Doc# OMA-ARC-2005-0302-PEEM-Fundamentals-WYSIWYG.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2005-0302-PEEM-Fundamentals-WYSIWYG.doc
Input Contribution

Input Contribution

	Title:
	PEEM Fundamentals – WYSIWYG (What-You-Specify-Is-What-You-Get)
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC (PEEM Activity)

	Submission Date:
	Sep 4 2005

	Source:
	Michael Brenner, Lucent Technologies

mrbrenner@lucent.com

Paulus Karremans, Ericsson

paulus.karremans@ericsson.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

In Montreal, it was indicated that there might be significant differences between different members on PEEM fundamentals. An informal session took place to initiate discussion on those differences.
The parties opposed to our contributions 283R01, 284R01 and 285R01 described summarily their model for PEEM. Given the short time available, and given that we perceived an opportunity to make some partial progress, we preferred to focus on a couple of examples and assess if differences could be bridged. The discussion showed that some of the examples we gave could be accommodate under the model embraced by the other parties, although not in our preferred way; it also showed that there were still disagreements (e.g. the need for an optional policy in PEM-1). We agreed that good progress has been made in the short time available, and that we will continue the discussion over e-mail, and follow up with contributions.
At no time was there a notion of agreement that our model can be subsumed by the other party’s model – it would have been much too early, since the discussion had just been initiated.
We acknowledge the informal discussion was useful in understanding the model and identifying possible areas for agreement. Capturing of agreements however can only be done in WG sessions, and should be achieved through input contributions.
Discussions to formalize the agreement via e-mail have shown that we still have significant differences in the model and that formal, separate presentations of the models via contributions should be submitted, to give ARC WG a good opportunity to study and understand the differences. We therefore welcome the other parties’ initiative in that sense, reflected in contribution 298. We are following this initiative through this current contribution.
We would like to draw attention to the fact that there is a noticeable distinction in the approach we take, in particular when it comes to the PEM-1 interface. Our approach is user (e.g. requestor) centric, based on market requirements – in other words “outside-in”. We contend that PEM-1 specification needs to reflect the requestor’s view, expectations and desire to obtain a consistent and interpretable answer to the request, and therefore the need to provide in the request quality, well specified, input information. The other parties’ model is PEEM centric, therefore “inside-out”. That model starts from the perspective that PEEM, through the expressional power of the policy expression language, can act as an inference-based engine and a generalized program generator that can accept any unspecified input data and produce any unspecified output data.
2 Summary of Contribution

This contribution provides the fundamentals of our model.

3 Detailed Proposal

3.1 What is PEEM and what needs to be specified?

PEEM is an OMA enabler that can be used in proxy mode or callable mode (see definitions in PEEM RD) to enforce policies.

Policy enforcement amounts to evaluation (or, evaluation and execution) of a set of policy rules (i.e. evaluation of conditions and, if requested (explicitly or implicitly), execution of actions) as expressed in a policy expression language. Policy enforcement starts by first determining if the condition evaluates to “true” or “false” (note that one rule’s evaluation can result into chaining of other rules that need to be evaluated). The continuation of the enforcement (and where such continuation is carried out) depends on whether the policy returns a “decision about the action” to the requestor (outside PEEM), or whether the “action” is carried out as part of the policy rule, by PEEM.

In other words, based on market requirements captured in the approved PEEM RD, PEEM is an entity that, when deployed, is used by a domain owner to enforce (evaluate, or, evaluate and execute) policies that protect resources in that domain. The PEEM RD does not include requirements dictating that PEEM is a generic entity capable of executing complex programs written in a programming language.
In OMA, enablers are specified in terms of how they relate to other entities. PEEM is therefore specified by its interfaces. PEEM will also include a specification for a policy expression language.
3.2 Policy expression language

V
The PEEM RD is very clear in the need to standardize a policy expression language. That could be achieved through one single language or multiple languages provides; it couldbe achieved through a rule set declarative language, a procedural language, or a meta-language. It is agreed that a language selected needs to be able to express “any combination of conditions and any actions”, and that “it is powerful enough to specify any calculation within a condition or an action”. Supporting multiple policy expression languages is not only something that needs to be considered when the decision is ultimately made, but the extent to which existing policy expression languages will be supported in the specification will be a determining factor in the successful introduction of PEEM in any deployment. .

