Doc# OMA-ARC-Autho4API-2011-0042R02-CR_Content_for_Chapter_7.4
Change Request

Doc# OMA-ARC-Autho4API-2011-0042R02-CR_Content_for_Chapter_7.4
Change Request

Change Request

	Title:
	Content for Chapter 7.4: “Obtaining Authorization”
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC Autho4API

	Doc to Change:
	OMA-ER-Autho4API-V1_0-20110722-D

	Submission Date:
	19 Aug., 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Diego González, Telefónica S.A., diegog@tid.es
Eduardo Fullea, Telefónica S.A., efc@tid.es

	Replaces:
	n/a

1 Reason for Change

This contribution proposes input for chapter 7.4 “Obtaining authorization”, for the Authorization Code and Implicit grant types.
R01: Revision made after comments in Vancouver. Summary of changes:

· Remarked that some text of presented flows are only examples, thus informative. The examples are maintained because they add value.

· Included WAC OAuth API and URL Registry in OS as alternatives for native applications

· Clarified that alternative mechanisms are not only for native applications and can be used by other applications. For this reason, the use of notification channel API and the use of a secondary channel are specified in separate chapter (instead of having them in sub-chapters of native applications chapter)

· Included protocol flows for the case of using a secondary channel
· Included security considerations with regards of the use of a secondary channel

· Clarified the use Connectionless Push over SMS as a secondary channel
· Added informative reference
R02:
· Flows are marked as informative and set within a subsection
· Sentences saying “OMA Autho4API does not include any modification….” are removed

· Editor’s note included for Notification Channel API: proposed solution was not working and needs to be further studied.
· Error in figure 4 solved: was showing that Authorization Code is sent, but Access Token is sent.
· Few editorial changes
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Include the proposed text in Autho4API ER Document.
6 Detailed Change Proposal

Change 1: Content for chapter 7.4
7.4. Obtaining Authorization

7.4.1. Authorization Code

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.1 of [draft-ietf-oauth-v2]

∙If/How can native apps support this flow:

 - Using an HTTP redirection capture mechanism

 - Using a secondary channel for authorization code (more exactly: authorization response) delivery

∙A detailed protocol flow

7.4.1.1. Implementation based on OAuth 2.0

This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Authorization Code grant type, described in chapter 4.1 of [draft-ietf-oauth-v2].

The indications described in chapter 4.1 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent and Autho4API Authorization Server.

7.4.1.1.1. Detailed protocol flow (Informative)
The flow shown in figure 3 of chapter 4.1 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image2.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Authorization Code

302 Found

Location: https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

c

a

ti

on

and

Au

t

h

o

ri

za

ti

on

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client

GET https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

Figure 1: Obtaining Authorization using the Authorization Code grant type: Detailed Protocol Flow

1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it’s done through EXT-1 interface.
2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in chapter 4.1 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; the Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response. This step maps with step (C) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.2 of [draft-ietf-oauth-v2. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it’s done through EXT-1 interface.
4. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step maps with step (D) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.3 of [draft-ietf-oauth-v2].
5. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step maps with step (E) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.4 of [draft-ietf-oauth-v2].
7.4.1.2. Support in Native Applications

Client Side installed applications (like native code Applications) are usually not ready to receive incoming requests (via redirections). For this reason, these Applications implementing the Autho4API Client is not ready to receive the Authorization Code after user authorization and authentication step (i.e.: step 3 in Figure 1 is not possible). This implies that the Authorization Code flow needs some special considerations for Native applications, as described in chapter 9 of [draft-ietf-oauth-v2].
Many alternative strategies are possible to support the Authorization Code grant type for these Applications, implying different actions in involved actors. This chapter specifies the possible strategies (the ones outlined in chapter 9 of [draft-ietf-oauth-v2], and others), in order to enable native Applications support of Authorization Code grant type. The strategies can be ordered into two blocks:

Using an HTTP redirection capture mechanism:
With this strategy, as the application is not able to receive the HTTP redirection, an alternative mechanism is used so the redirection is captured by other means. The following options are possible:
· Using OMA Notification Channel API.. This mechanism is detailed in chapter 7.4.1.3.
· Embedding a browser or a local Web Server in Autho4API Client. With these approaches, the Autho4API Client will actually be able to receive HTTP redirections, but has also to embed the browser or a local Web Server.
· Editor’s Note: Text required about the dangers of embedded web browsers
Editor’s note: Reference to OMA Notification channel should be added.
·
· WAC OAuth Device API:

· Editor’s Note: Details on WAC OAuth Device API mechanism to be included when available and the cooperation between the two organizations is settled. As the WebRunTime is managing this, it can be considered a secure mechanism
· URL Registry in OS:
· Editor’s Note: Details on the URL Registry in OS to be included. To be studied whether a malware could register the same URL (in this case the OS usually asks the user which Application to call). Usability and security problems to be considered.
Using a secondary channel (i.e.: an alternative channel to HTTP redirection):

With this strategy, as the application is not able to receive the HTTP redirection, an alternative channel is used, so the Authorization Code is not given to the Application by an HTTP redirection. The following options are possible:

· Manual Copy-paste of the Authorization Code by the User. The Authorization Code will be shown in the Resource Owner’s User Agent (i.e.: in the browser) and the User will be requested to copy the Authorization Code and give it to the Autho4API Client.

· Automatic retrieval of the Authorization Code by the Autho4API Client from the Resource Owner’s User Agent. The Authorization Code will be conveyed to the Resource Owner’s User Agent so that the Autho4API Client can retrieve it. This solution can imply that the Authorization Code is copied to the clipboard (by mechanisms out of scope of this specification) and the Autho4APIClient retrieves it from the clipboard, or the Autho4API Client automatically retrieves it from the Resource Owner’s User Agent (e.g.: in the title of the page displayed in the browser).
Note: Further details on this mechanism, in terms on how the Autho4API Client retrieves the Authorization Code from the Resource Owner’s User Agent are out of scope of this specification.
· Sending the Authorization Code to the Resource Owner by SMS . The Authorization Code will be provided to the Autho4API Client by the Resource Owner. The Autho4API Authorization Server or the entity that actually sends the SMS must be able to know the MSISDN of the User, but this is out of scope of this specification.

· Sending the Authorization Code to the Resource Owner’s device by a silent Connectionless Push over SMS [OMAPush] (SMS sent to a certain port of the device, not a regular text SMS). The Authorization Code will be taken by the Autho4API Client by means out of scope of this specification. This implies that the Resource Owner’s device where the Authorization Code is pushed has to be the same device that the device where the Application with the Autho4API Client is running. The Autho4API Authorization Server or the entity that actually sends the Connectionless Push over SMS must be able to know the MSISDN of the User, but this is out of scope of this specification.
This mechanism based on a secondary channel is detailed in chapter 7.4.1.4.

These options are not exclusive for Native Autho4API Clients, but MAY be used also by other sort of Clients (other Public or Confidential clients according to [draft-ietf-oauth-v2].
Editor’s note: Pros and cons of each solution may be included. Applicability (smartphone, etc) of each solution may be included..

7.4.1.3. Use of HTTP Redirection capture mechanism: Notification channel API
Editor’s Note: Details of the mechanism to be specified. FFS: to consider this within the use of secondary channels. FFS to specify a POST for the notification carrying the authorization code

7.4.1.4. Use of a secondary channel

This chapter specifies a mechanism using a secondary channel (i.e.: not HTTP redirection) as the way to send the Authorization Code to the Autho4API Client.

To support this feature:

1. Autho4API Client SHALL signal the willingness to receive the Authorization Code through the secondary channel.

2. Autho4API Client SHALL NOT include the redirect_uri parameter in the Authorization Request.
3. Autho4API Client SHALL signal the concrete channel through which the Authorization Code wants to be received.

4. Autho4API Client MAY signal any further information needed for the delivery of the Authorization Code through the indicated channel.

