Doc# OMA-ARC-2006-0069-Removal-of-reference[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2006-0069-Removal-of-reference
Input Contribution

Input Contribution

	Title:
	Removal of reference
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	21 Feb 2006

	Source:
	John-Luc Bakker, Telcordia

+1 732 699 2694

jbakker@telcordia.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

<text describing why this contribution is being made>

2 Summary of Contribution

<text describing the scope and nature of the proposed text or actions to be taken>

3 Detailed Proposal

Change 1: Removed reference and added a bracket

2.2
Informative References

	[ARCH-INVEN]
	Inventory of Existing Architectures to OMA", Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[ARCH-REQ]
	“OMA Architecture Requirements, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	
	

	[GSM 01.04]
	“Abbreviations and acronyms”. European Telecommunications Standards Institute. Technical Report GSM 01.04. URL: http://www.3gpp.org

	[ITU-T I.112]
	“Vocabulary of terms for ISDNs”. International Telecommunication Union. ITU-T Recommendation I.113. http://www.itu.org/

	[OMA-DICT]
	“Dictionary for OMA Specifications”, Version 1.0, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[RFC 2828]
	“Internet Security Glossary”, RFC 2828.

URL:http://www.ietf.org/rfc/rfc2828.txt

	[TMF]
	"Product Lifecycle Management with NGOSS Catalyst (PLM)",

URL:http://www.tmforum.org/

Change 2: Removed reference

5.2
Architecture requirements and principles

The OSE architecture is developed to satisfy the OMA Architecture Requirements [ARCH-REQ]. The Architecture requirements document [ARCH-REQ] describes both functional and system requirements that need to be satisfied by the OSE. The Architecture requirements document [ARCH-REQ] also implies the need for a set of interfaces. These interfaces and the associated OMA architecture requirements are described in Appendix B.

Additionally, the OSE focuses on several key concepts that address the issues as described in Section 4.3

The OSE architecture can be realized using the specifications, as defined by, for example, Parlay OASIS, JCP and Liberty Alliance. The key principles of the OSE are described in the following sections.

Change 3: Removed reference

5.3.2 Enabler implementation

Although specifications created by OMA are technology-agnostic regarding their implementation, the reality is that enablers will be implemented in real deployments of service environments. Consequently, this document defines Enabler Implementations as an element in the OSE and it literally represents an implementation of an enabler, e.g. either in a Service Provider domain or in a terminal domain. An enabler implementation can be viewed as a template that represents an implementation of any enabler (e.g. MMS) as defined by OMA. When an enabler specifies multiple entities (e.g. client and server, multiple clients or multiple servers) and their interactions, each of these entities can be implemented as separate enabler implementations (e.g. client enabler implementation and server enabler implementation).

The OSE makes no restrictions on how enabler specifications are implemented.

Enabler implementations provide standardized functions. The enabler implementation may amalgamate, abstract and/or repackage a resource, and present its functions through an interface after binding to a particular syntax.

Enabler implementations expose life cycle management interfaces (e.g. start, stop, trace, etc) that allow the domain to use infrastructure capabilities to manage the enabler's components.
OMA defines many enablers such as location and device management. In addition, other functions (e.g. authentication, access control, discovery and directories) may be provided either through enabler implementations, infrastructure features or applications (e.g. Third Party management and transaction management) available in the environment.

Enabler implementations may be invoked by applications or other enabler implementations. OMA enablers may be defined for usage in callable mode, proxy mode, both or in none of these modes. They are all represented in the OSE as enabler implementations (see Figure 1). Depending on their role or deployment model they will present an interface and be used as proxies or callable enablers.
The enabler implementations process the messages as defined by the enabler specification. The binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

5.3.3 Interfaces

The term Interface is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Interface: The common boundary between two associated systems (source: [GSM 01.04, ITU-T I.112]).
This document defines several generic interfaces for the OSE. See “Section 5.3” for more information about these interfaces.

Enabler specifications typically define interfaces to:

· Invoke the intrinsic functions of the enabler specification in an interoperable manner;

· Support interoperability between entities of an enabler;

· Allow the ability to provide life-cycle management of enablers.

