OMA-ER-Autho4API-V1_0-20111006-D
Page 2 V(46)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Authorization Framework for Network APIs

	Draft Version 1.0 – 06 Oct 2011

	Open Mobile Alliance

	OMA-ER-Autho4API-V1_0-20111006-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
10
4.1
Version 1.0
10
4.2
Abstract protocol flow
11
5.
Requirements (Normative)
12
6.
Architectural Model
13
6.1
Dependencies
13
6.2
Architectural Diagram
14
6.3
Functional Components and Interfaces/reference points definition
14
6.3.1
Functional components
14
6.3.2
Interfaces
16
7.
Technical Specification
17
7.1
Client Registration
17
7.1.1
Client Types
17
7.1.2
Client Authentication
17
7.1.3
Unregistered Clients
17
7.2
Protocol Endpoints
17
7.2.1
Authorization Endpoint
17
7.2.2
Token Endpoint
18
7.2.3
Token Revocation Endpoint
18
7.3
Service Definition & Discovery
19
7.3.1
Discovery Data
19
7.3.2
Discovery Mechanisms
20
7.4
Obtaining Authorization
20
7.4.1
Authorization Code
20
7.4.1.1.
Implementation based on OAuth 2.0
20
7.4.1.2.
Support in Native Applications
22
7.4.1.3.
Use of HTTP Redirection capture mechanism: Notification channel API
23
7.4.1.4.
Use of a secondary channel
23
7.4.2
Implicit Grant
25
7.4.3
Resource Owner Password Credentials
27
7.4.4
Client Credentials
27
7.4.5
Extensions
28
7.4.6
OAuth 2.0 extension parameter: oma_secondary_channel
28
7.5
Issuing an Access Token
29
7.6
Refreshing an Access Token
29
7.7
Accessing Protected Resources
29
7.7.1
Overview
29
7.7.2
Access Token Types
29
7.7.3
Bearer Tokens
29
7.7.4
MAC Tokens
29
7.8
Multi-service provider environments (Informative)
30
7.8.1
Autho4API Client discovering the specific Autho4API Authorization Server
30
7.8.2
Autho4API Client requesting authorization through a single Autho4API Authorization Server
30
7.9
Security considerations
31
8.
Release Information
32
8.1
Supporting File Document Listing
32
8.2
OMNA Considerations
32
8.3
Additional Items
33
Appendix A.
Change History (Informative)
34
A.1
Approved Version History
34
A.2
Draft/Candidate Version <current version> History
34
Appendix B.
Use Cases (Informative)
35
B.1
<Use Case Title>
35
B.1.1
Short Description
35
B.1.2
Market benefits
35
B.2
<Use Case Title>
35
Appendix C.
Static Conformance Requirements (Normative)
36
C.1
ERDEF for <<ENABLER>> - Client Requirements
36
C.2
ERDEF for <<ENABLER>> - Server Requirements
36
C.3
SCR for XYZ Client
36
C.4
SCR for XYZ Server
36
Appendix D.
Deployment Diagrams (informative)
37
D.1
Multi Service Provider Scenario: Case Autho4API Client does not know the specific Service Provider
38
D.1.1
Considerations for this deployment scenario
40
Appendix E.
Defining scope values (informative)
41
E.1
Summary
41
E.2
Considerations
41
E.2.1
Expressing access scope
41
E.2.2
Syntax and semantics
42
E.2.3
Overlapping and conflicting definitions
43
E.2.4
Omission of requested scope
44
E.2.5
Downscoping
44
E.2.6
Characteristics of scope values
45
E.2.7
Granularity of scope values
46

Editor’s note, applicable to the whole document: it is for further study to indicate which sections of this specification are normative or informative.
1. Scope

<< Define as it relates to Open Mobile Alliance Activity. Clarify what parts of the development that is included, e.g. RD, AD and TS work. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

2.1 Normative References

	[draft-ietf-oauth-v2]
	“The OAuth 2.0 Authorization Protocol”, URL:https://datatracker.ietf.org/doc/draft-ietf-oauth-v2/
NOTE: The referenced IETF draft is a work in progress.

	[draft-ietf-oauth-v2-bearer]
	“The OAuth 2.0 Protocol: Bearer Tokens”, URL:https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-bearer/

NOTE: The referenced IETF draft is a work in progress.

	[draft-hammer-oauth-v2-mac-token]
	“HTTP Authentication: MAC Access Authentication”, URL:https://datatracker.ietf.org/doc/draft-hammer-oauth-v2-mac-token/

NOTE: The referenced IETF draft is a work in progress.

	[draft-lodderstedt-oauth-revocation]
	“Token Revocation”, URL:https://datatracker.ietf.org/doc/draft-lodderstedt-oauth-revocation/

NOTE: The referenced IETF draft is a work in progress.

