Doc# OMA-ARC-2005-0243-Comments_0213R01[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2005-0243-Comments_0213R01
Input Contribution

Input Contribution

	Title:
	Comments to OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC WG

	Submission Date:
	21 June 2005

	Source:
	Stéphane H. Maes, Oracle Corporation

P: +1-203-300-7786

stephane.maes@oracle.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface has been submitted.
2 Summary of Contribution

This contribution provides comments to OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface that illustrates:

· Limitations and issues with the proposed model

· Question the nature of the problem with options and versions

We applaud the proposal to discuss this in a separate document. However, this material needs further study of the problem and analysis of the different options. It is also essential to first determine the issues posed by options and enabler interface evolution as well as the alternatives available to address these issues; prior to making any presentation to other working groups as well as in practical deployments.
Introducing this approach in another document (white paper) does not change the fact that this requires more analyses including presentation of the problem and solution alternatives before being presented to other working groups.

3 Detailed Proposal

3.1 Summary

We have captured below comments and issues with the text proposed in OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface.

Without being exhaustive, they can be summarized as:

· Notion of interface transformation is now captured in OSE following agreement on OMA-ARC-2005-0224R01-Comments_213.
· Model proposed in OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface is restricted to additive options and evolutions. To be useful, generic transformations must be considered instead.

· The problem posed by options and evolution is not clear. Confusion, doubtful model and hypotheses seem to lead to misunderstanding of some of the OSE and other technology features and possible misunderstanding of the problem. For example:

· The real problem is a deployment problem of stabilizing the interfaces exposed to use resources. This is achieved by generic transformations that transform interfaces as needed including change of bindings.

· The notions of I0, P etc are bastardized because they apply to enabler by definition, but the usage considered here is about resources. Indeed the premises that applications can’t distinguish between I0 and P does not hold for enabler where I0 are standardized…

· The notions of options, new functions etc are self contradictory as they assume additive parameters and that they are sometimes supported by the OSE outside the enabler. If that is the case, then these features are not intrinsic and will never be part of the enabler…

· The problem of adding features is at least as much supporting the feature as it is stabilizing the interfaces…

· The notions of registration and discovery are clearly misunderstood, especially while they actually resolve most of the application interface change issues and do not require discovery enablers as already taught by the OSE.

3.2 In line comments
Transforming an enabler’s interface

Disclaimer: the following is considered an Architecture Application Note. While considered technically correct
, it is described here solely for the purpose of information for the standards, vendors, operators and other service providers’ community; it is non-normative and it does not represent a usage recommendation by Architecture WG.

The OSE V1.0 document defines the Policy Enforcer as an element that can intercept requests/responses to/from a resource in order to enforce the domain owner’s policies before continuing with the request/response.

Applications are presented with an I0+P interface through which to send a request to an enabler. This interface results from a combination between the I0 interface exposed by an enabler and the P parameters needed to satisfy the domain owner’s policies. Applications are blissfully unaware of the fact that this is actually the I0 of the enabler or not, namely they cannot (or rather don’t have to) distinguish between messages and parameters imposed by the I0 of an enabler and messages and parameters imposed by P (as required to satisfy the domain owner’s policies).

Abstracting for a moment from the main intent of the Policy Enforcer, one realizes that the capability and the placement of the Policy Enforcer architecture element in the OSE makes it possible for it to perform other interface transformations, beyond those dictated by domain owner’s policies. Another way to phrase this would be to consider the P parameters as the superset of all changes performed to the I0 interface, regardless of the reason behind those changes.

One possible application of this capability is that this architecture can be exploited to allow for an enabler’s interface design/definition to change over time
 (for example from one release to another) (possibly by offering certain messages/parameters as options
). The potential architectural changes of an enabler’s interface and of the P parameter are depicted in Figure x.

[image: image1.wmf]I0+P = I0+(Op+Pd)

bindings

bindings

I0

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

bindings

I0

’

=I0+Op

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0+P = I0+(Op+Pd)

I0

’

+Pd = (I0+Op)+Pd=I0+P

I0

’

+Pd = (I0+Op)+Pd=I0+P

I0+P = I0+(Op+Pd)

Legend

Pd = P domain owner subset

Op = Enabler Interface Options

P= P parameters superset

Figure x: Enabler interface evolution

The concept is based on the fact that an enabler’s I0 interface can be initially defined anywhere within a range of possibilities, starting from a basic interface including only the minimal mandatory messages/parameters, and going all the way to an interface including all the possible optional messages/parameters
. Optional messages/parameters
 can be needed because of multiple factors (e.g. re-use by the enabler of existing specifications that require such options,
 multiple underlying network technologies, and so on).

