[image: image2.jpg]
Liaison Statement

	Liaison Statement Title:
	GSMA RCS Liaison to OMA
Update on API Specification Plan

	Source Meeting Information

	Meeting Number
	Meeting Date
	Meeting Location

	RCS SVD Group
	Jan. 04th, 2011
	SVD #26 Conf Call

	RCS MG
	Jan. 10th, 2011
	Conf Call

	Document Details

	Document Number:
	Creation Date:
	Document Author:

	SVDG26_007
	04/01/2011
	Aude Pichelin
JF Labal

	Originating GSMA Source:
	Sent To:
	Copied To:

	Mark Hogan
	OMA OMA ARC
	RCS MG

	Action Required by Recipient: (Please Tick a box under desired action)

	None – For Info Only
	None – Reply to Earlier LS
	Info/Clarification Required

	
	x
	

	Decision Required
	Approval Required
	Deadline for Response

	x
	
	Jan. 19th, 2011

In response to LS “OMA-ARC RC APIs WID discussions with GSMA RCS” GSMA RCS\SVD thanks OMA ARC for sharing the meeting schedule related to RC WI.

GSMA RCS\SVD would like to inform OMA ARC of the RCS API requirement specification progress.

· the RCS API detailed requirement document as attached (document SVDG25_019) was approved by RCS SVD and RCS Plenary #11

· This document is the approved version of the draft version already discussed at the joint RCS SVD\OMA ARC workshop in Brussels on Oct. 21st, 2010

· This document is in the format which was initially agreed to be provided.

· RCS kindly asks OMA to start using tis document to progress RCS API work in OMA until the first draft version of the formal specifciation (word format) is shared with OMA
· RCS Plenary #11 (Dec. 2010) has approved the plan to release an RCS API requirement specification which will be publically available
· RCS SVD intends to provide a first version of this document by end of January (Jan. 26th, 2010) to OMA ARC
· This document will be Word document reflecting the requirements as captured in the attached ppt document which will be managed through the RCS CR management process in order to ensure a full alignment with RCS API technical Specification produced by OMA
With respect to the OMA ARC meeting schedule GSMA RCS\SVD proposes OMA ARC to consider Feb. 01st, 2011 conf call as a joint conf call between OMA ARC and RCS SVD for a read out of the first version of the RCS API specifciation (in word document).

[image: image1.emf]SVDG25_019-RCS

API detailed requirements v0.4.ppt

Page 2 of 2

[image: image2.jpg]_1353939283.ppt
*

RCS API detailed requirement

Internal SVD Document

High-level Requirements

Architecture

Authentication & Authorization

API Primitives

See also https://hueniverse.com/2007/10/beginners-guide-to-oauth-part-ii-protocol-workflow/

*

1- General API Requirements

(Agreed Requirements)

*

RCS API Requirements, High-level

		Must be HTTP/REST based

		Must mimic the functional level of an RCS Client and not the underlying protocol level

		Be implementation friendly for ”thin” clients such as web clients

		Must support primarily ”server”-based and secondarily ”device”-based application deployments (i.e. applications accessing the RCS API may either be deployed on an server (where the user interacts with the application via a web-browser) or as a ”widget” executing on a mobile or fixed device)

		Users must authorize usage of said RCS functionality with their home operator only

		Support oAuth authorization mechanism

		Users must be authenticated by their home operator

		Authentication mechanisms out of scope

		Applications must not be aware of the user’s real RCS identity and contacts real RCS identity. Subject to service provider policies, only trusted applications will be authorized to know that information.

*

2- Architecture Requirements

(Agreed Requirements)

*

Operator

RCS

Enablers

(Presence, IM,

…)

RCS API GW (REST)

RCS standard client

RCS UNI

User agent

CRM

Enterprise apps

OAUTH

Auth.

Social Net

RCS UNI

Back-end

systems

RCS “UNI” API Architecture

RCS API

Developer

RCS User

In Scope

“Thin” RCS client

*

3- Security Framework – Use Cases

(Agreed Requirements)

*

RCS API Authentication & Authorization

		Use case examples and flows for detailing requirements on

		Application Registration (Developer)

		Application Usage (End-User)

		Application Authentication

		User Authorization

		Application Authentication control

		Using MSISDN for user Authentication and oAuth for application authorization

*

RCS API Authentication & Authorization

		Type of application: network-side web application

		Illustrated with two variants (Both following OAuth Web Server flow)

	(A) Generic Web App, aggregating RCS (& other) resources

the developer creates and deploys an RCS Set Tagline web app on e.g. his web site

(in practice, the Web App would offer more RCS primitives than just “Set Tagline”)

the end-user has an account on RCS Set Tagline web app

the end-user accesses to RCS Set Tagline web app from any browser

(B) “App on Facebook” (for information only)

the developer creates and hosts an RCS Set Tagline App on e.g. his web site

Facebook imports and publishes the RCS Set Tagline App as a “Facebook App”

the end-user has an account on Facebook

the end-user accesses to (the App on) Facebook from any browser

*

Application Registration – Developer view 1(2)

http://developer.operator-x.com

		The developer (”Mats Persson”) has developed an RCS Set Tagline Web App, offering to RCS users the ability to set their RCS tagline from a Web browser

		The developer has established a developer-account with operator-x (as in example)

		The Developer may also have a RCS subscription at the operator thay may be linked to the developer account (optional)

		The developer registers the application in the operator’s portal

		Provided information: Application Name, Description

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration

App Name:

Description:

Icon file:

ok

RCS Set Tagline

Sets the RCS tagline…

*

Application Registration – Developer view 2(2)

		The portal generates unique Application credentials (Client Identifier, Shared Secret) to be used to identify & authenticate the application when used

		The portal also provides the endpoint URLs specific to the operator’s Authorization Server (end-user authorization endpoint and token endpoint)

		The Application is then deployed in target environment (e.g. developer’s website or Facebook)

		Application credentials & endpoint URLs are stored as per operator with whom the developer has registered the application

		Developer has to undergo the above registration procedure with all operators with whom the developer wants to engage the application

http://developer.operator-x.com

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration ok

App Name: RCS Set Tagline

Description: Sets the RCS tagline…

Icon:

Client Id: 2401234588586zjkdSEDAs

Shared Secret: zc340fe19UdNreriGTEmcvI

End-user authorization endpoint:

 http://portal.operator-x.com/oauth/authorize

Token endpoint:

 http://portal.operator-x.com/oauth/access_token

*

Application Registration – Developer view 3 (3) Informational: (B): Additional step in case of Facebook variant

		The developer (”Mats Persson”) wants to publish his”RCS Set Tag Line” web app as an ”App on Facebook”.