	[draft-recordon-oauth-v2-ux]
	“OAuth 2.0 User Experience Extension”, URL:http://tools.ietf.org/id/draft-recordon-oauth-v2-ux-00.txt
NOTE: The referenced IETF draft is a work in progress.

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2617]
	“HTTP Authentication: Basic and Digest Access Authentication”, June 1999, URL:http://www.ietf.org/rfc/rfc2617.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[AUTHO4API_RD_10]
	“Authorization Framework for Network APIs Requirements”, Version 1.0, Open Mobile Alliance™

	[SEC_CF-V1_1]
	“Security Common Functions ”, Version 1.1, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

2.2 Informative References

	[draft-lodderstedt-oauth-security]
	“OAuth 2.0 Threat Model and Security Considerations”, URL:https://datatracker.ietf.org/doc/draft-lodderstedt-oauth-security/
NOTE: The referenced IETF draft is a work in progress.

	[draft-lodderstedt-oauth-securityconsiderations]
	“OAuth 2.0 Security Considerations”, URL:https://datatracker.ietf.org/doc/draft-lodderstedt-oauth-securityconsiderations/

NOTE: The referenced IETF draft is a work in progress.

	[draft-zeltsan-oauth-use-cases]
	“OAuth Use Cases”, URL:https://datatracker.ietf.org/doc/draft-zeltsan-oauth-use-cases/

NOTE: The referenced IETF draft is a work in progress.

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[OMAPUSH]
	“OMA Push”, Version 2.3, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<< If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. The following examples show how dictionary references should be made as well as locally defined terms. This table should be maintained in sorted alphabetic order based on the labels of the terms.

Examples:

Entity
Use definition #1 from [OMADICT]

Interactive Service
Use definition from [OMADICT]

Local Term
The definition description would be presented directly

DELETE THIS COMMENT>>

	
	

	
	

	<< Add/Remove definition rows to this table as needed - DELETE This Row >>

3.3
Abbreviations

<< Add abbreviations as needed to the following table. No special notation should be made regarding terms copied from the Dictionary. This table should be maintained in alphabetic order.

DELETE THIS COMMENT >>

	OMA
	Open Mobile Alliance

	
	

	
	

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

This section and its sub-sections provide an overview of the enabler/reference release and the functionality introduced or removed in each of the versions developed.

In this overview section, the release is to be described in general terms, explaining in one or a few paragraphs what the release is about. The text will be reused on the OMA release pages on a page which provides an overview of the release. Therefore, the text entered here should be general and not specifically describe the functionaility that each of the versions introduce.

For intial interim releases, such as those which include just the RD phase, or the RD and AD phase, the text will be consistent with the material available.
DELETE THIS COMMENT

<< From a market perspective...

For the RD phase:

· What problem does this solve from an end to end market perspective?

For the AD phase:
What is the purpose of this architecture?

· What problems does this architecture solve?

For the specification development phase:
· What can you do with this specification?

· What problem does this solve?

· How can this specification be applied?

· Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>
4.1 Version 1.0

This section provides a high level, concise and informative description of the main functionality supported in the initial version of the specification. The description should be brief, target length should be a few paragraphs. When the enabler or reference release is finished, this description should be aligned with the final functionality.

The text will be re-used on the OMA release pages and it is therefore important that the description is brief; target length should be a few paragraphs, rather than several pages.
DELETE THIS COMMENT

4.2 Abstract protocol flow

[image: image2.emf]Autho4API

Client

Resource Owner’s

User Agent

Autho4API

Authorization

Server

Autho4API Access

Control Server

a.Authorization Request

b.Authorization Response

c.Access Token Request

d.Access Token Response

e.Resource Access Request

f.Protected Resource

Figure 1: Abstract protocol flow

a) The Autho4API Client requests authorization from the Resource Owner’s User Agent.
b) The Resource Owner’s User Agent returns an authorization grant which represents the authorization provided by the resource owner.
c) The Autho4API Client requests an access token with client credentials and presents the authorization grant in request.

d) The Autho4API Authorization server validates the client credentials and the authorization grant, and if valid issues an access token.
e) The Autho4API Client requests the protected resource from the Autho4API Access Control Server and presents the access token.

f) The Autho4API Access Control Server validates the access token, and if valid, serves the request.
5. Requirements
(Normative)

Requirements applicable to this combined release are defined in [AUTH4API_RD_10].
6. Architectural Model

<< This section defines the release’s architectural model.

Remove this section if no architectural work is part of the release. Subsections may also be removed if appropriate; this may be done after consultation with the architecture group.
The model identifies: a) all internal functional components of this release, and b) all of the communication relationships between the components of this release and with other enablers and applications (including those specifications not defined by OMA).

This section SHOULD contain a diagram of the architecture. Diagrams in this section should contain logical entities only and not conflate logical entities with physical entities. However, mobile terminals and networks may be shown because of their potential relevance in the design of the architecture. Figure 1, Figure 2 (or a combination of them, if considered appropriate), are illustrative examples of an architectural diagram and should be modified to reflect this architecture.