Policy-related specifications already exist today in OMA and elsewhere; there are various implementations deployed in service providers’ domains also. Any selected policy expression language needs to be general and powerful enough to express any of the policy rules found in those specifications or implementations – ideally with no changes. As new policy rules are defined, the PEEM specification needs to be able to support them. Care should be taken to define the extensibility at the right level (e.g. designing for unlikely or remote possibilities will introduce unnecessary complexity, which could result into delayed market introduction or acceptance).
An approach that would survey the set of policy rules required by the existing OMA enablers is a very appropriate first step to determine what OMA needs. ARC WG has Action Items to perform such survey/analysis. The conclusions from such survey/analysis should give a good indication of what is currently needed in the market. Once this indication is available, it will allow further assessment of what extensions may be needed. At this point in time, it would be premature to jump to the conclusion that a full-fledged programming language is needed. It would be preferable to put in place a framework that addresses what is immediately needed, and accommodates extensions to satisfy future/different new policy rules that may emerge in OMA or elsewhere.
Defining a relatively stable framework for the language may require more work indeed. Some extensions may have to be accommodated later through the normal OMA process of using CRs. But like in any other cases, de-facto market standards will be quickly agreed into a new version of the specification. Note that a complete programming language may also create IOT difficulties, in the absence of adequate tests – which may the case for certain constructs that are not needed /used in real market-based policy rules. The argument that deployments would have to upgrade their PEEM implementation to keep up with these changes has not been proven to be true, and although it is a factor to take into consideration, it should not be the determining factor. Any vendor implementation of any enabler may need eventually to be upgraded to the latest version of the specification, but this is something that is usually negotiated between deployer and vendor.
An OMA specification needs to take into account pro’s and con’s in different approaches (e.g. complexity of a specification, time to market, cost of implementation, performance of implementation, delay of initial deployments, against cost of subsequent changes).

In addition, note that there is a very special distinction between the use of a set of policy rules for evaluation or their for evaluation and execution. In the case of evaluation only, the evaluation of the set of policy rules must return a value that the requestor can use to perform the policy execution phase. In the case of evaluation and execution, PEEM will handle the policy execution phase before returning control to the requestor. While an internal PEEM model and implementation that makes no distinction between the case of evaluation-only versus the case for evaluation and execution, the distinction clearly and always exists from a PEEM user perspective (the PEX requestor). A user of PEEM who decides to make use of the callable PEEM model knows precisely if he/she has the desire that the “action” from the evaluated set of policy rules be performed or not by the PEEM implementation, and has to be able to reflect that in his/her request – according to market requirements captured in the approved PEEM RD. Such a user expects to be returned a “decision” (in the case of a explicit request for evaluation only), or alternatively, expects to be returned a result of the execution of the “action” in the case he/she asked for “evaluation and execution”. This in fact has nothing to do with the fact that PEEM can or cannot do both, or how it does one vs. the other – it has to do only with the fact that PEEM has to be told what it is asked to do by the requestor, in the case of callable PEEM mode, exactly because there should not be any presumption on how this may be done. Assuming the requestor is not allowed to indicate his/her preference of “evaluation-only” vs. “evaluation-and-execution”, PEEM processing could have significant unforeseen side effects, if PEEM decides to execute the “action” while the request was intended for “evaluation-only”. It is therefore mandatory to have a way to clearly identify, by the requestor, what type their request is. Note that this is also consistent with the IETF PEP-PDP model, which is widely adopted in the industry.
3.3 Evaluation (or, evaluation and execution)
Policies are evaluated (or, evaluated and executed) by PEEM. In the case in which a request is made for evaluation-only, the execution of the action is carried out by the requestor, instead of PEEM. Policies express how PEEM acts on an input (through PEM-1, PEM-3, or PEM-4) and what PEEM generates as output. The output is what determines the quality and usefulness of PEEM. The output’s quality is critically dependent of the quality of the input. Therefore, “What You Specify Is What You Get” (WYSIWYG).
It is irrelevant for the specification of the PEEM interfaces how the policy is modelled. All what the specification needs to consider is that PEEM will have to work with the input received against a set of policy rules, which will be loaded and made available to PEEM. Only one path/mechanism to load and otherwise administer policies is needed (i.e. via the PEM-2 interface) and opening multiple paths to upload policies is not only unnecessary, but also a potential for breach in security – which would require additional work to eliminate the threat.