		The developer logs in to his Facebook account

		The developer provides in the Facebook registration form information such as the “Canvas Callback URL”, pointing the “start” resource of his web app, hosted on his web site

		Note: Facebook will besides assign to this app some OAuth 2.0 credentials, but which are only used when the web app calls Facebook APIs (access to photos, wall, etc.). Not to be confused with the OAuth credentials used by the web app to call RCS APIs).

		See http://developers.facebook.com/docs/guides/canvas/

http://www.facebook.com

Application registration

App Name:

Description:

Canvas

Page

URL:

…

You are logged in as: Mats Persson

RCS Set Tagline

Sets the RCS Tagline

http://apps.facebook.com/rcssettagline/

*

Application Authorization – User view 1(5)

(A): Generic Web App variant

		An RCS user has discovered the “RCS Set Tagline” web app on the web.

		The user may have to create an account on this app portal to use the application (not in scope of RCS)

		The user must authorize the application to access to his RCS resources on his account, and indicate his/her (RCS) service provider

		The latter for the application to select the right operator portal to connect to (if supporting multiple operators)

		When pressing “send” button, the user’s browser is re-directed to the user’s operator portal

		Endpoint URL to the operator portal was obtained from app registration

		In the authorization request, the application provides Application ID, target RCS resources (scope), and Redirect URI

http://www.rcswebapp.com

Use RCS Set Tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

*

Application Authorization – User view 2(5)

Informational: (B): Facebook variant

		A (Facebook) user has discovered the “RCS Set Tagline” application

		Following app selection in Facebook, the user must authorize the application to Set Tag Line on his account, and indicate his/her (RCS) service provider

		The latter for the application to select the right operator portal to connect to (if supporting multiple operators)

		When pressing “send” button, the user’s browser is re-directed to the user’s operator portal

		Endpoint URL to operator portal was obtained from app registration

		In the authorization request, the application provides Application ID, target RCS resources (scope), and Redirect URI

http://www.facebook.com

Use RCS Set tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

Tom Van Pelt (tvp) - Not clear whether there is difference between this case and the generic variant that affects the RCS APIs. If not, this can only cause confusion at this stage in the discussion.

*

http://portal.operator-x.com

Application Authorization – User view 3(5)

		At the user’s home operator portal, the user has to log in providing his user credentials

		If the user has no password, the portal can offer the possibility to create one

		If the user has no RCS/operator account, the portal can offer the possibility to create one

RCS operator

Please log in!

Username

Mobile number:

Password:

46 705191170

ok

No password? Click here

Not a subscriber yet? Click here

Daniel’s credentials

*

http://portal.operator-x.com

Application Authorization – User view 4(5)

		When logged in, the user is requested to grant (i.e. authorize) the application to access the requested resource (e.g. my Location, SMS or Presence)

		This Authorization Dialog is constructed from client_id and scope values supplied in the Authorization Request previously sent to operator portal

		The client_id, which identifies the application, was obtained from this operator in previous application registration

		The scope value(s), which identifies a set of access permissions on resource(s), is typically found by the developer in API documentation, and coded in the app

		The Authorization Dialog may be tailored according to end-user’s preferred language and device/browser type

		After granting access, the user is redirected back to original page, passing an authorization code to the app

		The portal/GW stores the binding between user identity, scope, authorization code and application credentials

		The web app can authenticate to portal/GW to obtain an access token from the authorization code

		The application authorization can also be e.g. time-limited or [to be standardized] based usage (number of requests) etc.

		When expired, the user must again authorize the application to use the requested resource

You are logged in as: Daniel Glifberg

RCS operator

Please confirm application access to your Presence service

App Name: RCS Set Tagline

Description: Sets the RCS presence tagline…

ok

Authorization Dialog

I allow ”RCS Set Tagline” App to Update my RCS Tagline on my account

*

Application Authorization – User view 5(5)

Facebook variant shown (Generic Web App variant is similar)

		The application is now authorized to access to the resource of the user’s RCS account

		The RCS presence tagline can now be published from this app via the Presence enabler of the user’s RCS service provider

		The user can be charged for the request according to his service provider's policy (e.g. status updates through the API are included in his RCS subscription)

http://www.facebook.com

You are logged in as: Daniel Glifberg

Use RCS Set tagline App

App Authorized!

*

Application Usage – User view 1(2)

Facebook variant shown (Generic Web App variant is similar)

		The (Facebook) user can now use the “RCS Set Tagline” application

		As the application has now a valid authorization (connected to the users RCS service provider), the user will no longer be asked to authorize the application to Set Tagline on his account

		The user does thus neither need to select his service provider again

http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

Tagline:

Your Service

Provider:

Send

Enjoying workday

Orange...

*

Application Usage – User view (2(2)

Facebook variant shown (Generic Web App variant is similar)

		The application is granted a priori to access the user’s RCS account

		The new RCS presence tagline is now published via the Presence enabler of the user’s RCS service provider

		The user can be charged for the request according to his service provider's policy (e.g. status updates through the API are included in his RCS subscription)

http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

RCS Set Tagline

Tagline:

Send

Enjoying workday

Tagline updated!

*

Application authorization control – User view

http://portal.operator.com

		The user is managing which application he has granted access

		The user can log on to his operator portal and get a list over applications he has granted access to, which resource that is granted for each app and the possibility to revoke the access for an application

You are logged in as: Daniel Glifberg

My apps at RCS operator

You have granted the following application access to your RCS services

Submit

RCS Set Tagline

Description: Sends SMS…

RCS Get Social Presence

Description: Retrieve

RCS SPI..…

Get Location

Description: Retrieve

mobile position

Location

RCS Presence

SMS

Authorized applications

Resource

Revoke access?

*

4- Security Framework – Authorization mechanisms

(Agreed Requirements)

*

4.1 - Security Framework – Authorization using oAuth

(Agreed Requirements)

*

Social NW

Application Authorization of OAuth in RCS – OAuth Web Server Flow

App

(Server)

OAuth: Client

Select “Set Tagline” App

OAUTH: Found, Location = /Authorize (App ID, scope=”publish_spi”, Redirect URI)

OAUTH: HTTP GET /Authorize (App ID, scope=”publish_spi”, Redirect URI)

OAUTH: Found, Location = Redirect URI (authorization code)

User A sign-in to home “operator portal”

User A grants access to app to

 Set Tagline on User A’s account

OAUTH:OK, (Access-Token)

OAuth: Resource Owner

		Whether home GW and enabler is same node or are different nodes is left with NW vendor discretion

User A

User A

Home OP3

Enabler

OAuth: Protected Resource

OAUTH: HTTP GET /Redirect URI (authorization code)

Ok

OAuth: Authorization/ Resource Server

Comment::

 re-directing to home operator by constructing a URL based on end-user authorization endpoint URL provided to the web app following registration.