Working Groups SHOULD re-use functions specified by other enablers. Working Groups should consult other Architecture Documents and Specifications to identify any of this architecture’s functionality (e.g. its systems, subsystems, interfaces and/or reference points, etc) that is already specified.

This section MAY include an explanation and/or diagram to show how this architecture relates to the various views as defined in “Inventory of Architectures and Services”. This diagram and explanation, however, are optional.

DELETE THIS COMMENT >>
6.1 Dependencies

<< This section MUST enumerate all of the dependencies this architecture has. Dependencies in this context include other enablers, specifications, etc. this release calls (i.e. re-uses). Each dependency MUST include a reference to the document(s) that specifies the depdency. All of these references MUST also be included in Section 2.1.

The enumeration would be along the lines of a list with entries such as

 - IMAP binary extension [RFC3516]
where the reference (e.g. RFC3516 in this example) would link to the fully qualifed reference in section 2.1 table.

If this architecture has no dependencies, then this section only needs to contain a statement as such.

DELETE THIS COMMENT >>

.

6.2 Architectural Diagram

[image: image3.emf]Autho4API

Client

Autho4API

Authorization

Server

Autho4API

Access Control

Server

Resource

Owner's

User-Agent

Autho-1

Autho-2

Ext-1

Autho-3

Interface specified by

external resources

Figure 2: Architectural Diagram
6.3 Functional Components and Interfaces/reference points definition

6.3.1 Functional components

6.3.1.1 Internal functional components

6.3.1.1.1 Autho4API Authorization Server

The Autho4API Authorization Server is responsible for issuing, verifying and revoking the access tokens enabling an Autho4API Client to access to some resource owner’s network resources on behalf of this resource owner.

The Autho4API Authorization Server must be able to determine the validity of an access token.

The Autho4API Authorization Server must be aware of the resource owner’s authentication which must take place prior the authorization process.

When required, the Autho4API Authorization Server must authenticate the Autho4API Client prior to access token issuing or revoking.

Note: the Autho4API Authorization Server can authenticate the resource owner prior to the authorization process, using mechanisms out of the scope of this enabler.

When required (e.g. in specific shared multi-service provider environments), this component must be able to route authorization requests and token requests to the actual service provider-specific Authorization Server.

The Autho4API Authorization Server MUST be able to establish and use secured channel with Autho4API Client to protect confidentiality of some key information, e.g. access token transportation between them, client secret and resist replay attacks.
6.3.1.1.2 Autho4API Access Control Server

The Autho4API Access Control Server is responsible for controlling access to the exposed resource owner’s protected resources, based on the validity of the access token included in protected resource request. The Autho4API Access Control Server checks this validity, e.g. by collaborating in the back-end with the Autho4API Authorization Server. The mechanisms used for this collaboration are out of the scope of this enabler.

When required (e.g. in specific shared multi-service provider environments), this component must be able to route resource requests to the actual service provider-specific Access Control Server.

The Autho4API Access Control Server MUST be able to establish and use secured channel with Autho4API Client to protect confidentiality of some key information transportation between them, e.g. access token and resist replay attacks.
6.3.1.1.3 Autho4API Client

The Autho4API Client is responsible for:

· obtaining the access tokens enabling access to some resource owner’s protected network resources, on resource owner’s behalf;

· accessing the resource owner’s protected resources using the obtained access tokens, when required (see Appendix D);
· establishing and using secured channel with Autho4API Authorization Server and Autho4API Access Control Server to protect confidentiality of some key information transportation between them, e.g. access token, client secret and resist replay attacks.
6.3.1.2 External functional components (Informative)

6.3.1.2.1 Resource Owner’s User Agent

In the scenarios of user-delegated authorization, the Resource Owner’s User Agent acts as a proxy for the Autho4API Client to direct the resource owner to the Autho4API Authorization Server where can take place resource owner authentication and Autho4API Client authorization. The Resource Owner’s User Agent component is typically involved in these steps of authentication and authorization.

The Resource Owner’s User Agent is able to transmit the authorization grant or access token to Autho4API Client, when issued by Autho4API Authorization Server through Autho-1.
6.3.2 Interfaces
6.3.2.1
Autho-1

This interface is exposed by the Autho4API Authorization Server and can be used to obtain from the resource owner using a user agent, the authorization to access on his behalf some of his protected network resources. The obtained authorization is returned in a form of an authorization grant or an access token.

Autho-1 can also be used to authenticate the resource owner prior to the authorization process. The mechanisms used for this authentication are out of the scope of this enabler.
Autho-1 can also be used to present to the resource owner information about the requestor, the requested resources and the requested operations on these resources.

