Doc# OMA-ARC-Autho4API-2011-0052R01-CR_MSP_Authorization_Code
Change Request

Doc# OMA-ARC-Autho4API-2011-0052R01-CR_MSP_Authorization_Code
Change Request

Change Request

	Title:
	Considerations and flow for MSP scenarios
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC Autho4API

	Doc to Change:
	OMA-ER-Autho4API-V1_0-20111006-D

	Submission Date:
	11 Oct., 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Diego González, Telefónica S.A., diegog@tid.es
Eduardo Fullea, Telefónica S.A., efc@tid.es

	Replaces:
	n/a

1 Reason for Change

Further details for the multi service provider scenarios are needed, for the obtaining authorization step.
Some text and the flow is included in chapter 6.4.1 for the obtaining authorization using Authorization Code, for one of the multi service provider scenarios.
Comments from R&A taken into account:

“Mr. Marcon Jérôme Alcatel-Lucent Yes The new sub-section is proposed to be inserted to section 7.4 "Obtaining authorization" which is scenario-agnostic so far. But having 3 pages per scenario inserted to this "Obtaining authorization" section highly disrupts document readability. Also the scenario (questionably) spans over 2 sections already, and the proposal would make it span over 3 sections now (7.4.1.5, 7.8.2.2 and D.1). The suggestion is to move the CR changes to a scenario-specific section like 7.8, or even better to group every scenario-specific text to Appendix D (request made several times by other group members).”
“Mr. Gludovacz Dieter Deutsche Telekom AG, TMO Yes As this scenario describes one of many possible MSP deployment scenarios, it should be informative and be added in the corresponding subsection. The first section reads more like a requirement document "SHALL be able to" than a technical specification. Are you not concerned about the big security risks by such a deployment scenario (e.g. caching of tokens on a central server)?”
Suggestion followed and scenario moved to 7.8.
The first section is reworded to not “read like a requirement document”

Section 6.3.1.1.1 is slightly completed to better clarify the functionality of Autho4API Authorization Server
Caching tokens in an entity need not be a security risk, if the implementation is correct, plus the server caching the tokens is a trusted identity and the communications between servers are secured.
“Mr. Marcon Jérôme Alcatel-Lucent No It should be clarified in the text why access tokens and refresh tokens need to be cached.”
Done. Clarifications included
“Mr. Marcon Jérôme Alcatel-Lucent No Security considerations should be provided on the shared authorization server and its communication with the service providers'' authorization servers, to address for instance the risks of man-in-the-middle attacks, given that the shared authorization server is being given and is caching auhtorization codes and access tokens.”
We will address that in a different CR. An Editor’s Note already exists in Annex D.1 around this concept, and the Editor’s Note guarantees that this should be clarified.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Include the proposed text in Autho4API ER Document.
6 Detailed Change Proposal

Change 1: New subchapter (7.8.2.2.) for obtaining Authorization using Authorization Code grant type within a Multi Service Provider Scenario
7.8.2.1. Multiple Autho4API Authorization Servers serving multiple Service Providers

This scenario presents the following characteristics in addition to the general ones described for the Multi-Service Provider environment:

· There are multiple Autho4API Authorization Servers, each generating and managing Access Tokens for Resource Owners belonging to a specific Service Provider.
· The Autho4API Client directs the authorization requests to a single Autho4API Authorization Server acting as entry point that in turn interacts with the Autho4API Authorization Server serving each specific Resource Owner.

· The Autho4API Client is not informed about the details of the Service Provider associated to the Resource Owner before completing the OAuth flow.

In this scenario the Autho4API Client proceeds to obtain authorization as described in chapter 7.4, targeting the authorization request to the single Autho4API Authorization Server acting as entry point.
Note: This Multi Service Provider environment maps with the deployment scenario described in chapter D.1.

Note: In this scenario the Autho4API Client can use the Discovery process described in chapter 7.3.2 to identify the URLs of the Autho4API Authorization Server acting as entry point, resulting in a mixed scenario with the one described in chapter 7.8.1.

7.8.2.1.1. Obtaining Authorization
For the obtaining authorization, the following considerations apply.
· The Autho4API Authorization Server offering the authorization and token endpoints to Autho4API Client must be able to cache Authorization Codes, Access Tokens and redirection URIs.
· When Authorization Code grant is used, Authorization Codes are cached so the Autho4API Authorization Server offering the token endpoint can redirect Access Tokens requests to the Appropriate Autho4API Authorization Server of a Service Provider.

· Access Tokens are cached so the Autho4API Access Control Server acting as entry point for resource requests can redirect them to the Appropriate Autho4API Access Control Server of a Service Provider.
· Redirection URIs are cached so the Autho4API Authorization Server offering the authorization endpoint can redirect the resource Owner’s User Agent to the URI indicated by Autho4API Client
· The Autho4API Authorization Server offering the authorization and token endpoints to Autho4API Client must be able to redirect Resource Owner’s User Agent to the Autho4API Authorization Server of a Service Provider.
Note: To perform this step, the Autho4API Authorization Server offering the authorization and token endpoints will discover the Service Provider of the end user, by means out of scope of this specification.
· The Autho4API Authorization Server offering the authorization and token endpoints to Autho4API Client must be able to indicate a redirection URI where the Resource Owner’s User Agent will be sent back after User Authentication and Authorization. The Autho4API Authorization Server offering the authorization and token endpoints to Autho4API Client must be able to associate such redirection URI with the Autho4API Client and with the redirect URI indicated by that Autho4API Client in authorization request.
· The Autho4API Authorization Server offering the authorization and token endpoints to Autho4API Client must be able to cache the mapping between the following elements:
· When Authorization Code grant is used, an Authorization Code with a certain Autho4API Authorization Server of a Service Provider
· An Access Token with a certain Autho4API Authorization Server of a Service Provider
7.8.2.1.1.1. Detailed protocol flow – Authorization Code
The general flow shown in Figure 3 is modified as follows:

[image: image1.emf]Autho4API

Client

(Shared) Autho4API

Authorization Server

Resource

Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://SharedAutho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Redirection to (Shared) Autho4API Serverwith Authorization Code

302 Found

Location: https://SharedAutho4APIServer.example/authCode/abc?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

8. Access Token Request

POST https://SharedAutho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

9. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to SharedAutho4API

Authorization Server endpoint

Resource

Owner

4. User Aut

hentication and

Authorizatio

n

Autho4API

Client

Redirect-uri

7. Redirection to Autho4API Client

GET https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

Autho4API

Authorization Server

(Service Provider X)

3. Redirection to Autho4API Authorization Server (Service Provider X)

302 Found

Location: https://Autho4APIAuthServerX.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FSharedAutho4APIServer%2Eexample%2FauthCode%2abc

3. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServerX.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&rredirect_uri=

https%3A%2F%2FSharedAutho4APIServer%2Eexample%2FauthCode%2abc

7. Redirection to Autho4API Client with Authorization Code

302 Found

Location: https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

5. Redirection to (Shared) Autho4API Serverwith Authorization Code

GET https://SharedAutho4APIServer.example/authCode/abc?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

8. Access Token Request

9. Acces Token (with optional refresh token)

2. Service Provider

Discovery

6. Cache

Authorization Code

8. Check and route

9. Cache

Access Token

(Shared)

Autho4APi

Authorization

Server

Redirect-uri

4. User Authentication and Authorization

 Figure X: Obtaining Authorization using the Authorization Code grant type: Multiple Autho4API Authorization Servers serving multiple Service Providers detailed protocol flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the (Shared) Autho4API Authorization Server authorization endpoint.
2. (Shared) Autho4API Authorization Server discovers the Resource Owner’s Service Provider. There are several ways to discover the Service Provider, by means of network authentication or by other means. If none of the mechanisms are available, the Resource Owner can be requested to select her Service Provider.
3. Once the Service Provider is known, (Shared) Autho4API Authorization Server redirects the Resource Owner’s User Agent to the Autho4API Authorization Server of Service Provider X Endpoint. (Shared) Autho4API Authorization Server provides an URI in the ‘redirect_uri’ parameter, so that the Resource Owner’s User Agent can be redirected back to the (Shared) Autho4API Authorization Server later on. (Shared) Autho4API Authorization Server associates the URI indicated in ‘redirect_uri’ with the ‘redirect_uri’ indicated by Autho4API Client in step 1.
4. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources.
5. The Autho4API Authorization Server of Service Provider X answers to the request in step 3 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 3; the Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response.
6. (Shared) Autho4API Authorization Server caches the received Authorization Code and associates it with Service Provider X.
7. The (Shared) Autho4API Authorization Server answers to the GET request in step 5 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; the Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response.
8. The Autho4API Client sends an Access Token request to the (Shared) Autho4API Authorization Server. (Shared) Autho4API Authorization Server checks the validity of Authorization Code, which was cached in step 6, and routes the Access Token Request to Autho4API Authorization Server of Service Provider X.
9. The Autho4API Authorization Server of Service Provider X answers to the Autho4API Client, providing the Access Token and optionally a Refresh Token. (Shared) Autho4API Authorization Server caches the Access Token and, if present, the Refresh Token, associates them with Service Provider X and forwards the response to Autho4API Client.

7.8.2.1.1.1. Detailed protocol flow – Implicit Grant
Editor’s note: FFS
Change 2: Further clarifications in chapter 6.3.1.1.1

6.3.1.1.1. Autho4API Authorization Server

The Autho4API Authorization Server is responsible for issuing, verifying and revoking the access tokens enabling an Autho4API Client to access to some resource owner’s network resources on behalf of this resource owner.

The Autho4API Authorization Server must be able to determine the validity of an access token.

The Autho4API Authorization Server must be aware of the resource owner’s authentication which must take place prior the authorization process.

When required, the Autho4API Authorization Server must authenticate the Autho4API Client prior to access token issuing or revoking.

Note: the Autho4API Authorization Server can authenticate the resource owner prior to the authorization process, using mechanisms out of the scope of this enabler.

When required (e.g. in specific shared multi-service provider environments), this component must be able to route authorization requests and token requests to the actual service provider-specific Autho4API Authorization Server. When required, in order to later perform such routing to the actual service provider-specific Autho4API Authorization Server, this component must be able to cache Authorization Codes and Access Tokens, and its association with a service provider-specific Autho4API Authorization Server. Additionally, it must be able to indicate a redirection_URI to the actual service provider-specific Autho4API Authorization Server, in order to redirect the Resource Owner User Agent back to the component and be able to cache the Authorization Code or the Access Token.
The Autho4API Authorization Server MUST be able to establish and use secured channel with Autho4API Client to protect confidentiality of some key information, e.g. access token transportation between them, client secret and resist replay attacks.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

_1379861801.vsd
(Shared) Autho4API Authorization Server

Resource Owner’s User-Agent

Ext-1

Autho4API Authorization Server (Service Provider 1)

Shared Autho4API Authorization Server