Store Access-token for next time service

is used (No need to grant access again)

Token can be time-limited

authorization code valid

New in v0.3: GW needs to bind request to RCS user identity (MSISDN) at logon via authorization/access token

GW needs to bind request to RCS user identity at logon via authorization code/access token

HTTP POST /Token (App credentials, authorization code, Redirect URI)

1

2

3

4

5

6

7

10

8

9

RCS API GW (REST)

User agent

Auth.

*

Social NW

Application Usage of OAuth in RCS – Flow

App

(Server)

OAuth: Client

OAuth: Resource Owner

		Whether home GW and enabler is same node or are different nodes is left with NW vendor discretion

User A

User A

Home OP3

Enabler

Ok

Ok

Ok

Access Token stored

Access token valid

OAuth: Protected Resource

OAuth: Authorization / Resource Server

Ok

“Set Tagline” (text=“Enjoying weekend”, …)

HTTP REST URL: Set Tagline (text=“Enjoying weekend”, Access-token)

NOTIFY

XCAP PUT permanent presence <note> element for MSISDN-A

GW finds RCS user identity (MSISDN) via access token

RCS API GW (REST)

User agent

Auth.

*

RCS usage of oAuth, summary

		OAuth 2.0: http://tools.ietf.org/html/draft-ietf-oauth-v2-10

		The values of the oAuth “scope” parameter to reflect selected granularity in the usage of RCS enablers/resources via the API

		The values of “scope” parameter has a direct mapping (1-to-1 or 1-to-many or many-to-many) to the available RCS API primitives

		The values of “scope” parameter are defined per operator

		Example:

		Rcs_presence_publish_spi

		Rcs_presence_publish_servicecapabilities

		Rcs_presence_subscriptions

		Rcs_chat

		Rcs_filetransfer

		Rcs_videoshare

		Rcs_imageshare

		Rcs_voicecall

		Include the OAuth “access-token” in API HTTP REST calls

		3 possible inclusion methods, none requiring changes on REST API definitions

Authorization Request header

URI query parameter

form-urlencoded body parameter

*

5 - UNI API Requirements

(Agreed Requirements)

*

5.1 – RCS UNI API Common Requirements

(Agreed Requirements)

*

RCS API functional overview

RCS

Media

Participants

Service Capabilities

Notifications

Call

Messaging

Subscription

Free_text

Portrait_icon

Favourite_link

Location

Availability

Invted_contacts

Watchers

Accepted_contacts

Blocked_contacts

Revoked_contacts

Own

Buddies

Own

{contact}

Presence

Chat

File (TBD)

FileTransfer

Media (TBD)

VideoShare

File (TBD)

ImageShare

VideoStore

Updates

{contact}

NAB

*

General RCS API Primitive requirements

		Main differences with OMA REST:

- REST object model reflects RCS functional level

- User identity bound via access token

*

RCS API Notification channel (common for all services)

		RCS API shall support a common notification (or event, or push) channel

		Many RCS services needs to alert a client of a event (incoming chat invite, presence update from buddy etc.). If each RCS service would have an own notification channel, an multi-service application would need to manage many such notification channels

		Therefore the all notifications for all RCS services are coordinated into one common HTTP-based Notification channel

		Reduce complexity in web applications using more than one RCS service

		Limitation in number of open HTTP connections in browsers

		Two methods for an application to receive notifications on the Notification channel shall be supported.

		“Subscription”: The Application establishes a subscription to notifications by providing a call-back URL where the notifications are to be received.

		“Long Polling”: The Application issues a “long” polling request to establish a notification channel for receiving notifications.

*

5.2 – Presence UNI API Requirements

(Agreed Requirements)

*

RCS Presence Publication

OMA Presence (as endorsed by RCS)

Text in Bold: RCS requirement

*) pending RCS CR to replace with

“Availability”

		RCS functionality		REST resource		Comment

		Set free-text		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/own/free_text
Required parameters:
 oauth_token={access-token}
 text={text} (e.g. “My picture is updated!”)
Result: ObjectId returned 		Ref: RCS R1 FD ch 2.1.3, R1 TR ch 4.2.2

		Set portrait icon
		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/own/portrait_icon
Required parameters:
 oauth_token={access-token}
 image={image} (jpeg/png etc.)
Result: ObjectId returned		RCS specific requirements on size, aspect ratio, file type, etc. should be verified by RCS API GW.
Ref: RCS R1 FD ch 2.1.3, R1 TR ch 4.2.2, 4.8.1

		Set Favourite Link		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/own/favourite_link
Required parameters:
 oauth_token={access-token}
 url={url} (e.g. “http://myblog.blogspot.com”)
 label={text} (e.g. “My blog”)
Result: ObjectId returned 		Ref: RCS R1 FD ch 2.1.3, R3 TR ch 6.1.1.1

		Set Location		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/own/location
Required parameters:
 oauth_token={access-token}
 text={text} (e.g. “Herentals, Belgium”)
 map_coordinate={coordinate} (format following RCS e.g. “51.1644 4.7880”)
 map_radius={radius} (e.g. “10”)
 timezone={offset} (e.g. “+120”)
Result: ObjectId returned 		Ref: RCS R3 FD ch 3.3.4, R3 TR ch 6.1.1.2

		Set Availability status		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/Availability
Required parameters:
 oauth_token={access-token}
 status=”willing” / “unwilling”
Result: H-A ObjectId returned 		Ref: RCS R1 FD ch 2.1.3, R1 TR ch 4.2.2

*

RCS Presence Subscriptions

OMA XDM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Invite a contact to share presence		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/invited_contacts/{contact}
Required parameters:
 oauth_token={access-token}
 allow_location=true (or false)
Result: (updated) object 		By adding an additional user to the rcs-list will trigger a an presence invitation towards the other party.
Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API)
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.3

		Cancel invitation		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/invited_contacts/{contact}
Required parameters:
 oauth_token={access-token}
Result: object deleted		An presence sharing invitation can only be cancelled before the invitation has been accepted by the presentity (TBD if needed)
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.3