Note: this interface maps to the OAuth 2.0 authorization endpoint defined in [draft-ietf-oauth-v2].
6.3.2.2
Autho-2

This interface is exposed by the Autho4API Authorization Server and can be used to exchange authorization grants for access tokens and optionally refresh tokens, or to exchange refresh tokens for access tokens and optionally refresh tokens.NoteIn this role, the interface then maps to the OAuth 2.0 token endpoint defined in [draft-ietf-oauth-v2].
Autho-2 can also be used to discover the capabilities of Autho4API Authorization Server. [Editor’s note: For further study. This role may be assigned to some other interface/component].

Autho-2 can also be used to discover the authorization endpoint, token endpoint and token revocation endpoint of Autho4API Authorization Server, when these endpoints cannot statically be known in advance. [Editor’s note: For further study. This role may be assigned to some other interface/component].

Autho-2 can also be used to discover the locations of resource owner’s protected resources exposed by the Autho4API Access Control Server, when these locations cannot statically be known in advance. [Editor’s note: For further study. This role may be assigned to some other interface/component].

Autho-2 can also be used to revoke access tokens and refresh tokens. In this role, the interface then maps to the OAuth 2.0 token revocation endpoint defined in [draft-lodderstedt-oauth-revocation].

Autho-2 MUST support to resist replay attacks and protect confidentiality of the information transportation between Autho4API Client and Autho4API Authorization Server, e.g. access token, client secret.
6.3.2.3
Autho-3

This interface is exposed by the Autho4API Access Control Server and can be used to access resource owner’s protected resources on behalf of the resource owner, using access tokens as a proof of authorization.

Autho-3 MUST support to resist replay attacks and protect confidentiality of the information transportation between Autho4API Client and Autho4API Authorization Server, e.g. access token.
7. Technical Specification
7.1 Client Registration

7.1.1 Client Types

Editor’s note: this sub-section could cover the following:

∙How it relates to section 2.1 of [draft-ietf-oauth-v2]

∙Which Client Types are supported by the framework: private, public

∙Talk here about the various kinds of clients, including native apps ? (see section 9 of [draft-ietf-oauth-v2])

7.1.2 Client Authentication

Editor’s note: this sub-section could cover the following:

∙How it relates to section 2.4 of [draft-ietf-oauth-v2]

∙For the case of client password, if the framework allows the client secret to be included in the request body (i.e. no use of HTTP Basic)

∙If the framework defines supplemental client authentication methods

7.1.3 Unregistered Clients

Editor’s note: this sub-section could cover the following:

∙How it relates to section 2.5 of [draft-ietf-oauth-v2]

∙If the framework supports unregistered clients

7.2 Protocol Endpoints
7.2.1 Authorization Endpoint

Editor’s note: this sub-section could cover the following:

∙How it relates to section 3.1 of [draft-ietf-oauth-v2]

∙How the endpoint maps with Autho-1

∙If the Autho4API Authorization Server supports other transport-layer mechanisms (in addition to TLS 1.2).

7.2.1.1 Response Type
Editor’s note: this sub-section could cover the following:

∙How it relates to section 3.1.1 of [draft-ietf-oauth-v2]

∙Which response types are supported by the framework

7.2.1.2 Redirection URI
Editor’s note: this sub-section could cover the following:

∙How it relates to section 3.1.2 of [draft-ietf-oauth-v2]

∙If the framework allows this parameter to contain also non- absolute URIs, e.g. constructed from custom URI schemes (typically needed for native apps).

7.2.1.3 Endpoint extensions
Editor’s note: this sub-section could cover the following:

∙If the framework supports IETF-defined authorization endpoint extensions (like [draft-recordon-oauth-v2-ux]).

∙If the framework defines authorization endpoint extensions (like operator identification ?).

7.2.2 Token Endpoint

Editor’s note: this sub-section could cover the following:

∙How it relates to section 3.2 of [draft-ietf-oauth-v2]

∙How the endpoint maps with Autho-2

∙If the Autho4API Authorization Server supports other transport-layer mechanisms (in addition to TLS 1.2).

7.2.2.1 Grant Type
Editor’s note: this sub-section could cover the following:

∙How it relates to section 3.1.1 of [draft-ietf-oauth-v2]

∙Which grant types are supported by the framework

7.2.2.2 Endpoint extensions
Editor’s note: this sub-section could cover the following:

∙If the framework defines token endpoint extensions.

7.2.3 Token Revocation Endpoint

Editor’s note: this sub-section could cover the following:

∙How it relates to the entire [draft-lodderstedt-oauth-revocation]

∙How the endpoint maps with Autho-2

7.3 Service Definition & Discovery

7.3.1 Discovery Data

7.3.1.1 Bootstrapping

Editor’s note: this sub-section could cover the following:

∙The data (e.g. “discovery endpoint URL”) allowing an Autho4API Client to initiate the discovery process

7.3.1.2 API specifics

Editor’s note: this sub-section could cover the following:

∙Where OMA specifications define the parameters strictly related to RESTful NetAPI consumption

∙Which parameters the client needs besides to discover:
 - BaseURI of ResourceURIs

7.3.1.3 Scope Values

An individual Network API specification using this enabler as its authorization framework MAY define scope values.