In order to simplify the explanation of the concept, the already known definitions for I0, Parameter P, I0+P will be re-used, and some new notations will be introduced
:

· I0 will be considered the “basic” I0 interface (including the minimal mandatory set of messages/parameters)

· I0’ will be considered the “extended” I0 interface (including the superset of all options)

· Op is defined as the enabler’s interface options.
 When those options are added to the basic I0 interface, this evolves into an I0’ interface (i.e. I0’ = I0+Op)

· Pd will be defined as the “true” set of domain owner parameters, needed to satisfy the domain owner’s policies. This includes those parameters that truly could not be construed as options of the enabler’s interface, but rather driven by the domain owner’s policies with respect to handling in general requests to its resources. When Op is added to this set, the resulting set is Parameter P (i.e. P = Op+Pd).

· P will be considered the superset of all possible P parameters that can be added to I0, regardless of the reason (whether to satisfy the domain owner’s policies, or for other uses of such messages/parameters). Note that we include in this both the domain owner’s “true” set of parameters (Pd) as well as the ones that could be construed and implemented as options to the enabler’s interface. When the enabler exposes I0, P may include the total subset of enabler’s options Op (or a subset of these options – that is the domain owner’s choice, depending on their needs and the deployed enabler implementation).

Note that I0+P, the interface exposed to applications (which is the same as I0+Op+Pd), may remain unchanged, if so desired by the domain owner, regardless whether the enabler’s exposed interface is the basic I0, or the extended I0’=I0+Op, since the difference can be adjusted using the set of parameters needed to satisfy domain owner’s policies.
In the first case, the set of P parameters exposed is P = Op + Pd, in the second case it is only Pd. Also note that an entire range of enabler’s interface definitions, between I0 and I0’ is possible, still without changing the interface exposed to applications, if so desired.

The advantage of using this concept are reflected in significant flexibility in different development phases and for different entities in the OSE:

1. Impact on enabler’s I0 interface specification:

· There are situations when an enabler’s initial interface is defined as a minimal, basic I0. The additional optional messages/parameters may be all known or not, but there is the distinct possibility that even if they are all known it may be initially difficult to decide whether they all belong with the enabler’s defined interface, or rather be handled elsewhere – hence it may be convenient to define those options as an Op set of options (Op could be anywhere from null, to a superset of options) that will be defined initially similar to P parameters, and handled appropriately according to the OSE architecture.
 As opposed to other “true” domain owners P parameters (the Pd set), defining the Op set is still the responsibility of the OMA WG. When ready to include the entire, or a part of the Op set into the enabler’s interface, a new release of the enabler may do so, and the enabler interface would then evolve to the new I0’ (or something in-between, if not the entire Op set is to be included in the new enabler’s interface). Note that the WG defining the enabler may decide whether the new I0’ replaces the I0, or whether both the initial I0 and I0’ need to be supported. This mechanism will allow for expedited decisions on the specification, because of the knowledge that a migration path exists.

· The reverse situations, in which an enabler’s initial interface is the superset I0’(I0+Op), including the basic messages/parameters, and the complete set of optional messages/parameters.
 This situation most likely may exist when the work is starting with a very mature specification for the interface in mind.
 Over time however, this enabler’s interface may evolve in the opposite direction, namely to reduce the number of options and allow those to be exposed via P parameters required to satisfy domain owner’s policies instead
. That may happen if a more generic, rather than specific interface is desirable (see deployment impact). As in a previous case, note that initially one could start with something less than the superset, and also that one could end up in the new release with something less than the basic minimal I0 – the entire range of options is available to the architects of the interface. As before, note that the WG defining the enabler may decide whether the new I0 replaces the I0’, or whether both the initial I0’ and I0 need to be supported. This mechanism will allow for expedited decisions on the specification, because of the knowledge that a smooth migration path exists. .

2. Impact on implementation

· The decision on a particular implementation, from a vendor’s perspective will be dictated by how the enabler’s interface is defined (see the explanations before). The enabler could be defined in such a way that only one I0 is to be supported going forward, multiple I0
 are to be supported and/or one of the supported interfaces may be mandatory and the other optional.