		Receive presence sharing invitation notification		See “RCS API notification channel” for establishment of notification channel
Result: URL to Object for pending presence invitations.
Retrieve present pending presence invitations:
 GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/watchers/
Required parameters:
 oauth_token={access-token}
Result: Structured data containing contacts for which pending presence invitations exist		The RCS API GW sends a URL to the “Watchers” object in notification channel.
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.1

		Accept presence sharing invitation (with/without location)		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/accepted_contacts/{contact}
Required parameters:
 oauth_token={access-token}
 allow_location=true (or false)
Result: (updated) object		Authorizing a presence invitation is done by adding the user to the “rcs” list or “basic spi only” list
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.3

		Block presence sharing invitation		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/blocked_contacts/{contact}
Required parameters:
 oauth_token={access-token}
Result: (updated) object 		Adding a contact to blocked list should automatically result in removing the same contact from “rcs” or “basic spi only“ list
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.3

*

RCS Presence Subscriptions (cont.)

OMA XDM / Presence (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Ignore presence sharing invitation		N/A		Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.3

		Revoke presence sharing relation		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/revoked_contacts/{contact}
Required parameters:
 oauth_token={access-token}
Result: (updated) object 		Adding a contact to revoke list should automatically result in removing the same contact from “rcs” or “basic spi only“ list
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.4

		Fetch (own) Presence Data		GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/own/
Required parameters:
 oauth_token={access-token}
Result: Structured presence data		The returned presence data structure to be defined, but must be on higher abstraction level than the existing protocol (possibly json)
Ref: RCS R1 FD ch 2.1.4, R2 TR ch 6.2, 11.4

		Receive Notification of Presence changes (from “buddies”) 		See “RCS API notification channel” for establishment of notification channel
Result: URL to Object for pending changes.
Retrieve present pending presence changes from the contacts sharing presence:
GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/presence/buddies/
Required parameters:
 oauth_token={access-token}
Result: Structured presence data from contacts that the user share presence information with		The RCS API GW sends a URL to the “buddies” object in notification channel.
The returned presence data structure to be defined but must be on higher abstraction level than the existing protocol (possibly json)
Ref: RCS R1 FD ch 2.1.4, R1 TR ch 4.4.1

*

RCS Service Capabilities

OMA Presence (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Read (own) Service Capabilities		GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/service_capabilities/own/
Required parameters:
 oauth_token={access-token}
Result: Structured data indicating services supported for this user		Ref: RCS R1 FD ch 2.1.7, R2 TR ch 6.2, 11.4

		Request service capabilities for a contact (“who can I invite”)		GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/service_capabilities/{contact}
Required parameters:
 oauth_token={access-token}
Result: Structured data indicating services supported for this user, alternatively no data or indication of not an RCS subscriber.		The Watcher client polls for updates by retrieving presence data about the Presentity.
Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API)
Ref: RCS R1 FD ch 2.1.4, R3 FD ch 3.3.3, R1 TR ch 4.9.3, R3 TR ch 6.4.4

*

5.3 – Messaging UNI API Requirements

(Agreed Requirements)

*

RCS Messaging

3GPP SMS and OMA MMS (as used by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Send message		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Message
oauth_token={access-token}
recipient = {contact(s)} (anyURI, e.g. MSISDN or telURI)
deliveryNotification = “yes”/”no”
{content}
Result: MessageObjectid returned		A Message send request resource is created which will exist until the delivery confirmation is provided to the client.
Content can be text (delivery via SMS) or multimedia (delivery via MMS).
This resource will be automatically deleted by the Gateway once the delivery confirmation has been provided to the client (regardless of mechanism used – see receive message)

		Receive message or receive delivery notification		See “RCS API notification channel” for establishment of notification channel
Result: URL to Message or Delivery notification object instance, together with information of sender and possible subject header.
Retrieve actual message content:
GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Message/{MessageObjectId}/
Required parameters:
 oauth_token={access-token}
Result: {content}

*

5.4 – Chat UNI API Requirements

(Agreed Requirements)

*

RCS Chat, Originating

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Start a 1-1 chat (including initial message in subject header)		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat
Required parameters:
 oauth_token={access-token}
 recipient={contact}
 subject={text} (e.g. “Hi”)
Result: ChatObjectid returned		Use case: Start a chat.
Arguments must contain at least Recipient & Subject (initial message).
Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API)
Chat object instance created at reception of indication that invite & initial message is delivered (SIP 180), and is received in POST response.
Ref: RCS R2 TR ch 10.2.1.1, R3 IMEND ch 7.1.1.2

		Start a group chat (ad-hoc group)		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat
Required parameters:
 oauth_token={access-token}
 recipient={contact1}, {contact2}, …
 subject={text} (e.g. “Hi”)
Result: ChatObjectid returned		Use case: Start a group chat.
Arguments must contain at least (list of) Recipients & Subject (initial message). Conference focus id must be returned to application
Ref: RCS R2 TR ch 10.2.1.1 , R3 IMEND ch 7.1.1.3

		Cancel chat invitation		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
Result: Chat object deleted		Ref: RCS R3 IMEND ch 7.1.1.13

		Chat accepted (Receive notifications about chat progress)		See “RCS API notification channel” for establishment of notification channel
Result: URL to chat object instance together with an “chat accepted” indication. 		Use case: Remote user accepts chat invite
RCS API GW sends in notification channel a URL to the “chat” object instance together with an “chat accepted” indication.
Ref: RCS R3 IMEND ch 7.1.1.2, 7.1.1.3

		Chat declined		See ”Chat accepted” how to receive a ”decline” notification
Result: URL to chat” object instance together with an “chat declined” indication. 		Use case: Remote user declines chat invite
RCS API GW sends in notification channel a URL to the “chat” object instance together with an “chat declined” indication.
Ref: RCS R3 IMEND ch 7.1.1.2, 7.1.1.3

		Chat ended		See ”Chat accepted” how to receive a ”end” notification
Result: URL to chat object instance together with an “chat ended” indication. 		Use case: Remote user ends chat
RCS API GW sends in notification channel a URL to the “chat” object instance together with an “chat ended” indication.
Ref: RCS R3 IMEND ch 7.1.2.3

		End chat		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
Result: Chat Object deleted		Use case: User ends chat
Chat object instance received in notification
Ref: RCS R3 IMEND ch 7.1.1.16