However, as a fundamental principle of OMA, enabler specifications do not specify technology-specific Application Program Interfaces (API). The OSE does not specify any APIs.

NOTE: The OSE does not specify any Reference Points (see [OMA-DICT] for a definition of Reference Point).

Change 4: Removed reference

5.3.7
Execution Environment

A full service lifecycle model for services has been defined by the TeleManagement Forum [TMF], and mapped to the eTOM (extended Telecommunications Operations Map). This mapping is defined in an abstract way, which can be adapted to any deployment environment. As an example of an existing Specification developed by another open standards group that may meet OMA requirements, OMA should re-use this model.
NOTE: The following is a simplified model that forms a framework for the detailed description of the life-cycle model, which is achieved by mapping the high-level model onto the eTOM [TMF].

The high-level model of the service life cycle contains the following operations/phases:

· Develop;

· Sell;

· Provide;

· Bill;

· Service;

· Report;

· Modify/Exit.

Within the scope of OSE, the Execution Environment provides support for software life-cycle management functions. Such functions may be used during the service life-cycle phases defined by [TMF].

The Execution Environment is an element in the OSE. This execution environment or platform logically encompasses various functions such as process monitoring, software life cycle management, system support (e.g. thread management, load balancing and caching), operation, management and administration that allow the OSE domain to control enablers. The functions within the Execution Environment may not be directly exposed to applications, however these functions may be directly invoked by enabler implementations. In addition, resources can rely on these functions and may assume that the functionality of the Execution Environment is available. Software life cycle management includes a set of functions of the Service Provider Execution Environment and can be implemented as a separate enabler, or it may be distributed over several enablers.

Then, in the OSE domain, certain software life-cycle management functions are needed to provide basic support to the enabler implementations.

The software life-cycle management functions include but are not limited to:

· Creation;

· Software deployment;

· Software Management:

· Process Activation & deactivation (e.g. actuation);

· Dependency management;

· Upgrade;

· Removal;

· Fault management (e.g. logging and SNMP traps);

· Performance management (e.g. measuring).

For further information on TMF and mapping to the eTOM and the SID (Shared Information/Data model) of the TMF, see [TMF].

Change 5: Changed a footnote into a NOTE, changed the font color

5.5.4
Deployment options

Policy Enforcer is an architectural element of the OSE. The Policy Enforcer may be realised by the OMA PEEM enabler.

Deployment options for the Policy Enforcer functionality include, but are not limited to:

· A standalone enabler implementation that uses other standalone enabler implementations to evaluate and enforce policies. Such an enabler implementation would be deployed as a separate component from other enabler implementations (see Figure 5, Case 3a and 3b).

NOTE: The "interceptor" (Figure 1, Case 2c, 3b and Figure 2, Case 2c, 3b) is a functional component that intercepts a request, generates the appropriate requests to a PEEM enabler implementation via the PEEM callable interface I0 and proceeds based on the result by letting the request reach its target, blocking the request or returning an error message. The "interceptor" function can be provided through a proprietary implementation, or through an implementation based on a future specification (the "interceptor" function has not been specified by OMA).

· In the deployment as depicted in Figure 5, Case 2b and 2c. Policy Enforcer functionality forms an integral part of the enabler implementation and is therefore not directly available to perform policy evaluation and enforcement for any other enabler implementations. In this case, the Policy Enforcer implementation performs its functionality and then passes execution control to the bundled enabler implementation. The Policy Enforcer implementation is not designed to pass execution control back to the implementation that invoked it, or forward to any implementation other than the one it is bundled with.

[image: image1.wmf]PEEM

Enabler

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3a

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non

-

intrinsic function

Enabler

implementation

1

2

Case 2c

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Enabler

implementation

1

2

Case 3b

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Figure 5 - Target Policy Enforcer deployments (with flows)

Change 6: Removed reference

6. Implications on enabler specification writers (normative)

The OMA Architecture Requirements [ARCH-REQ] states that enabler specifications should reuse existing specifications where possible. This approach includes reuse of existing OMA enabler specifications whenever possible (e.g. reuse of presence and group management enablers by the PoC enabler).

