Policy Enforcer architectural element has significant capabilities to transform interfaces specified by enablers into (potentially different) interfaces exposed to applications. What transformations are performed is encoded in the domain owner’s policies, and those are completely under control of the domain owner. No such transformation will occur if none is desired by the domain owner (hence not encoded in their policies); at the same time almost any transformation can occur is so desired by the domain owner (hence encoded in the domain owner policies). Ultimately, it is the domain owner’s choice whether to use or not such a capability, for differentiation from other Service Providers or for any other reasons (some of them mentioned in the contribution).
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is for ARC to agree to the contribution as an architecture application note to be added to an Architecture permanent document (technical report or whitepaper).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

_1181363869.ppt

I0+P = I0+(Op+Pd)

bindings

I0’

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

I0”=I0’+D

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0’+P’ = I0’+(D+P”)

I0”+P” = (I0’+D)+P”=I0’+P’

I0”+P” = (I0’+D)+P”=I0’+P’

I0’+P’ = I0’+(D+P”)

Legend

P” = P parameters in Rel 2

D = Enabler additional messages/parameters (delta between Rel 1 and Rel 2)

 P’= P parameters in Rel 1

I0’ = Instance of enabler’s I0 interface in Rel 1

I0’’ = Instance of enabler’s I0 interface in Rel 2