5. Autho4API Authorization Server SHALL process the signaling from Autho4API Client and, instead of regular OAuth flow, will perform the needed actions to send Authorization Code through the indicated channel. How the Authorization Code is sent is out of scope of this specification.
To perform steps 1, 3 and 4, the Autho4API Client will use an extension parameter to OAuth 2.0, named oma_secondary_channel and defined in chapter 7.4.6.
7.4.1.4.1. Detailed protocol flow (informative)
When a secondary channel is used, the general flow shown in Figure 1 is modified as follows:

[image: image3.emf]1. Redirection to Authorization Endpoint,

including oma_sec_channel parameter

and NOT including redirect_uri parameter

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3

&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel

(may not be sent directly but through intermediate entities)

Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

2. User Authentication and Authorization

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

ca

ti

on

and

Au

t

ho

ri

za

ti

on

Figure 2: Obtaining Authorization using the Authorization Code grant type and a secondary channel: Detailed Protocol Flow

1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. The redirection includes oma_secondary_channel parameter as defined in chapter 7.4.6 and does not include the redirect_uri parameter specified in chapter in chapter 4.1 of [draft-ietf-oauth-v2]. For the rest of parameters, description in step 1 of Figure 1 is followed.
2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step is the same as step 2 of Figure 1. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server sends the Authorization Code Response through the secondary channel. How this step 2 is performed is out of scope of Autho4API and can involve other entities such as SMSCs, etc.
4. Editor’s Note: Payload of the Authorization Code Response needs to be specified
5. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step is the same as step 4 of Figure 1.

6. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step is the same as step 5 of Figure 1.

7.4.1.4.2. Security Considerations
As a general rule, a secondary channel SHOULD be used only when the channel is considered secure.

Depending on the environment (device, operating system) and depending if the Authorization Code is delivered to the same device where the Autho4API Client is running, secondary channel may not be considered secure.

Note: Whether a secondary channel can be considered secure is out of scope of this specification, as a secondary channel can be secure or not depending on the environment

If the secondary channel is not considered secure and the Autho4API Client is confidential according to chapter 2.1 of [draft-ietf-oauth-v2], the secondary channel MAY be used anyway, as the capture of the Authorization Code is not enough for the obtaining of an Access Token. Nevertheless, in this scenario it’s encouraged to use a secure alternative, as recommended in chapter 10.5 of [draft-ietf-oauth-v2].

A secondary channel SHALL NOT be used if the secondary channel is not considered secure and the Autho4API Client is public according to chapter 2.1 of [draft-ietf-oauth-v2], because the interception of the Authorization Code will end up with the obtaining of an Access Token.

Note: In any case, for public clients the recommendation is to use Implicit Grant mode rather than Authorization Code mode.

Editor’s note: It’s FFS whether a solution is feasible for public clients using a non-secure secondary channel (i.e.: a way to solve the security issue.
7.4.2. Implicit Grant

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.2 of [draft-ietf-oauth-v2]

∙If/How can native apps support this flow:

 - Using an HTTP redirection capture mechanism

 - Using a secondary channel for access token (more exactly: access token response) delivery

∙A detailed protocol flow

7.4.2.1. Implementation based on OAuth 2.0]

This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Implicit Grant type, described in chapter 4.2 of [draft-ietf-oauth-v2].

The indications described in chapter 4.2 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent, and Autho4API Authorization Server.

7.4.2.1.1. Detailed protocol flow (Informative)
The flow shown in figure 4 in chapter 4.2 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image5.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=token&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Access Token in fragment

302 Found

Location: https://Autho4APIClient.example.com/rd#

access_token=2YotnFZFEjr1zCsicMWpAA

&state=xyz&token_type=example&expires_in=3600

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

c

a

ti

on

and

Au

t

h

o

ri

za

ti

on

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client,

without URI Fragment

GET https://Autho4APIClient.example.com/cb

4. Returns webpage with embedded script

5. Executes Script

5. Provides Access Token

Figure 3: Obtaining Authorization using the Implicit grant type: Detailed Protocol Flow

1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in chapter 4.2 of [draft-ietf-oauth-v2], The step is detailed in chapter 4.2.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it’s done through EXT-1 interface.
2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in chapter 4.2 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; The Access Token is provided in the URI as an URI fragment. The Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response, without including the URI Fragment. This step maps with steps (C) and (D) in chapter 4.2 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.2.2 of [draft-ietf-oauth-v2]. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it’s done through EXT-1 interface.
4. The Autho4API Client returns a web page (typically an HTML document with an embedded script) capable of accessing the full redirection URI including the fragment retained by the Resource Owner’s User-Agent, and extracting the access token (and other parameters) contained in the fragment.This step maps with step (E) in chapter 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through EXT-1 interface.
5. The Resource Owner’s User Agent executes the script provided by the web-hosted Autho4API Clien resource locally, which extracts the Access Token and passes it to the Autho4API Client. This step maps with steps (F) and (G) in chapter 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through EXT-1 interface.
7.4.2.2. Support in Native Applications