*

RCS Chat, Terminating

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Receive incoming chat invite		See “RCS API notification channel” for establishment of notification channel
Result: URL to chat object instance, together with information of inviting contact, subject header, and other invited participants (in case of group chat). 		RCS API GW creates the chat object and sends in notification channel a URL to the “chat” object, together with information of inviter, subject header, and other invited participants (in case of group chat).
Ref: RCS R2 TR ch 10.2.1.2 , R3 IMEND ch 7.1.2.1

		Accept chat invitation		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
Result: Updated Object		Use Case: User accepts chat invitation
Chat object instance received in notification
Ref: RCS R2 TR ch 10.2.1.1, , R3 IMEND ch 7.1.2.1

		Decline chat invitation		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
Result: Deleted Object		Use Case: User declines chat invitation
Chat object instance received in notification
Ref: RCS R2 TR ch 10.2.1.1 , R3 IMEND ch 7.1.2.1

		End chat		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
 Required parameters:
 oauth_token={access-token}
Result: Deleted Object		Use case: User ends chat
Chat object instance received in notification
Ref: RCS R2 TR ch 10.2.1.1, R3 IMEND ch 7.1.1.16

		Leave group chat		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
 Required parameters:
 oauth_token={access-token}
Result: Deleted Object		Use Case: User leaves a group chat
Chat object instance received in notification
Ref: RCS R3 IMEND ch 7.1.1.12

		Chat ended		See ”Receive incoming chat invite” how to receive a ”end” notification
Result: URL to chat object instance together with an “chat ended” indication. 		Use case: Remote user ends chat
Ref: RCS R3 IMEND ch 7.1.2,3

*

RCS Chat, Group

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Extend 1-1 chat to group chat		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
 recipient={contact1}, {contact2}, …
Result: Updated chatObjectId		Use Case: User adds another participant to the chat
Ref: RCS R3 IMEND ch 7.1.1.6

		Add a user to a group chat		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
 recipient={contact}
Result: Updated chatObjectId		Use Case: User adds another participant to the chat
Ref: RCS R3 IMEND ch 7.1.1.7

		Re-join group chat		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}
Required parameters:
 oauth_token={access-token}
Result: Updated ChatObjectId (if chat object found), atlternatively a indication that chat object not found (due to expiry)		Use Case: User want to join a chat where the invitation has expired.
Application would act as if accepting a received exisitng object. RCS GW to find object instance & conference id if retained (server implementation).
Ref: RCS R3 IMEND ch 7.1.1.9

		Get participant info group chat (Subscribe)		See “RCS API notification channel” for establishment of notification channel
Result: URL to Object for participant info.
Retrieve present group participant info:
GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}/Participants/
Required parameters:
 oauth_token={access-token}
Result: XXX		RCS API GW crates the chat participant object at chat creation and sends in notification channel a URL to the “participants” object.
 Ref: RCS R3 IMEND ch 7.1.1.11

*

RCS Chat, media

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Send message		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}/Media/
Required parameters:
 oauth_token={access-token}
 content={content}
Result: Successful response when message sent		The “media” object associated with the chat object is created at chat object creation (originating side) or when the chat is accepted (terminating side).
Content can be text or a small file according to RCS specifications.
Ref: RCS R3 IMEND ch 7.1.3.2

		Send isComposing		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}/Media/
Required parameters:
 oauth_token={access-token}
 isComposing=“active”/”idle” “timeout=xx”” …
Result: Successful response when message sent		“isComposing” regarded as a special kind of content. Parameters according to RFC 3994.
Ref: RCS R3 IMEND ch 7.1.3.4

		Receive message		See “RCS API notification channel” for establishment of notification channel
Result: URL to Media object of chat object instance
Retrieve present incoming chat messages
GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Chat/{chatObjectId}/Media/
Required parameters:
 oauth_token={access-token}
Result: {content}		RCS API GW sends a URL to the “media” object in notification channel.
Ref: RCS R3 IMEND ch 7.1.3.3

		Receive isComposing		Same as “Receive message”		“isComposing” regarded as a special kind of content. Ref: RCS R3 IMEND ch 7.1.3.5

*

5.5 – File Transfer UNI API Requirements

(Agreed Requirements)

*

RCS File Transfer, Originating

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Initiate file transfer
		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer
Required parameters:
 oauth_token={access-token}
 recipient={contact}
 file-icon={reduced image}
 file-name={file name}
 file-size={size}
 file-type={type}
 file={file}
Result: fileObjectId returned		Initiate a file transfer session with the selected recipient (the contact).
A file is (optionally) included.
A SIP INVITE request is sent to the remote party (the contact).
A session token (or fileObjectId) is generated, that will be used to identify resource (the file tranfer session) for next actions within the session. Ref: R3 FD 3.4.2, R3 IMEND ch 10.1

		Upload file (optional)		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}/FileMedia
Required parameters:
 oauth_token={access-token}
 file={file}
Result: Updated FileObjectId		Optional separate upload of actual file.
This must be done after creation of File Transfer object and should be done after reception of file transfer acceptance by recipient

		Cancel file transfer invitation		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}
Required parameters:
 oauth_token={access-token}
Result: Object deleted		The selected resource, that is, the file transfer session identified by fileObjectId, is to be cancelled.
Only the user that created the invitation can cancel it, and it has to be done before the file transfer is accepted or rejected.
A SIP CANCEL request for the selected session is sent to the remote party. All resources associated to the session are released.
Ref: RCS R3 IMEND ch 10.1

		File Transfer accepted		See “RCS API notification channel” for establishment of notification channel
Result: URL to the File Transfer object instance together with an “File Transfer accepted” indication		Use case: Remote user accepts File Transfer request
RCS API GW sends in notification channel a URL to the “File Transfer” object instance together with an “File Transfer accepted” indication. Ref: RCS R3 IMEND ch 10.1

		File Transfer declined		See ” File Transfer accepted” how to receive a ”decline” notification
Result: URL to the File Transfer object instance together with an “File Transfer declined” indication		Use case: Remote user declines File Transfer request
RCS API GW sends in notification channel a URL to the “File Transfer” object instance together with an “File Transfer declined” indication. Ref: RCS R3 IMEND ch 10.1

		File Transfer ended (file sent)		See ” File Transfer accepted” how to receive a ”end” notification
Result: URL to the File Transfer object instance together with an “File sent” indication		Use case: File Transferred
RCS API GW sends in notification channel a URL to the “File Transfer” object instance together with an “File sent” indication.
Ref: RCS R3 IMEND ch 10.2

*

RCS File Transfer, Originating (cont.)

