Doc# OMA-ARC-Autho4API-2011-0044-CR_Scope_values_Section_and_Appendix.doc [image: image1.jpg]
Change Request

Doc# OMA-ARC-Autho4API-2011-0044-CR_Scope_values_Section_and_Appendix.doc
Change Request

Change Request

	Title:
	Scope values Section and Appendix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-SEC

	Doc to Change:
	OMA-ER-Autho4API-V1_0-20110722-D

	Submission Date:
	22 Aug 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Jérôme Marcon, Alcatel-Lucent, jerome.marcon@alcatel-lucent.com

	Replaces:
	n/a

1 Reason for Change

“Scope values” sub-section of Autho4API ER is currently empty. This CR proposes to fix this.
Intentionally, the proposed change makes no reference to “OMA RESTFul Network APIs”, but talks about “Network API” in general; This idea is to avoid bidirectional spec dependencies, and keep the following dependencies unidirectional:

	OMA RESTFul Network API 1
	(
	Common definitions for RESTful Network APIs
	(
	Autho4API

	OMA RESTFul Network API 2
	
	
	
	

	…
	
	
	
	

	
	
	
	
	

	Other Network API
	
	
	(
	

Looking at IETF specifications only, scope parameter is optional to use, and scope values can contain any string value, without further indication.
This freedom can also be left in Autho4API enabler, and thus proposed normative text about scope value is very short.

On the other hand, defining scope values for a given Network API is subject to a number of considerations which API specifiers and implementers should take care about (and which IETF does not mention at all). The CR therefore proposes to add a new informative Appendix presenting these considerations.

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To ARC-SEC to approve the proposed change.
6 Detailed Change Proposal

Change 1: Complete Scope values sections
7.3.1.3
Scope values

A Network APIs specification using this enabler as its authorization framework MAY define scope values.

For a general set of Network APIs handling scope values in a similar way, this definition SHOULD specify the following:

· Syntax and semantics of scope values;
· Scope value registration procedure if applicable;
· Construction of the endpoint URL to which Autho4API Client sends the first protocol request (which is either authorization request on Autho-1 or token request on Autho-2 depending on the flow);

· In particular if this endpoint URL is bound or not to a given service provider and/or Network API (organization, API, profile, version, etc.);

· Semantics of scope parameter omitted in client request;

· Downscoping order of processing;

· Returned scope when scope parameter includes multiple scope values, where at least one value is defined for one-time access token issuing;
In addition for a given Network API of this set ,this definition SHOULD specify the following:

· List of scope values;
· Relationship between scope value definitions (exclusive, inclusive, overlapping);
· Whether downscoping is supported, and if so how it applies in case of inclusive definitions;

· For each scope value:

· Mapping to the authorized operations on resources of the Network API;

· Whether this scope value is for the issuing of one-time access tokens;

· Eventual recommendation with regard to expiry time.

Appendix E provides considerations on the definition of scope values for a given Network API.

Change 2: Add an informative Appendix E about the definition of scope values

Appendix E. Defining scope values (informative)

This appendix provides considerations on the task of defining scope values for a Network API which uses the Autho4API authorization framework.

E.1 Expressing access scope
The actual access scope represented by an issued access token is functionally characterized by all the following:

· identity of service provider which exposes resources through the Network API;

· in the scope of this service provider, identity of resource owner;

· in the scope of this service provider, identity of Autho4API Client;

· Network API identification, characterized for instance by:

· organization defining the API;
· API itself (distinguished from other APIs defined by the organization);

· profile of the API if applicable;

· version.
· in the scope of this Network API, identification of the (REST operations on) resources.

One first element which can play a role in the definition of access scope is the endpoint URL to which the first protocol request is sent, which is:

· for the flows involving explicit resource owner’s authorization (i.e. authorization code flow, implicit grant flow), the authorization request sent on Autho-1 to authorization endpoint URL; or

· for the other flows, the token request sent on Autho-2 to token endpoint URL.

This endpoint URL, simply called “endpoint URL” further in this appendix can be bound to some scoping information (such as service provider and Network API identification), binding which can be done for instance:
· Dynamically when the endpoint URL is obtained by Autho4API client through a discovery process where some scoping information like service provider or Network API identification is provided by client side or inferred by server side;

· Statically when the endpoint URL has a publicly documented construction, with URL components conveying service provider or network API identification, etc.
Given the endpoint URL, the Autho4API Client can besides explicitly narrow down the access scope by including in the very first request of the protocol:

· the OAuth scope parameter, listing a number of scope values;

· some endpoint extension parameters.

The more the endpoint URL is bound to access scope information, the less scope values need to convey access scope information. As opposite examples:

1. For an endpoint URL not bound to any scoping information at all (like a URL shared by multiple service providers exposing multiple APIs defined by multiple organizations), the first protocol request could convey via scope values and eventually extension parameters the identification of service provider and Network API (organization, API, version…).