3.4 Interfaces

PEEM can expose or delegate to any resource (defined in OMA or not) to enforce any policy. Therefore, the PEEM interfaces cannot rely on an assumption of a finite set of messages types to exchange.

As a result, the interfaces have the following properties. Note also that all interfaces may be bound to any technology and transport.
3.4.3 PEM-1

PEM-1 has multiple input parameters and multiple output parameters (note that some parameters could be grouped into a single parameter if so desired/agreed at specification time):

· An input parameter (RequestType) that clearly identifies the request type from the requestor’s perspective. The RequestType parameter can take 2 distinctive values:

· RequestType = RequestEvaluationOnly OR

· RequestType = RequestEvaluationAndExecution
· Input parameters (multiple or grouped into one) that identify the input “context”. This is information that forces a requestor to provide intelligible input data, that would allow policy rules to be identified and evaluated (or, evaluated and executed) with the precision and predictability that any domain’s environment mandates. The well-specified parameters are in fact meta-parameters. PEEM as well as any requestors will have access to the same data identified by the input meta-data parameters.
· Subject – identifies an entity that is asking for an operation on a resource.

· Resource – identifies the entity that may need protection

· Operation – identifies the task the request that is being attempted by the Subject, against the Resource

· Environment – identifies other contextual information that could be used in evaluating the policy (e.g. state information about the Subject or Resource, time-of-day, other).
· An optional “free format” input parameter. This will allow any data, including data not pre-agreed, if that’s what the requestor wants to provide, to be sent as additional input to PEEM. This may allow also for proprietary extensions to be exchanged.
· Output parameters (multiple or grouped into one).
· For any given specified input “context” (determined by RequestType, Subject, Resource, Operation, Environment) the acceptable output data will be pre-defined, and based on the results (either the “decision” or the “result of an action”) that the requestor can possibly accept. This will include the data content and the format that can be accepted by the requestors. Based on the policy evaluation (or policy evaluation and execution) PEEM will return via PEM-1 one of the allowable output information, from the pre-agreed set of possible outputs applicable for the input context.
· An optional “free format” output parameter. This will allow any additional output data dictated by the policy rule to be sent as additional output to the requestor.

Note that at specification time, more analysis may be needed to determine whether other meta-parameters are needed (the survey of current policy rules may give us the answer) or whether it would be beneficial for input/output parameters (formatted or via “free format”) to support stronger typing (e.g. scalars of specific type, record constructs, list constructs, etc).

Note that the same interface can be used for both evaluation or evaluation and execution.
Note that this model does not impose any specific implementation for PEEM, and in fact it subsumes a model in which all input is presented as “unspecified BLOB”. Indeed, any implementation that prefers to treat the entire well-specified input context as an “unspecified BLOB” can do so unhindered – in which case for that particular implementation, there is no difference in the model. Note that such a specific implementation can also ignore the request type parameter, if it has other means to comply with the need to return exactly what the requestor is expecting, in the absence of such input information from the requestor. The difficulty of that situation consists in the practical impossibility to “infer” the type of request desired, if such data is not provided via the request – since 2 policies could be perfectly identical in their “condition” portion, while differing significantly in the handling of the “action”).
Note also that this model allows a “best-of-both-worlds” approach, since we allow for optional “free-format” input and output to be supported. In the final instance, any requestor and deployer may agree that the requestor will pass all the input context information through the optional “free format” input data, and accept all output via the “free format” output data, and bypass the well-specified input.
Note that an “optional policy” parameter is never needed for the following reasons:

· Regardless of model, a requestor does not know, neither should it know what set of policy rules are in place and what set of policy rules should apply to his/her request. If a requestor would in fact know the applicable set of policy rules, since it also knows all the context information that it will make available, it would simply not need PEEM at all – it could just go ahead and simply evaluate its own known the set of policy rules, and execute any resulting action. That would defeat the need for PEEM in callable mode altogether. The whole idea about PEEM in callable mode is in fact based on the assumption that the requestor does not know if, or how to continue when arriving at a certain point in its processing of a task, and so it assumes there may be external unknown conditions that may require an external entity to render a decision.