3. Impact on deployment

· This approach will give significant added flexibility to the domain owner. It will practically allow the domain owner to expose a practically unchanged interface, if so desired, to applications, while internally the domain owner
 may have a variety of deployment choices to explore for the benefit of its own particular situation. The domain owner will ultimately be able to have a range of choices from using a significant set of options implemented in an enabler, or implemented differently by declaring those options as part of its P parameters required to satisfy their policies.
Among other advantages, a domain owner could deploy a richer interface to the applications
, earlier than otherwise expected, and handle the support of such an interface as convenient by distributing options between the P parameters and the enabler’s interface. The use of early options exposed to applications via the P parameters may also influence the evolution of the interface’s specification based on practical field results. All this is invaluable for a Service Provider that needs to support, for the same type of applications, multiple underlying network infrastructures, while at the same time trying to optimize performance for all of them.
 A case could be made that in certain cases the use of the Policy Enforcer and the use of a subset of P parameters are not necessary to allow options, outside the I0 specification to be exposed to an application. For example, this could be done in the case where a Discovery Enabler
 is present, and an enabler implementation that provides such additional options. In this case, the enabler would publish its interface (the combination of the I0 conforming to specifications, plus the additional optional messages/parameters offered by the particular implementation). This spec+ interface could then be discovered by the requesting applications. Presumably “true” Pd parameters could be added to such interface by the domain owner via administrative commands or via posting through the Policy Enforcer, thus allowing for an I0+Op+Pd to finally be exposed to the applications. Policy Enforcer would only have to handle the Pd at interception of messages, because all the rest would be send to the enabler that exposes an I0 interface specification, plus unspecified options. While this scenario is indeed possible, the work on discovery enabler has not started yet,
 so it may be premature to assume whether and how it would cover such situations. Furthermore, since ANY enabler implementation is optional in deployment, there may be cases in which a Policy Enforcer may be deployed, but not a Discovery Enabler, or vice-versa. In the cases where both are deployed, the choice of how to implement such an application could still be left to the deployer. Finally note that, while the use of a Discovery Enabler may be a valid option instead of the use of the Policy Enforcer for the sub-case described above (when more options than the specification allows are to be exposed), it does not help in the case when the I0 specification requires all the options to be exposed, but the deployer does not want to pass the optional parameters to the enabler, for whatever reason (the case of “reducing” the interface). This is the case in which an application may send all messages/parameters, but the domain owner wants for example to replace the optional parameters sent by the applications with domain defaults. The Policy Enforcer can perform ANY such transformations, since it is in the path of the request/response, while the Discovery Enabler cannot – since it is only a
”means of communication” of the messages/parameters, and never processes a request/response. Similarly, the use of a Discovery Enabler is not helpful when the enabler implementation does not support any additional options, but the domain owner still may want to expose such options to the applications.
This may be the case in which a domain owner may want to collect statistical information on the use of options, in order to see how useful those would be to be later on implemented as part of the next I0 specification. In this case, such options passed on by the applications would be detected by PE, and processed through delegation to architectural elements deployed by the domain owner for collecting such statistics, while the target enabler would only be forwarded the pure I0 specified messages/parameters.

4. Last but not least, impact on applications

· Depending on the domain owner’s decision, use of this concept may ensure minimal or no changes to the exposed interfaces to applications, over time – therefore ensuring stability of the exposed environment, with all its positive revenue-related implications for all segments of the value chain. Also, note that it is expected that over time applications developers may also want to influence the interface exposed to them. We have not explored this situation in the OSE, but it is likely that an application developer may propose to the domain owner a certain interface, that will include messages/parameters as required by a particular enabler, but also other proposed messages/parameters specific to the application, that are not part of the current enabler specification, or part of the P parameter set needed to satisfy domain owner’s policies. Such applications developers may also provide the domain owner with architectural elements (e.g. servers) to be deployed in the OSE, in order to handle the additional parameters. All such additional messages/parameters need to be detected and directed appropriately when the request enters the OSE, and the Policy Enforcer could be the mechanism to do this, given its properties. Over time, if the use of those messages/parameters proves to be widely accepted, they may be added to one or another enabler’s interface specification – thus helping the evolution of the interface.

Note that another possible transformation, mentioned in the OSE V1.0 document is “composition”. While this may be worthwhile of a separate application note, the current application note lays the ground for a larger number of variations, where “composition” is one of them
. The case of “composition” is the case where the Policy Enforcer takes the I0 enabler interfaces from several enablers, transforms those as needed, adds to that combined set yet other messages/parameters (including P parameters dictated by domain owner’s policies, but also other potential messages/parameters, as explained in this application note) and exposes the resulting set of messages/parameters to the applications.

In conclusion, this application note is intended to raise awareness to the fact that the Policy Enforcer architectural element has significant capabilities to transform interfaces specified by enablers into (potentially different) interfaces exposed to applications.
 What transformations are performed is encoded in the domain owner’s policies, and those are completely under control of the domain owner. No such transformation will occur if none is desired by the domain owner (hence not encoded in their policies); at the same time almost any transformation can occur is so desired by the domain owner (hence encoded in the domain owner policies). Ultimately, it is the domain owner’s choice whether to use or not such a capability, for differentiation from other Service Providers or for any other reasons (some of them mentioned in the contribution).

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We agree with the recommendation of OMA-ARC-2005-0213R01-Evolving-an-enabler--s-I0-interface and appreciate the intent. Indeed much more discussion is needed.