2. For an endpoint URL bound to much scoping information (like a URL specific to one service provider exposing a single version of a unique API), the first protocol request would include simple scope values identifying resources without further context information. Ultimately for very simple APIs, scope values could even not be needed at all.
E.2 Syntax and semantics

E.2.1 Scope value syntax
Scope values are encoded as a space-delimited list in the scope parameter, which can be present as a percent-encoded value in:

· the authorization request;

· the token request;

· the token response of implicit grant flow;

· (for bearer tokens) in the unsuccessful response to a protected resource request, when scope represented by the access token is insufficient.

The scope parameter can also be present as a JSON string in:

· the token response of flows other than implicit grant flow.

There are therefore no restrictions with regard to the set of characters usable to construct scope values. They can therefore be:

· A free-text value;

· A text value conforming to a well-known textual format (URN, URI, JSON object, etc.).

Overlong scope values may cause transport problems though, especially when scope parameter is carried as a URI query parameter (i.e. authorization request).

E.2.2 Scope value semantics
[draft-ietf-oauth-v2] does not constrain the semantics of content conveyed in a scope value:

· Typically it consists of a string token identifying by convention a set of authorized operations on some network resources. It can also include information scoping the resources such as Network API identification.

· Alternatively, and to avoid the publication of string token semantics, a scope value could contain the URI identifying the resource on which authorized access is requested. But this technique has its downsides:

· For an API exposing many resources, scope parameter size could grow up very quickly (i.e. list of many Resource URIs);

· On this Resource URI, granularity of access finer that “full access” cannot be granted.
E.3 Overlapping and conflicting definitions

E.3.1 Overlapping scope values
For a given API, the mapping between (operations on) resources and scope values can be:

· exclusive: each (operation on a) resource is mapped to one scope value at most;

· overlapping: some (operation on a) resource is mapped to several scope values;
· inclusive: some (operation on a) resource is mapped to several scope values, but in that case scope values have a strict superset/subset relationship with each other.
These mapping models are all usable, with the reservation that overlapping scope values present limitations with regard to downscoping functionality (see section E.6).
E.3.2 Conflicting scope values
Collision of conflicting scope values occur when at the same time:

· for different APIs (defined by same or different organizations), the same scope value is defined;

· for these different APIs, the same endpoint is serving the requests for authorization.

In this situation, the Autho4API Authorization Server could incorrectly grant access to resources not actually requested by the client. This inconsistent behavior could be exploited by malware clients.
E.3.3 API versioning
Another conflicting situation can arise when at the same time:

· different versions of the same API happen to be deployed in Autho4API clients and servers;

· some scope values are reused from one API version to another, with some changes of mapping between scope values and resources;

· scope values do not convey API version information;

· endpoint URLs are not bound to a specific API version.

In this situation, the Autho4API Authorization Server could grant access to less or more resources than those actually requested by the client.
E.4 Omission of requested scope
The absence of scope in the first protocol request can be given the following semantics:

3. It is not allowed, the service provider mandates the inclusion of scope parameter on this endpoint URL;
4. It is allowed, and the requested scope is implicitly understood as a basic access to some resources of the API, according to a documented convention;

5. It is allowed, and the requested scope is implicitly understood as a full access to all resources of the API.

The allowed omission of scope can besides coexist with well-defined scope values. As an example, in the requested conforming to case 3 above, downscoping could occur, i.e. the response could contain a scope parameter listing well-known scope value(s).
The allowed omission of scope likely constrains the endpoint URL to convey scope information (e.g. dedicated URL for serving authorization requests of a single API).
E.5 Downscoping

E.5.1 Principles

Subsequently to the Autho4API Client request including a specific scope, one or both of the following steps can take place:

· The Autho4API Authorization Server can narrow down the requested scope, based on e.g. security considerations;

· The resource owner can narrow down the requested scope, when prompted for authorization.
Depending on how scope values are defined, the downscoping operation can result for the Autho4API client in:
· The granting of less functional access, when each scope value maps to a functional group of resources;
· The granting of less privileged access, when each scope value maps to privileged-specific operations on the same resources.
As a result, enabling downscoping can help reduce the damages caused by leaked bearer tokens.

The Autho4API Authorization Server can signal to the client that downscoping has occurred, by including a scope parameter in the response delivering the access token. This response is:

· For the implicit grant flow, the token response subsequent to authorization request;

· For the other flows, the token response subsequent to token request.

Note: consequently for the authorization code flow, downscoping signaling is not done in the response to the authorization request (where requested scope is included), but later on in the response to the token request.