Appendix E provides considerations on the definition of scope values for a given Network API.
7.3.1.4 Autho4API Authorization Server parameters
Editor’s note: this sub-section could cover the following:

∙Which parameters of Autho4API Authorization Server the client needs to discover:

 - Location of authorization, token and token revocation endpoints

 - Supported transport-layer mechanisms (in addition to TLS 1.2)

 - Supported response types

 - Supported/required authorization endpoint extensions

 - Supported authorization grant types

 - Supported user-authentication methods on Autho-1 ?

 - Supported/preferred client authentication methods on Autho-2

 - Types of issued access tokens: bearer tokens, MAC tokens…

 - For MAC tokens: MAC algorithm requested to use

7.3.1.5 Autho4API Access Control Server parameters

Editor’s note: this sub-section could cover the following:

∙Which parameters of Autho4API Access Control Server the client needs to discover:

 - Location of the authorization server trusted for issuing access tokens

 - For bearer tokens: supported/preferred methods of access token inclusion

 - For MAC tokens: supported MAC algorithms ?

7.3.2 Discovery Mechanisms
Editor’s note: this sub-section could cover the following:

∙How discovery can be achieved by Autho4API Client:

 - Using client provisioning / OMA DM ?

 - Using IETF OAuth Discovery if it exists ?

 - Using OMA Service Discovery if it exists ?

7.4 Obtaining Authorization

7.4.1 Authorization Code

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.1 of [draft-ietf-oauth-v2]

∙If/How can native apps support this flow:

 - Using an HTTP redirection capture mechanism

 - Using a secondary channel for authorization code (more exactly: authorization response) delivery

∙A detailed protocol flow

7.4.1.1. Implementation based on OAuth 2.0

This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Authorization Code grant type, described in chapter 4.1 of [draft-ietf-oauth-v2].

The indications described in chapter 4.1 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent and Autho4API Authorization Server.

7.4.1.1.1 Detailed protocol flow (Informative)

The flow shown in figure 3 of chapter 4.1 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image4.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Authorization Code

302 Found

Location: https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

c

a

ti

on

and

Au

t

h

o

ri

za

ti

on

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client

GET https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

Figure 3: Obtaining Authorization using the Authorization Code grant type: Detailed Protocol Flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it’s done through EXT-1 interface.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in chapter 4.1 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; the Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response. This step maps with step (C) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.2 of [draft-ietf-oauth-v2. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it’s done through EXT-1 interface.

4. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step maps with step (D) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.3 of [draft-ietf-oauth-v2].

5. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step maps with step (E) in chapter 4.1 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.1.4 of [draft-ietf-oauth-v2].

7.4.1.2. Support in Native Applications

Client Side installed applications (like native code Applications) are usually not ready to receive incoming requests (via redirections). For this reason, these Applications implementing the Autho4API Client is not ready to receive the Authorization Code after user authorization and authentication step (i.e.: step 3 in Figure 3 is not possible). This implies that the Authorization Code flow needs some special considerations for Native applications, as described in chapter 9 of [draft-ietf-oauth-v2].
Many alternative strategies are possible to support the Authorization Code grant type for these Applications, implying different actions in involved actors. This chapter specifies the possible strategies (the ones outlined in chapter 9 of [draft-ietf-oauth-v2], and others), in order to enable native Applications support of Authorization Code grant type. The strategies can be ordered into two blocks:

Using an HTTP redirection capture mechanism:

With this strategy, as the application is not able to receive the HTTP redirection, an alternative mechanism is used so the redirection is captured by other means. The following options are possible:

· Using OMA Notification Channel API.. This mechanism is detailed in chapter 7.4.1.3.

· Embedding a browser or a local Web Server in Autho4API Client. With these approaches, the Autho4API Client will actually be able to receive HTTP redirections, but has also to embed the browser or a local Web Server.

Editor’s Note: Text required about the dangers of embedded web browsers
Editor’s note: Reference to OMA Notification channel should be added.

· WAC OAuth Device API:

Editor’s Note: Details on WAC OAuth Device API mechanism to be included when available and the cooperation between the two organizations is settled. As the WebRunTime is managing this, it can be considered a secure mechanism

· URL Registry in OS:

Editor’s Note: Details on the URL Registry in OS to be included. To be studied whether a malware could register the same URL (in this case the OS usually asks the user which Application to call). Usability and security problems to be considered.

Using a secondary channel (i.e.: an alternative channel to HTTP redirection):

With this strategy, as the application is not able to receive the HTTP redirection, an alternative channel is used, so the Authorization Code is not given to the Application by an HTTP redirection. The following options are possible:

· Manual Copy-paste of the Authorization Code by the User. The Authorization Code will be shown in the Resource Owner’s User Agent (i.e.: in the browser) and the User will be requested to copy the Authorization Code and give it to the Autho4API Client.