Therefore, we recommend that ARCH agrees to initiate an activity to define the problem of options and evolutions, analyzes issues and options and propose recommendations to WGs and deployment / realizations if applicable. A white paper may result from this activity but it must carry the consensus of the group both in terms of the analysis and the recommendations.

�While transformation of interface is correct numerous assertions in this document are doubtful to say the least…

�Actually they do and should be aware of it. I0 is a standardized interface! It is true that if interface to resources are discovered, the interface does not know how to distinguish the naked (zero policy) interface of the resource from the one exposed with P parameters. But for enablers, that is not the same!

�Note that interface transformations are not limited to additive parameter changes. Any change of I0 applies and they may also reduce the set of parameters or totally transform the interface including its bindings.

�Again, over time, changes may not be additive:

bindings can change or new bindings offered

Parameters ca be added or removed

New interfaces / new functions may be exposed

The message of the interface it self may dramatically change.

So the model discussed here is by definition limited to particular cases.

A first question to address is therefore the adequacy of the restrictions: is the problem of evolution related to adding parameters from one release to another.

�Options may not consist solely of new parameters but may include:

 Other bindings

 Other supported functions and therefore other messages

 Behaviour negotiations

This illustrates already a key difference between options and evolutions / versioning. It also illustrates how wider the issues of options (as well as versioning) are versus the model discussed here.

In any case the logical architecture supports all the functions – including the mechanisms to deal with options

�But I0 includes them all, including options and mechanisms to deal with them if provided…

�As explained above. This is a very restrictive view of the impact of options.

�This does not justify options. Re-use would limit options if they are not needed by enabler.

�Flaw: definition of standard interfaces is confused with interface of a resource.

�HUGE restriction of the notion of options or evolution!

�This is a deployment issue. In general this requires the wide definition of interface transformation (to maintain exposed interface stable) rather than simply adding making sure that the superset of parameters is exposed.

Note also the perverse aspect of the model: now any service provider to stabilize the expose interface must require the superset of parameters that “might” be needed! That is hardly a good practice.

�This is not a realistic characterization of the problem and options. If options are introduced, the real problems

that the enabler must support the functions or not. The enabler must also be able to deal with the different cases. This is not dealt with elsewhere in the OSE

that the applications must work with possibly different interface or options. This may be treated by model but in general additive options do not deal with most issues.

�By definition, this is the logical I0 interface of an enabler!

�No all enabler I0 include all the options!

�If not needed to perform the enabler function it’s hard to imagine why SP needs them. The only motivation for doing that is rather to stabilize the exposed interface. Again the evolution is in general a more complex transformation than additive (e.g. going from WAP to XHTML..., from messaging to WS, new binding, etc...)

�There is only one logical I0!

�Only true benefit of this. But it’s more general than additive! I would claim that additive does not solve most of the cases.

�Typically it’s rather the user can dramatically change what it exposes and how and still provide the same service thorugh a same intarfec. This is again rarely achieved via simple additive transformations but requires much more advanced transformations.

�That does not seem to work! If he stabilize the exposed interface, the application can’t take advantage of these features (as old interface is all what is exposed). Conversely if it exposes an advanced interface before being able to support it, thing seems problematic too and I doubt applications woudl take advantage of not supported features!

�OSE has failed if support for multiple network and technology requires changing the I0 interfaces! The design and goal of the OSE is to factor out that dependency so that applications are stabilized with respect to network changes / resources / vendor changes at the level of the resources. Hence the factorization via I2!

�Always true. Does not require discovery enabler.

�Works also whatever is the way that application is informed of the interface / messages to exchange. The proposal here does not change anything to the discovery: the interface to use is always to be known by application at least at run time. Stabilize the interface may help by limiting when that needs to be requested / updated / communicated. As discussed the additive model will often not help… The rest of the argument is therefore moot.

�This seems to pre-suppose that a SP would implement an enabler option via composition instead of using the enabler. Isn’t it strange. If that can easily be done, is this really something that should be intrinsic to that enabler?

�Doubtfully as in such cases they would be clearly non-intrinsic!

�Composition and transformation are much richer than the proposed model here. It is the other way around. The current note is a restricted particular case that does not seem to address its stated objectives of addressing optionality and evolution of interfaces in numerous practical cases.

�Correct and by now captured in the OSE.

�Truly practical use of richer transformations are really interface stabilization and adding binding to a resource (besides composition). Note all tehse are deployment considerations

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

_1179131914.ppt

I0+P = I0+(Op+Pd)

bindings

I0

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

I0’=I0+Op

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0+P = I0+(Op+Pd)

I0’+Pd = (I0+Op)+Pd=I0+P

I0’+Pd = (I0+Op)+Pd=I0+P

I0+P = I0+(Op+Pd)

Legend

 Pd = P domain owner subset

Op = Enabler Interface Options

 P= P parameters superset