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Cancel ongoing file transfer (terminate transfer)		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}
Required parameters:
 oauth_token={access-token}
Result: Object deleted		The selected resource, that is, the file transfer session identified by fileObjectId, is to be closed.
A SIP BYE request for the selected session is sent to the remote party. All resources associated to the session are released. Ongoing file transfer can only be cancelled once the session is established. Ref: RCS R3 IMEND ch 10.1

*

RCS File Transfer , Terminating

OMA SIMPLE IM (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Receive file transfer invitation		See “RCS API notification channel” for establishment of notification channel
Result: URL to file transfer object instance, together with information of inviting contact, file information (see ”initiate file transfer”).		RCS API GW crates the file transfer object and sends in notification channel a URL to the “file transfer” object.
Ref: RCS R3 IMEND ch 10.3

		Accept file transfer invitation		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}
Required parameters:
 oauth_token={access-token}
Result: Updated Object		The selected resource, that is, the file transfer session identified by fileObjectId, is to be accepted by adding it to the list of sessions
The SIP INVITE request is then accepted
An alternative would be to accept the file transfer invitation and receive the file in the PUT response, or with only a GET request on the file object.
Ref: RCS R3 IMEND ch 10.3

		Decline file transfer invitation		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}
Required parameters:
 oauth_token={access-token}
Result: Deleted Object		The selected resource, that is, the file transfer session identified by fileObjectId, is to be rejected
The SIP INVITE request is then rejected with a SIP DECLINE response
Ref: RCS R3 IMEND ch 10.3

		Cancel ongoing file transfer (terminate transfer)		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/FileTransfer/{fileObjectId}
Required parameters:
 oauth_token={access-token}
Result: Deleted Object		The selected resource, that is, the file transfer session identified by fileObjectId, is to be closed.
A SIP BYE request for the selected session is sent to the remote party. All resources associated to the session are released.
Ongoing file transfer can only be cancelled once the session is established
Ref: RCS R3 IMEND ch 10.1

		File Transfer cancelled		See ”Receive incoming File Transfer invite” how to receive a ”cancel” notification
Result: URL to the File Transfer object instance together with an “File transfer cancelled” indication		Use case: Remote user cancels File Transfer
Ref: RCS R3 IMEND ch 10.2

		Receive file		See “media” handling for chat		Ref: RCS R3 IMEND ch 10.3
Editor’s Note: Not needed with alternative file transfer acceptance approach

*

5.6 – Call UNI API Requirements

(Agreed Requirements)

*

RCS Call, Originating

Based on OMA ParlayREST CallNotification

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Initiate Call
		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Call
Required parameters:
 oauth_token={access-token}
 recipient={contact}
Result: CallObjectId returned
		Use case: User initiates a call between a own terminal and another user.
Initiating user’s terminals all ring. User answers on on of his terminals. After this the call is set up to the intended recipient.

		Cancel call		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Call/{callObjectId}
 Required parameters:
 oauth_token={access-token}
Result: Object deleted 		Use case: User interrupts call attempt.

		Call alerting
(Receive notification about call progress)		See “RCS API notification channel” for establishment of notification channel
Result: URL to call object instance together with an “call alerting” indication.		Use case: User user gets a call ringing notification.
The RCS API GW sends in notification channel a URL to the “call” object instance together with an “call alerting” indication.

		Call answer		See ’Call alerting” for establishment of notification channel
Result: URL to call object instance together with an “call accepted” indication		Use case: Remote user accepts call
The RCS API GW sends in notification channel a URL to the “call” object instance together with an “call accepted” indication.

		Call decline		See ’Call alerting’ how to receive a decline notification
Result: URL to call object instance together with an “call declined” indication		Use case: Remote user declines call
RCS API GW sends in notification channel a URL to the “call” object instance together with an “call declined” indication.

		Call ended		See ’Call alerting” how to receive a call end notification
Result: URL to call object instance together with an “call ended” indication		Use case: User receives remote user on-hook notification
RCS API GW sends in notification channel a URL to the “call” object instance together with an “call ended” indication.

		End call		Same operation as “Cancel call”		Use case: User on-hooks during call

*

RCS Call, Terminating

Based on OMA ParlayREST CallNotification

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Receive call (notification)		See “RCS API notification channel” for establishment of notification channel
Result: URL to call object instance, together with information of inviting contact,. 		Use case: User receives call invitation notification that that the phone of called party (or the own phone) is ringing
The RCS API GW sends in notification channel a URL to the “call” object instance.

		Call Answer
(notification)		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Call/{callObjectId}
Required parameters:
 oauth_token={access-token}
Result: Updated Object 		Use case: Application receives notification that the user’s own phone accepts call
Call object instance received in “receive call” notification.
To be decided by OMA if feasible.
An Action parameter may be required for Supplementary Service actions on call object (e.g. Hold or Resume). The Action for “answer” is not required and is regarded as default for PUT operation.

		Call Decline
(notification)		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/Call/{callObjectId}
Required parameters:
 oauth_token={access-token}
Result: Object deleted		Use case: Application receives notification that the user’s own phone declines call.
To be decided by OMA if feasible.
Call object instance received in “receive call” notification.

		Call ended
(notification)		See ’Receive Call’ how to receive a call end notification
Result: URL to call object instance together with an “call ended” indication		Use case: Application receives notification that the user’s own phone has ended the call
To be decided by OMA if feasible.
RCS API GW sends in notification channel a URL to the “call” object instance together with an “call ended” indication.

*

RCS Call, Media

Based on OMA ParlayREST CallNotification

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Send audio		N/A		Removed from scope

		Receive audio		N/A		Removed from scope

		Send DTMF		N/A		Removed from scope

		Receive DTMF		N/A		Removed from scope

*

5.7 – Video & Image Share UNI API Requirements

(Agreed Requirements)

*

RCS Video Share (VS), Originating

GSMA IR.74/IR.84 (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Initiate VideoShare
		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare
Required parameters:
 oauth_token={access-token}
 recipient={contact}
 call={callObjectID}
 supported media={video, audio codecs in order of preference}
Result: VideoShareObjectId returned 		Use case: User makes VideoShare.
Arguments must contain at least either a reference to a existing call (call Object Id) for IR74 VS or a Recipient. for IR84 VS without call.
For a IR.74 Video Share (with a related Call, the application would link the “initiate VideoShare” request to the call object of an ongoing call.
VideoShare object instance created and returned immediately to accommodate cancelling before alerting.