E.5.2 Order of processing
Whether the Autho4API Authorization Server downscoping occurs before or after resource owner downscoping is affecting end-user experience. Taking the example where the Autho4API client requests “read write” access scope and the server intends to downscope to “read”:

· The server downscopes before resource owner authorization; then the resource owner is prompted to authorize the application for “read” access; or
· The resource owner authorizes the application for “read write” access; then the server downscopes this authorization to “read” only, and the resource owner could later on wonder why the application is only able to perform read-only access to the resource.
E.5.3 Returned scope values

[draft-ietf-oauth-v2] does not constrain the scope resulting from downscoping to be a strict subset of the requested scope values. Downscoping is on the other hand constrained by the way scope values relate to each other. Specifically:

· In case of exclusive definitions, the narrower scope can consist of a strict subset of the values listed in the request (e.g. “sms mms” is requested, and “sms” is returned);

· In case of inclusive definitions, the narrower scope can consist of other values than those listed in the request (e.g. “messaging” is requested, and “sms” is returned);

· In case of overlapping definitions, the narrower scope cannot be signaled and the authorization request has to be rejected.

In any case it is critical for the Autho4API client to understand the returned scope, so to behave consistently with regard to further resource access. In particular, attempts to access to protected resources with an access token of insufficient scope result in poor end-user experience (as the resource owner will be directed again for authorization) and unduly overloads Autho4API servers.
E.6 Characteristics of scope values
E.6.1 Expiry time management

By the inclusion of “expires_in” parameter in the token response, the Autho4API Authorization Server can optionally signal to Autho4API clients that the issued access token has a certain lifetime. Clients supporting this parameter can thus anticipate access token expiry and avoid sending resource requests containing expired tokens.
This access token has besides being issued for a given list of scope values negotiated by the Autho4API client during the authorization process, meaning that the same expiry time is attached to each of these “granted” scope values.

Finally, the Autho4API Authorization Server may have internally defined some computation rules for expiry time of issued access tokens, depending on for instance on:
· The type of Autho4API client (public or confidential);

· The type of authorization grant (implicit, authorization code, assertion….);

· The method of end-user authentication on Autho-1 (if applicable), as some are more secure than others;

· The method of client authentication on Autho-2 (if applicable);

· Whether this a first access token issuing, or an access token refresh;

· Resources and operations on these resources, meaning scope values.
Depending on Autho4API Authorization Server policy, each access token can be issued with variable expiry time depending on the list of scope values negotiated by Autho4API client during the authorization process. For example, if this list contains:

· Scope values defined for critical access privileges, the access token would be issued with a short lifetime (e.g. a few minutes);

· Scope values defined for non-critical access privileges, the access token would be issued with a long lifetime (e.g. a few weeks);
· Scope values defined for critical access privileges and scope values defined for non-critical access privileges, the access token would likely be issued with a short lifetime (e.g. for security reasons).
The last point raises the issue that the access token by expiry will not be usable very soon even if the Autho4API client only intends later on to access the non-critical resources. Consequently:
· When refresh tokens are not usable (e.g. implicit grant flow) or not issued by the Autho4API Authorization Server, the resource owner will be frequently directed for authorization renewal;

· When refresh tokens are used, the Autho4API Authorization Server will be frequently requested to refresh the access token.

This issue is caused by a current limitation of the OAuth 2.0 protocol: an authorization grant can only be exchanged for one single access token.
A possible workaround for the Network API is to specify for each scope value some order of magnitude of access token lifetime, so to enable the Autho4API client to request one specific authorization per group of scope values of similar lifetime. However as described earlier in this section, the final expiry time chosen by Autho4API Authorization Server may take into account other parameters than scope values.
E.6.2 One-time access tokens

By design, access tokens can be used multiple times till their expiry or revocation, and the OAuth 2.0 protocol does not define any token response parameter declaring a limited count of use for an issued access token.
It is possible though by documentation to explicitly indicate that a scope value is defined for the issuing of one-time access token only. Autho4API clients taking this indication into consideration can avoid attempting to use the obtained access token more than once.
In practice an Autho4API client would only list a single scope value in the scope parameter, when this value is for one-time access token issuing. It is worth clarifying though what scope the Autho4API Authorization Server would grant when the client lists in the scope parameter:

· Several scope values defined for one-time access token;

· A scope value defined for one-time access token, and some scope values defined for multiple-time access token.

Some possible behaviors could be to reject the request, or else to downscope to one of the scope values defined for one-time access token.
E.7 Granularity of scope values
In terms of resource access granularity, scope value definition for a given Network API can theoretically range from no scope value defined at all, to one scope value defined per allowed operation on each resource of the API. In practice, the granularity needs to be a compromise:

· If access granularity is too coarse (i.e. too few scope values), the following may not be enabled:
· Feature-driven downscoping, useful when the API consists of functionally distinct groups of resources;

· Security-driven downscoping, useful when the API happens to define different access privileges on the same resources. In particular, the Autho4API Authorization Server may want to force security-driven downscoping for the Autho4API clients identified as “public” and not “confidential” (as per [draft-ietf-oauth-v2] definitions).

· Fine-grained management of access token expiry time (see section E.6.1).
· If access granularity is too fine (i.e. too many scope values), then:
· In the case where the authorization request prompted to resource owner is representing each scope value as one option to check on or off, the to resource owner could be overwhelmed by user-interface complexity;

· Autho4API client side development is complexified.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