· The predictability of identifying and evaluating (or, evaluating and executing) the set of policy rules that apply to the request is ensured by the well-specified input that will uniquely identify the applicable set of policy rules. Therefore, again, “What You Specify Is What You Get”. A well-specified input will result into a predictable outcome. An unspecified input will result into an unpredictable outcome (with respect to identification, and then evaluation (or, evaluation and execution) of the set of policy rules.
3.4.4 PEM-2

PEM-2 must support the capability to add, delete, update, and retrieve policies and policy rules.
Note that according to the PEEM requirements, other logical data that may need to accompany policies or policy rules, may need to be provided via the PEM-2 interface (e.g. policy/policy rule priority, association with a resource or request, etc)
Note that it is not clear if partial inline edits of policy rules (e.g., some subpart of a “condition” of the rule) are to be supported nor if mechanisms designed for declarative / XML language can be applied.
3.4.5 PEM-3

PEM-3 should not and cannot be specified by PEEM. Other resources (e.g. enablers) dictate the PEM-3 specification. PEEM can indeed look at those messages from/to other resources as a BLOB if that’s how PEEM chooses to be implemented, but then this is an implementation statement, and not a specification statement. The PEEM AD needs to reflect this, by indicating in the PEM-3 description that PEEM exchanges messages as specified and formatted by other resources.

3.4.6 PEM-4

PEM-4 should not and cannot be specified by PEEM. Other resources (e.g. enablers) dictate the PEM-4 specification. PEEM can indeed look at those messages to/from other resources as a BLOB if that’s how PEEM chooses to be implemented, but then this is an implementation statement, and not a specification statement. The PEEM AD needs to reflect this, by indicating in the description of PEM-4 that PEEM exchanges messages as specified and formatted by other resources.

3.5 Notes

The only acceptable way to ensure consistency and predictability between input provided in a request with the set of policy rules is to have a set of pre-agreed data to be exchanged. In this case it is practical to do this by defining parameters as meta-data. This will force the requestor to provide certain type of data, which will be also be used in writing conditions and actions in the set of policy rules. Therefore, the data carried in the input messages cannot in fact be “anything”. Similarly, output data needs to understandable by the receiving party (the requestor). Leaving the input and output messages as completely unspecified creates a series of problems:

1. A BLOB is not an acceptable normative specification for a Service Provider’s environment. Since nothing is specified, nothing is mandated and indeed this should not be called a specification. It is creating the “illusion” of a specification, when in fact one does not exist. A specification of this nature is of little value to both vendors and deployers. Note that the same use of PEEM could be achieved in the absence of such a “specification” altogether, since PEEM could accept “anything”.
2. A BLOB as the input parameter for PEM-1 does not meet the needs of OMA. From OMA enablers’ perspective (the potential “requestor” perspective), PEM-1 is the only specification of interest. Other OMA enablers that may make use of PEEM enabler are only concerned with the PEM-1 PEEM interface (the interface that they may use in making a direct call to PEEM). They are not concerned with what PEEM may or not specify in its policy expression language, or the other specified interfaces. Telling the OMA enablers developers – “you shall normatively pass an unspecified BLOB (practically anything you want, but by the way “try to make it consistent” with the set of policy rules that you have no clue about), and you will get back in return an equally normative unspecified BLOB (and by the way you can do with it whatever you feel like, since that’s also what we did in the set of policy rules itself)” – is unlikely to be what OMA enablers developers would like to hear. That is because WYSIWYG.
3. A BLOB cannot ensure consistent and predictable information being passed. Since nothing is specified in this case, a requestor can pass anything, including nothing, in its request. The result is therefore completely unpredictable. Validation of any input is not possible. PEEM could identify, then evaluate, and eventually also execute, zero policy rules, or any number of policy rules including all of them. We consider allowing such a situation is unacceptable in any Service Provider’s environment.
4. The input and output information in the PEEM proxy model is dictated by whatever is passed through I0 interfaces and I0+P interfaces. Obviously, in the proxy model, PEEM cannot dictate what it will receive, and how it will receive the input in its input messages. While it is admittedly a difficult job to sort out this input and make sense out of it, it is still possible to do a fairly predictable job, because these are still well formatted interfaces, albeit very diverse. One may look at those messages as “unspecified BLOB” because in fact all of them need to be supported – and PEEM cannot predict which one will arrive when. But yet what is received as input data is always input data selected out of a finite set of possibilities, Nothing prevents the same PEEM implementation used for the “proxy model” to be used in the “callable model” – but one needs to understand that there are clear conceptual distinction between the two models. In the 2nd model, if the input data is left completely unspecified, one cannot guarantee any degree of predictability – therefore that cannot be allowed. The requestor needs to supply well-specified data. The better the data is specified, the better the predictability of the outcome from PEEM. Using the PEM-1 request and well-specified data, the predictability of the outcome can achieve 100%. In the callable PEEM mode, allowing for an “unspecified BLOB” is equivalent to “inviting serious trouble”. Of course, that will not be allowed in a real environment, so in fact there will then emerge non-standard implementations to circumvent an unacceptable situation, and so pre-agreed formatting will have to occur. This is not something that each vendor and deployer should go through, and PEEM specifications should eliminate, or at least significantly limit the extent of post-specification work that vendors/deployers should go through. This is not at all an issue that can be tagged as an implementation issue – the role of standards is to provide specifications that would ensure the quality of the results when the specification is applied. Again, WYSIWYG.
5. A deployer of any OMA enabler implementation should be in principle able to hold a vendor’s implementation responsible for the quality of input data passed as context (in the case of an enabler implementation acting as a PEEM requestor) and for the quality of the set of policy rules and the output provided in response to the PEEM requestor (in the case of a PEEM implementation). With an input BLOB and an output BLOB where any data can be freely exchanged, there is no good way to hold the vendors responsible against the specification, since they would be compliant to a PEEM specification no matter what data the two entities would choose to exchange.
6. A BLOB cannot be tested against, or at least it is highly problematic of how this could be successfully achieved. It is not clear on what basis one would define what goes into the “input BLOB” test data in order to complete test the specification. Poor context input data, would result into an unexpected result – but poor data is allowed, according to the “input BLOB” specification. What is to be concluded by such a test? Same is true for the “output BLOB” data. Data that is not understandable by the requestor could be generated by the enforcement of a policy rule – but that is allowed under the “output BLOB” specification. What is to be concluded by such a test?
In conclusion, the model described supports the PEEM approved requirements, and supports the reliability and robustness needed in specifications. It also includes the flexibility to allow extensions and communication of “free format” data through optional parameters for both input and output. Finally, this model does not impose any particular implementation of PEEM, neither does it preclude any particular implementation of PEEM.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend that ARCH collects alternate views on this, if there are any additional ones, and documents in details the differences.

We would like to then have an analysis of the pros and cons of each alternative on each of these points followed by a binding decision on how to move forward.
We also recommend that the alternative that best accommodates the better aspects of all submitted alternatives, and serves best the potential users, be ultimately selected. We believe that out of the two alternatives proposed so far (the one proposed in contribution 298, and the one presented in this current contribution 302) , the one described in this document is better, while the other one falls short in too many areas, and therefore we recommend to accept the text presented and incorporate this material in section 3 into the AD.
We realize the material presented may be considered “too descriptive” for the Section 3 of the AD. Should that be the case, we would agree with an alternative recommendation of placing “PEEM Fundamentals – WYSIWYG” in a new Appendix WYSIWYG (or any other label chosen by the editor).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]
Doc# OMA-ARC-2005-0xxx-PEEM_Fundamentals-WYSIWYG-0903.doc
Input Contribution