· If applicable, an enabler MUST specify or reference one or more interfaces for its intrinsic functionality that will be used to interface to (i.e. invoke) its functions.

· If an enabler depends on already defined OMA functions, it MUST identify which other enablers' intrinsic functionality it will invoke to perform these already-defined OMA functions.

· An enabler MUST specify or reference only the functions, protocols and invocations that are essential (i.e. core) to its purpose
Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's specification. An enabler's specification should only specify the intrinsic functionality required to fulfill its actual function.

For example, some enablers require having an identifier for the requesting entity. The requirement to perform the enabler's function is that there be a way to distinguish one requestor from another. It is not a requirement for the requestor's identity be verified using any particular mechanism (e.g. password, certificate, biometrics). The need to authenticate the requestor is a policy statement under the control of a domain. It is not required to perform the function of the enabler. Therefore, the authentication process is outside the scope of the enabler specification, allowing it either to be implemented as an added value by the enabler implementation or left to the policy enforcer enabler.
Change 7: Updated numbering, removed few carriage returns, found missing reference

7.1 Security Threats

Security technologies are used to manage the risk and vulnerability associated with security threats (attacks taken on the systems, the information and data, and the services). The costs associated with the risks and costs of handling the vulnerabilities justify the cost of the security mechanisms. Security mechanisms are deployed to countermeasure the vulnerability by reducing the risks of the threat (e.g. risks of known attacks). The following list describes common security threats:

· Inappropriate content modification is a threat, either due to a malicious attack or due to an inadvertent mistake. Although a checksum can detect a change, it cannot detect tampering since the checksum may also be modified. Technologies such as digital signatures or Message Authentication Codes (MAC) (such as a keyed hash) may be used to detect changes and support source authentication. Such technologies may be deployed to protect information in transit (SSL/TLS), end-to-end at the application-messaging level (for instance, using WS-Security) or end-to-end at the application content level (for instance, using XML Digital Signature).

· Denial of service is an attack to either disable or degrade the ability of a server to provide services to clients. Overwhelming the server with requests that require excessive processing or that consume excessive resources, are two examples. Denial of service is the condition when a service falls below the required committed level, including unavailability of the services. Such denial of service may be cause by an intentional attack or by accidental conditions. Availability is a condition in which there is no denial of service or degraded communication quality.

· Eavesdropping is where information is viewed that should not be, either by examining messages in-transit or by examining content stored at a server. Using confidentiality features such as encryption of data or messages may prevent this. Encrypting data in transit, such as by using SSL/TLS, does not protect it when stored at a server or routed through application level intermediaries.

· A man-in-the-middle attack may be used to add, remove and change messages between two parties. Requiring authentication of both end parties may be used to avoid this problem.

· A masquerade attack hides the actual entity and impersonates to be a different entity that may have the authorization and privileges to access resources. This attack is usually used with reply and content modification. For example, authentication information can be captured and replayed after a valid authentication sequence has taken place.

· A replay attack is when someone captures and resends a message to obtain an anticipated result. Including some freshness material with messages, such as a timestamp or a unique non-repeating value, and checking this material before acting on a message at an endpoint can prevent this.

· Trojan Horse attacks have introduced quite significant impact in recent years. When introduced to the system, a Trojan horse performs an unauthorized function within its authorized function. One of the examples is the virus and worm attack.
7.2 Security Functions
The security functions described in this section describe the traditional security goals of reducing vulnerabilities of information, assets and resources. Important security functions include confidentiality, integrity, authentication, authorization, access control, non-repudiation, key management and security policy.

7.2.1 Authentication

Authentication is used to verify that a party is whom they assert to be and may be used, for example, to identify the sender of a message, a recipient, or the signer of some content.

Mutual authentication (the authentication of both parties in an exchange) is necessary to avoid man-in-the-middle attacks, and the use of timely information such as challenge response should be used to avoid replay attacks.