· Automatic retrieval of the Authorization Code by the Autho4API Client from the Resource Owner’s User Agent. The Authorization Code will be conveyed to the Resource Owner’s User Agent so that the Autho4API Client can retrieve it. This solution can imply that the Authorization Code is copied to the clipboard (by mechanisms out of scope of this specification) and the Autho4APIClient retrieves it from the clipboard, or the Autho4API Client automatically retrieves it from the Resource Owner’s User Agent (e.g.: in the title of the page displayed in the browser).

Note: Further details on this mechanism, in terms on how the Autho4API Client retrieves the Authorization Code from the Resource Owner’s User Agent are out of scope of this specification.

· Sending the Authorization Code to the Resource Owner by SMS . The Authorization Code will be provided to the Autho4API Client by the Resource Owner. The Autho4API Authorization Server or the entity that actually sends the SMS must be able to know the MSISDN of the User, but this is out of scope of this specification.

· Sending the Authorization Code to the Resource Owner’s device by a silent Connectionless Push over SMS [OMAPush] (SMS sent to a certain port of the device, not a regular text SMS). The Authorization Code will be taken by the Autho4API Client by means out of scope of this specification. This implies that the Resource Owner’s device where the Authorization Code is pushed has to be the same device that the device where the Application with the Autho4API Client is running. The Autho4API Authorization Server or the entity that actually sends the Connectionless Push over SMS must be able to know the MSISDN of the User, but this is out of scope of this specification.
This mechanism based on a secondary channel is detailed in chapter 7.4.1.4.

These options are not exclusive for Native Autho4API Clients, but MAY be used also by other sort of Clients (other Public or Confidential clients according to [draft-ietf-oauth-v2].
Editor’s note: Pros and cons of each solution may be included. Applicability (smartphone, etc) of each solution may be included..

7.4.1.3. Use of HTTP Redirection capture mechanism: Notification channel API

Editor’s Note: Details of the mechanism to be specified. FFS: to consider this within the use of secondary channels. FFS to specify a POST for the notification carrying the authorization code

7.4.1.4. Use of a secondary channel

This chapter specifies a mechanism using a secondary channel (i.e.: not HTTP redirection) as the way to send the Authorization Code to the Autho4API Client.

To support this feature:

1. Autho4API Client SHALL signal the willingness to receive the Authorization Code through the secondary channel.

2. Autho4API Client SHALL NOT include the redirect_uri parameter in the Authorization Request.

3. Autho4API Client SHALL signal the concrete channel through which the Authorization Code wants to be received.

4. Autho4API Client MAY signal any further information needed for the delivery of the Authorization Code through the indicated channel.

5. Autho4API Authorization Server SHALL process the signaling from Autho4API Client and, instead of regular OAuth flow, will perform the needed actions to send Authorization Code through the indicated channel. How the Authorization Code is sent is out of scope of this specification.

To perform steps 1, 3 and 4, the Autho4API Client will use an extension parameter to OAuth 2.0, named oma_secondary_channel and defined in chapter 7.4.6.

7.4.1.1.2 Detailed protocol flow (informative)

When a secondary channel is used, the general flow shown in Figure 3 is modified as follows:

[image: image5.emf]1. Redirection to Authorization Endpoint,

including oma_sec_channel parameter

and NOT including redirect_uri parameter

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3

&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel

(may not be sent directly but through intermediate entities)

Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

2. User Authentication and Authorization

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

ca

ti

on

and

Au

t

ho

ri

za

ti

on

Figure 4: Obtaining Authorization using the Authorization Code grant type and a secondary channel: Detailed Protocol Flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. The redirection includes oma_secondary_channel parameter as defined in chapter 7.4.6 and does not include the redirect_uri parameter specified in chapter in chapter 4.1 of [draft-ietf-oauth-v2]. For the rest of parameters, description in step 1 of Figure 3 is followed.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step is the same as step 2 of Figure 3. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server sends the Authorization Code Response through the secondary channel. How this step 2 is performed is out of scope of Autho4API and can involve other entities such as SMSCs, etc.

Editor’s Note: Payload of the Authorization Code Response needs to be specified

4. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step is the same as step 4 of Figure 3.

5. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step is the same as step 5 of Figure 3.

7.4.1.1.3 Security Considerations
As a general rule, a secondary channel SHOULD be used only when the channel is considered secure.

Depending on the environment (device, operating system) and depending if the Authorization Code is delivered to the same device where the Autho4API Client is running, secondary channel may not be considered secure.

Note: Whether a secondary channel can be considered secure is out of scope of this specification, as a secondary channel can be secure or not depending on the environment

If the secondary channel is not considered secure and the Autho4API Client is confidential according to chapter 2.1 of [draft-ietf-oauth-v2], the secondary channel MAY be used anyway, as the capture of the Authorization Code is not enough for the obtaining of an Access Token. Nevertheless, in this scenario it’s encouraged to use a secure alternative, as recommended in chapter 10.5 of [draft-ietf-oauth-v2].