		Cancel VideoShare		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare/{VideoShareObjectId}
Required parameters:
 oauth_token={access-token}
Result: Object deleted		Use case: User interrupts VideoShare attempt.

		VideoShare alerting (Receive notification about session progress)		See “RCS API notification channel” for establishment of notification channel
Result:: URL to VideoShare object instance together with an “alerting” indication 		Use case: User gets a VideoShare ringing notification.
Caused by SIP 180 from remote end
The RCS API GW sends in notification channel a URL to the “VideoShare” object instance together with an “alerting” indication.

		VideoShare answer		See “VideoShare alerting’ for establishment of notification channel
Result: URL to VideoShare object instance together with an “accepted” indication and preferred video codecs from remote end		Use case: Remote user accepts VideoShare
Caused by SIP 200 from remote end
The RCS API GW sends in notification channel a URL to the “VideoShare” object instance together with an “accepted” indication.
Preferred video codecs included in answer

		VideoShare decline		See “VideoShare alerting’ how to receive a VideoShare decline notification
Result: URL to VideoShare object instance together with an “declined” indication.		Use case: Remote user declines VideoShare
Caused by SIP 603 from remote end
The RCS API GW sends in notification channel a URL to the “VideoShare” object instance together with an “declined” indication.

		VideoShare ended		See ’VideoShare alerting’ how to receive a VideoShare end notification
Result: URL to tVideoShare object instance together with an “ended” indication		Use case: User receives remote user VideoShare stopped notification
Caused by SIP BYE from remote end
The RCS API GW sends in notification channel a URL to the “VideoShare” object instance together with an “ended” indication.

		End VideoShare		Same operation as “Cancel VideoShare”		Use case: User stops VideoShare
Causes SIP BYE to remote end

*

RCS Video Share (VS), Terminating

GSMA IR.74/IR.84 (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Receive VideoShare		See “RCS API notification channel” for establishment of notification channel
Result: URL to VideoShare object instance, together with information of inviting contact and additionally a reference to an ongoing call (in case of IR.74 Video Share)		Use case: User receives VideoShare invitation

		VideoShare Answer		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare/{VideoShareObjectId}
Required parameters:
 oauth_token={access-token}
 supported meda={video codecs in order of preference}
Result:: Updated Object 		Use case: User accepts VideoShare
VideoShare object instance received in “receive VideoShare” notification. Causes SIP 200 to remote end
An Action parameter may be required for Supplementary Service actions on VideoShare object (e.g. Hold or Resume). The Action for “answer” is not required and is regarded as default for PUT operation.

		VideoShare Decline		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare/{VideoShareObjectId}
 Required parameters:
 oauth_token={access-token}
Result:: Object deleted		Use case: User declines VideoShare.
VideoShare object instance received in “VideoShare call” notification. Causes SIP 486 to remote end

		VideoShare ended		See ’Receive VideoShare’ how to receive a VideoShare end notification
Result:: URL to VideoShare object instance together with an “ended” indication		Use case: User receives remote user VideoShare stopped notification
Caused by SIP BYE from remote end
The RCS API GW sends in notification channel a URL to the “VideoShare” object instance together with an “ended” indication.

		End VideoShare		Same operation as “VIdeoShare decline”		Use case: User stops VideoShare
Causes SIP BYE to remote end

*

RCS Video Share (VS), Media

GSMA IR.74/IR.84 (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Send Video		To be determined by OMA		Low priority.

		Receive Video		To be determined by OMA.		Low priority.

*

RCS Image Share (IS), Originating

GSMA IR.79 (w/ call) and OMA SIMPLE IM (w/o call) (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Initiate ImageShare
		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/ImageShare
Required parameters:
 oauth_token={access-token}
 recipient={contact}
 call={callObjectID}
 Image={image}
Result: ImageShareObjectId returned 		Use case: User makes ImageShare.
Arguments must contain at least either a reference to a existing call (call Object Id) for IR79 IS or a Recipient. for IS without call (using OMA IM File Transfer).
For a IR.79 Image Share (with a related Call, the application would link the “initiate ImageShare” request to the call object of an ongoing call.
ImageShare object instance created and returned immediately to accommodate cancelling before alerting.

		Cancel ImageShare		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/ImageShare/{ImageShareObjectId}
Required parameters:
 oauth_token={access-token}
Result: Object deleted		Use case: User interrupts ImageShare attempt.

		ImageShare alerting (Receive notification about call progress)		See “RCS API notification channel” for establishment of notification channel
Result:: URL to ImageShare object instance together with an “alerting” indication 		Use case: User gets a VideoShare ringing notification.
Caused by SIP 180 from remote end
The RCS API GW sends in notification channel a URL to the “ImageShare” object instance together with an “alerting” indication.

		ImageShare answer		See “ImageShare alerting’ for establishment of notification channel
Result: URL to ImageShare object instance together with an “accepted” indication and preferred video codecs from remote end		Use case: Remote user accepts ImageShare
Caused by SIP 200 from remote end
The RCS API GW sends in notification channel a URL to the “ImageShare” object instance together with an “accepted” indication.
Preferred video codecs included in answer

		ImageShare declined		See “ImageShare alerting’ how to receive a ImageShare decline notification
Result: URL to ImageShare object instance together with an “declined” indication.		Use case: Remote user declines ImageShare
Caused by SIP 486 from remote end
The RCS API GW sends in notification channel a URL to the “ImageShare” object instance together with an “declined” indication.

		ImageShare ended		See ’ImageShare alerting’ how to receive a call end notification
Result: URL to ImageShare object instance together with an “ended” indication		Use case: User receives remote user ImageShare stopped notification
Caused by SIP BYE from remote end
The RCS API GW sends in notification channel a URL to the “ImageShare” object instance together with an “ended” indication.

		Cancel ongoing ImageShare		Same operation as “cancel ImageShare”		Use case: User stops ImageShare
Causes SIP BYE to remote end

*

RCS Image Share (IS), Terminating

 GSMA IR.79 (w/ call) and OMA SIMPLE IM (w/o call) (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Receive ImageShare		See “RCS API notification channel” for establishment of notification channel
Result: URL to ImageShare object instance, together with information of inviting contact and additionally a reference to an ongoing call (in case of IR.79 Image Share)		Use case: User receives ImageShare invitation

		ImageShare Answer		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/ImageShare/{ImageShareObjectId}
Required parameters:
 oauth_token={access-token}
Result:: Updated Object		Use case: User accepts ImageShare
ImageShare object instance received in “receive ImageShare” notification. Causes SIP 200 to remote end
 An alternative would be to accept the Image Share invitation and receive the file in the PUT response, or with only a GET request on the ImageShare object.