One widely accepted mechanism to authenticate communicating parties is the use of X.509 certificates with SSL/TLS for server authentication. SSL/TLS also allows the server to require client certificate-based authentication. This mechanism allows parties to authenticate to each other, assuming certificate management is handled properly. Credentials associated with authentication may be short or long-lived. If long-lived, then validation of credentials such as certificates is required of a recipient to ensure that revocation has not occurred. This may be done using OCSP, XKMS or CRLs to give some examples.

SSL/TLS may also further protect HTTP basic or digest authentication as well as application username and password authentication by providing integrity and confidentiality services.
7.2.2 Data Integrity

Integrity of information refers to the ability of a receiver to detect whether the content has been changed since creation, either maliciously or by accident. A checksum is not enough, since it could be maliciously replaced to mislead. Instead, a much stronger mechanism such as a digital signature or a MAC with the use of keying material can be used for the detection of any change in the content.
7.2.3 Confidentiality

Confidentiality is the property that unauthorized parties cannot view information. Typically confidentiality is provided using encryption technologies, such as symmetric and asymmetric encryption. The topic of confidentiality includes the choice and specifications of encryption algorithms, packaging of encryption metadata with encrypted content, and the relationship to the content and protocol model. Confidential communications are often necessary to preserve the privacy of information.
7.2.4 Key Management

The security and reliability of any communication process is directly dependent on the quality of key management and protection afforded to the keys. The functions of key management are to provide secure key generation, storage, renewal, revocation, exchange and use. The security of encrypted or authenticated data is strictly dependent upon the prevention of unauthorized disclosure, substitution, deletion and use of keys. If keys are compromised, the security of the data can no longer be assured.

Key management includes establishing a security context for creating, registering, sharing and validating keys. Key sharing can be performed differently depending on application requirements, including out of band communication. Scalable solutions may require a back end infrastructure, such as a public key infrastructure (PKI) or a Kerberos system. Differences in the methods and technologies result in different mechanisms, but the goals are the same, to reduce the risks of inappropriate key use and to provide a uniform, scalable system for key management.
7.2.5 Access Control/Authorization

Access Control and Authorization are security mechanisms that provide the appropriate access to a system or application. They may also be provided at different levels of the protocol stack. The network may make coarse-grained decisions about access to the network, systems may provide services to manage access to their resources, or the resources themselves may restrict who is able to use them. In some topologies, an authorization server may determine whether an authenticated party is allowed to access a resource or perform some action.

7.2.6 Non-Repudiation

Repudiation is defined as the “Denial by one of the entities involved in a communication of having participated in all or part of the communication” (Source: [X800])
. Non-repudiation is the use of technology, business rules and legal mechanisms to reduce the risk of repudiation to an acceptable level.

Discussion of non-repudiation in a pure technology sense is not meaningful since the issue is intrinsically linked to business and legal issues. Non-repudiation technologies can be correctly considered to support dispute resolution and support for reduction of repudiation risk.

Endorsement using long-lived digital signatures may be used to provide evidence that the signing party has agreed to a contract, approved an action, read some material or agreed to some other statement (verbal or written) when creating the signature. Non-repudiation requires that only the signer have access to their signing material, that appropriate information is included with the signature (such as a timestamp and the reason for signing) and that the signature be persistent. This means that signatures for non-repudiation cannot be transitory signatures such as used in SSL/TLS, but must be long-lived signatures suitable for dispute resolution.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

1.
Produce and add a suitable reference for X800 to next draft of OSE 2.0.

2.
ARC to agree and implement the Input Contribution in next draft of OSE 2.0. (remove the X800 comment in section 7.2.6)

3.
Rename archive and filename into “OMA-AD-Service-Environment-V2_0_0-200XXXXX-D”.

4.
Upload result to ARC PD area.

�The "interceptor" (Figure 1, Case 2c, 3b and Figure 2, Case 2c, 3b) is a functional component that intercepts a request, generates the appropriate requests to a PEEM enabler implementation via the PEEM callable interface I0 and proceeds based on the result by letting the request reach its target, blocking the request or returning an error message. The "interceptor" function can be provided through a proprietary implementation, or through an implementation based on a future specification (The "interceptor" function has not been specified by OMA).

�This reference is missing

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