A secondary channel SHALL NOT be used if the secondary channel is not considered secure and the Autho4API Client is public according to chapter 2.1 of [draft-ietf-oauth-v2], because the interception of the Authorization Code will end up with the obtaining of an Access Token.

Note: In any case, for public clients the recommendation is to use Implicit Grant mode rather than Authorization Code mode.
Editor’s note: It’s FFS whether a solution is feasible for public clients using a non-secure secondary channel (i.e.: a way to solve the security issue.
7.4.2 Implicit Grant

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.2 of [draft-ietf-oauth-v2]

∙If/How can native apps support this flow:

 - Using an HTTP redirection capture mechanism

 - Using a secondary channel for access token (more exactly: access token response) delivery

∙A detailed protocol flow

7.4.2.1 Implementation based on OAuth 2.0
This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Implicit Grant type, described in chapter 4.2 of [draft-ietf-oauth-v2].

The indications described in chapter 4.2 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent, and Autho4API Authorization Server.

7.4.2.1.1 Detailed protocol flow (Informative)
The flow shown in figure 4 in chapter 4.2 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image6.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=token&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Access Token in fragment

302 Found

Location: https://Autho4APIClient.example.com/rd#

access_token=2YotnFZFEjr1zCsicMWpAA

&state=xyz&token_type=example&expires_in=3600

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2

.

Use

r

Au

t

hen

ti

c

a

ti

on

and

Au

t

h

o

ri

za

ti

on

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client,

without URI Fragment

GET https://Autho4APIClient.example.com/cb

4. Returns webpage with embedded script

5. Executes Script

5. Provides Access Token

Figure 5: Obtaining Authorization using the Implicit grant type: Detailed Protocol Flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in chapter 4.2 of [draft-ietf-oauth-v2], The step is detailed in chapter 4.2.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it’s done through EXT-1 interface.
2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in chapter 4.2 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; The Access Token is provided in the URI as an URI fragment. The Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response, without including the URI Fragment. This step maps with steps (C) and (D) in chapter 4.2 of [draft-ietf-oauth-v2]. The step is detailed in chapter 4.2.2 of [draft-ietf-oauth-v2]. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it’s done through EXT-1 interface.
4. The Autho4API Client returns a web page (typically an HTML document with an embedded script) capable of accessing the full redirection URI including the fragment retained by the Resource Owner’s User-Agent, and extracting the access token (and other parameters) contained in the fragment.This step maps with step (E) in chapter 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through EXT-1 interface.
5. The Resource Owner’s User Agent executes the script provided by the web-hosted Autho4API Clien resource locally, which extracts the Access Token and passes it to the Autho4API Client. This step maps with steps (F) and (G) in chapter 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through EXT-1 interface.

7.4.2.2 Support in Native Applications

Client Side installed applications (like native code Applications) are usually not ready to receive incoming requests (via redirections). For this reason, these Applications implementing the Autho4API Client is not ready to receive the Access Token after user authorization and authentication step (i.e.: step 3 in Figure 3 is not possible). This implies that the Implicit Grant flow needs some special considerations for Native applications, as described in chapter 9 of [draft-ietf-oauth-v2].
The same strategies as in chapter 7.4.1.2 are possible.

7.4.2.3 Use of HTTP Redirection capture mechanism: Notification channel API

Editor’s Note: Details of the mechanism to be specified. FFS: to consider this within the use of secondary channels. FFS to specify a POST for the notification carrying the authorization code

7.4.3 Resource Owner Password Credentials

Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.3 of [draft-ietf-oauth-v2]

∙A detailed protocol flow

7.4.4 Client Credentials
Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.4 of [draft-ietf-oauth-v2]

∙A detailed protocol flow

7.4.5 Extensions
Editor’s note: this sub-section could cover the following:

∙How it relates to section 4.5 of [draft-ietf-oauth-v2]

∙If other well-known grant types can be namely referenced here (SAML assertion bearer, JWT bearer…)

7.4.6 OAuth 2.0 extension parameter: oma_secondary_channel
The following parameter is defined as extension to OAuth 2.0 parameters:

oma_secondary_channel :

OPTIONAL. Signals the willingness of receiving the Authorization Code or Access Token through a secondary channel. Indicates the secondary channel and provides any needed information. SHALL take one of the following values:

‘sms_text’, to request receiving the Authorization Code or Access Token in an SMS

‘push_over_sms_app-id’, to request receiving the Authorization Code or Access Token in a Connectionless Push over SMS, where ‘app-id’ may provide additional information to route it.
‘browser_part’, to request showing the Authorization Code or Access Token in the browser, where ‘part’ indicates where in the webpage showed in the browser the Authorization Code or Access Token will be shown (e.g.: in the title or in some point at the body).