Client Side installed applications (like native code Applications) are usually not ready to receive incoming requests (via redirections). For this reason, these Applications implementing the Autho4API Client is not ready to receive the Access Token after user authorization and authentication step (i.e.: step 3 in Figure 3 is not possible). This implies that the Implicit Grant flow needs some special considerations for Native applications, as described in chapter 9 of [draft-ietf-oauth-v2].
The same strategies as in chapter 7.4.1.2 are possible.
7.4.2.3. Use of HTTP Redirection capture mechanism: Notification channel API
Editor’s Note: Details of the mechanism to be specified. FFS: to consider this within the use of secondary channels. FFS to specify a POST for the notification carrying the authorization code

7.4.2.4.

1.
2.
3.
4.
5.
oma_secondary_channel

7.4.2.4.1.
·

1. oma_secondary_channel
2.
3.

7.4.2.4.2.

7.4.3. Resource Owner Password Credentials

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.3 of [draft-ietf-oauth-v2]

∙A detailed protocol flow

7.4.4. Client Credentials

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.4 of [draft-ietf-oauth-v2]

∙A detailed protocol flow

7.4.5. Extensions

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.5 of [draft-ietf-oauth-v2]

∙If other well-known grant types can be namely referenced here (SAML assertion bearer, JWT bearer…)

7.4.6. OAuth 2.0 extension parameter: oma_secondary_channel
The following parameter is defined as extension to OAuth 2.0 parameters:

oma_secondary_channel :

OPTIONAL. Signals the willingness of receiving the Authorization Code or Access Token through a secondary channel. Indicates the secondary channel and provides any needed information. SHALL take one of the following values:

‘sms_text’, to request receiving the Authorization Code or Access Token in an SMS

‘push_over_sms_app-id’, to request receiving the Authorization Code or Access Token in a Connectionless Push over SMS, where ‘app-id’ may provide additional information to route it.

‘browser_part’, to request showing the Authorization Code or Access Token in the browser, where ‘part’ indicates where in the webpage showed in the browser the Authorization Code or Access Token will be shown (e.g.: in the title or in some point at the body).

Note: It’s out of scope whether the Resource Owner will pick the Authorization Code or Access Token and provide it to the Autho4API Client, or the Autho4API Client will pick the Authorization Code or Access Token from the browser, or the Authorization Code or Access Token will be copied to the clipboard and the Autho4API Client will pick it from there.

Note: The values can be extended in the future.

The ABNF definition of the parameter is:

oma_secondary_channel = sms_text | push_over_sms | browser

push_over_sms = “push_over_sms” [“_” app-id]
app-id = (absoluteURI | app-assigned-code)

app-assigned-code = 1*8HEXDIG

browser = “browser_” (“title” | “1*CHAR”)

Examples:

oma_secondary_channel =sms_text

oma_secondary_channel = push_over_sms
oma_secondary_channel = push_over_sms_54

oma_secondary_channel =browser_title
Change 2: Adds informative reference

2.2 Informative References

	[draft-lodderstedt-oauth-security]
	“OAuth 2.0 Threat Model and Security Considerations”, URL:https://datatracker.ietf.org/doc/draft-lodderstedt-oauth-security/
NOTE: The referenced IETF draft is a work in progress.

	[draft-lodderstedt-oauth-securityconsiderations]
	“OAuth 2.0 Security Considerations”, URL:https://datatracker.ietf.org/doc/draft-lodderstedt-oauth-securityconsiderations/

NOTE: The referenced IETF draft is a work in progress.

	[draft-zeltsan-oauth-use-cases]
	“OAuth Use Cases”, URL:https://datatracker.ietf.org/doc/draft-zeltsan-oauth-use-cases/

NOTE: The referenced IETF draft is a work in progress.

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[OMAPUSH]
	“OMA Push”, Version 2.3, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

_1378132180.vsd

_1378132929.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1378133116.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1378815125.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1378132697.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1375091284.vsd

_1375091672.vsd