		ImageShare Decline		DELETE https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/ImageShare/{ImageShareObjectId}
 Required parameters:
 oauth_token={access-token}
Result:: Object deleted		Use case: User declines ImageShare.
ImageShare object instance received in “ImageShare call” notification. Causes SIP 486 to remote end

		ImageShare ended		See ’Receive ImageShare’ how to receive a ImageShare end notification
Result:: URL to ImageShare object instance together with an “ended” indication		Use case: User receives remote user ImageShare stopped notification
Caused by SIP BYE from remote end
The RCS API GW sends in notification channel a URL to the “ImageShare” object instance together with an “ended” indication.

		Cancel ongoing ImageShare		Same operation as “ImageShare Decline”		Use case: User stops ImageShare during image transfer.
Causes SIP BYE to remote end

		ImageShare cancelled		See ”Receive incoming ImageShare” how to receive a ”cancel” notification
Result:: URL to ImageShare object instance together with an “ended” indication		Use case: Remote user cancels ImageShare

		Receive file		See “media” handling for chat		Editor’s Note: Not needed with alternative image share acceptance approach

*

RCS Content Management (IR.84)

GSMA IR.84 (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Upload Video to server (using streaming)		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare/VideoStore
Required parameters:
 oauth_token={access-token}
 filename={filename}
Result: As for “InitiateShare”.
In addition is a Video ObjectId returned (referencing the actual uploaded file) when VideoShare upload session is finished 		Use case: User uploads video
Arguments contains no Recipient, as this taken care of by GW.
Purpose of ‘File-name’ (optional and may contain password) is for user to select the name of the uploaded video to the server-
The session handling operations are the same as for the VideoShare” originating side operations.

		Share video stored on NW server		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/VideoShare
Required parameters:
 oauth_token={access-token}
 recipient={contact}
 call={callObjectID}
 supported media={video codecs in order of preference}
 filename={filename}
 fileobject={VideoObjectId}
Result: VideoShareObjectId returned 		Use case: User shares NW stored video, thus client will receive same video as recipient.
This is reusing the “Initiate VideoShare” oeration with additional arguments, which must contain a filename OR fileobject (received at “upload video to server”) to identify the NW stored video to stream towards the initiating user & remote user.

*

5.8 – Capability Query UNI API Requirements

(Agreed Requirements)

*

RCS Capability Query

GSMA IR.74/IR.79 (as endorsed by RCS)

Text in Bold: RCS requirement

		RCS functionality		REST resource (between application and API GW)		Comment

		Initiate query		N/A		Performed by RCS API GW.

		Receive query		See “RCS API notification channel” for establishment of notification channel
Result:: An indication that either Video share and/or Image Share is possible is received.		Format of this indication is to be defined.

		Query Response		N/A		Performed by RCS API GW.

*

5.9 – Network Address Book UNI API Requirements

(Requirements to be consolidated)

*

NAB – General considerations

		NAB API main use case is to allow applications to get contact information and received updates on contact information. Additional operations are defined to allow applications to update the address book.

		Depending on service provider policies, in general, retrieve operations return a list of contacts, but not the complete information for each one of the contacts. The contact identity returned should be used by rest of APIs.

		Depending on service provider policies, trusted applications can get complete information (potentially including MSISDN or URI). OAuth mechanisms can be leveraged to that end.

		Retrieve address book allows optionally filtering. Only contacts that match the condition will be returned. Filtering can re-use existing OMA syntax if possible.

		Alignment with OpenSocial and PortableContacts to be evaluated as the exchange data format.

*

RCS NAB

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Retrieve address book
		GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/NAB
 oauth_token={access-token}		Retrieve in the answer the list of contacts in the address book, possibly with some filtering.
If filtering is requested, only matching contacts will be returned.
Subject to service provider policy, the retrieved list might not include the underlying identifiers (MSISDN or URI) but tokenized strings that hidden that info.
The contact identity returned is the one to be used by the rest of APIs (chat, file transfer, etc.).
Contact name (or display name) is envisaged as the way for the human user to identify the contacts (not the MSISDN or URI).

		Retrieve contact from address book		GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/NAB/<contactId>/
 oauth_token={access-token}
 format={vcard, …}		Retrieve an individual contact from the address book.
Default format vcard

		Add contact to the address book		POST https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/NAB/
 oauth_token={access-token}		Contact included in the POST body is added to the address book.
The answer will contain the contact identity assigned by the server to the new contact.
Refused if contact already exists?

		Update contact in address book		PUT https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/NAB/<contactId>
 oauth_token={access-token}
		Contact is updated with the info included in the POST body.
Only one contact can be included in the POST request.

*

RCS NAB

Text in Bold: RCS requirement

		RCS functionality		REST resource		Comment

		Receive notifications about address book updates		Subscription or long polling:
1. Polling for NAB updates:
 GET https://{serverRoot}/{apiVersion}/RCS/{RCSObjectId}/NAB/updates/
 oauth_token={access-token}
 lastUpdateToken={timestamp or token from last synch/update}
List of contacts that have changed between current state and state at lastUpdateToken is sent in the body.
2. Long polling (see previous)		Polling is deemed sufficient in some cases, assuming that NAB changes do not require fast reaction (seconds) in the client. Agreement on polling?
For clients willing to synch almost in real-time, long polling is offered.
Subscription mechanism (as with other APIs) could be added too.

*

Document History

		Version		Date		Comment		Author

		0.1		Sept. 28th, 2010		Creation based on OMA-ARC-REST-2010-0549
(from Mats Persson – Ericsson)
Based on Joint SVD\OMA ARC conf call conclusions (Sept. 22nd, 2010)		SVD Chair

		0.2		Oct 12th, 2010		Updates based on comments received in SVD 18 meeting		Mats Persson, Ericsson

		0.3		Nov 9th, 2010		Updated based on comments received & contributions approved at
- SVD #20 (including joint SVD/OMA ARC) meeting October 19th-21st 2010
- TT #15 meeting October 28th 2010		Mats Persson & Mats Stille, Ericsson

		0.4		Dec 1st, 2010		Updated based on comments received at SVD #25 meeting December 1st 2010 (marked in red)		Mats Persson & Mats Stille, Ericsson