Note: It’s out of scope whether the Resource Owner will pick the Authorization Code or Access Token and provide it to the Autho4API Client, or the Autho4API Client will pick the Authorization Code or Access Token from the browser, or the Authorization Code or Access Token will be copied to the clipboard and the Autho4API Client will pick it from there.

Note: The values can be extended in the future.

The ABNF definition of the parameter is:

oma_secondary_channel = sms_text | push_over_sms | browser

push_over_sms = “push_over_sms” [“_” app-id]

app-id = (absoluteURI | app-assigned-code)

app-assigned-code = 1*8HEXDIG
browser = “browser_” (“title” | “1*CHAR”)

Examples:

oma_secondary_channel =sms_text

oma_secondary_channel = push_over_sms

oma_secondary_channel = push_over_sms_54

oma_secondary_channel =browser_title
7.5 Issuing an Access Token

Editor’s note: this sub-section could cover the following:

∙How it relates to section 5 of [draft-ietf-oauth-v2]

7.6 Refreshing an Access Token

Editor’s note: this sub-section could cover the following:

∙How it relates to section 6 of [draft-ietf-oauth-v2]

7.7 Accessing Protected Resources

7.7.1 Overview

Editor’s note: this sub-section could cover the following:

∙Considerations on access token validation

∙Considerations on self-contained token formats

∙Client & Server behavior wrt to one-time access tokens

7.7.2 Access Token Types
Editor’s note: this sub-section could cover the following:

∙How it relates to section 7.1 of [draft-ietf-oauth-v2]

∙How implementors are recommended to deploy a specific type of token

7.7.3 Bearer Tokens
Editor’s note: this sub-section could cover the following:

∙How it relates to the entire draft [draft-ietf-oauth-v2-bearer]

∙Which access token inclusion methods are mandated/supported by the framework

7.7.4 MAC Tokens
Editor’s note: this sub-section could cover the following:

∙How it relates to the entire draft [draft-hammer-oauth-v2-mac-token]

∙Which MAC algorithms are mandated/supported by the framework

7.8 Multi-service provider environments (Informative)
This section describes deployment options for Autho4API Enabler in Multi-Service Provider environments. These environments present the following characteristics:

· More than one Service Provider is offering the same set of protected Resources.

· Each Resource Owner belongs to a certain Service Provider.

· A specific Autho4API Client MAY be used by Resource Owners belonging to any of the Service Providers.

There are several environments with the above characteristics. The common point for all of them is that Autho4API enabler SHALL make possible for the Autho4API Client to obtain authorization to access the protected resources of any Resource Owner, no matter which of the Service Providers the Resource Owner belong to.

The different environments, depicted in the following sections, are divided depending on the different implications to the involved Autho4API entities, and the way the scenario is technically solved.

These scenarios are though not mutually exclusive, as combinations of them are possible.

7.8.1 Autho4API Client discovering the specific Autho4API Authorization Server

This scenario presents the following characteristics in addition to the general ones described for the Multi-Service Provider environment:

· There are multiple Autho4API Authorization Servers each serving Resource Owners belonging to a Service Provider or to a set thereof.

· The Autho4API Client uses the Discovery process described in chapter 7.3.2 to identify the URLs of the Autho4API Authorization Server serving the corresponding Resource Owner.

Once the Autho4API Authorization Server has been identified the Autho4API Client proceeds to obtain authorization as described in chapter 7.4, targeting the authorization request to the URL retrieved as part of the Discovery procedure.

7.8.2 Autho4API Client requesting authorization through a single Autho4API Authorization Server

This scenario can be divided into the two following sub cases:

7.8.2.1 Single Autho4API Authorization Server serving multiple Service Providers

This scenario presents the following characteristics in addition to the general ones described for the Multi-Service Provider environment:

· There is a single Autho4API Authorization Server generating and managing Access Tokens for the Resource Owners from all Service Providers.

In this scenario the Autho4API Client proceeds to obtain authorization as described in chapter 7.4, targeting the authorization request to the single Autho4API Authorization Server.

Note: In this scenario the Autho4API Client can use the Discovery process described in chapter 7.3.2 to identify the URLs of the single Autho4API Authorization Server, resulting in a mixed scenario with the one described in chapter 7.8.1.

7.8.2.2 Multiple Autho4API Authorization Servers serving multiple Service Providers

This scenario presents the following characteristics in addition to the general ones described for the Multi-Service Provider environment:

· There are multiple Autho4API Authorization Servers, each generating and managing Access Tokens for Resource Owners belonging to a specific Service Provider.
· The Autho4API Client directs the authorization requests to a single Autho4API Authorization Server acting as entry point that in turn interacts with the Autho4API Authorization Server serving each specific Resource Owner.

· The Autho4API Client is not informed about the details of the Service Provider associated to the Resource Owner before completing the OAuth flow.

In this scenario the Autho4API Client proceeds to obtain authorization as described in chapter 7.4, targeting the authorization request to the single Autho4API Authorization Server acting as entry point.
Note: This Multi Service Provider environment maps with the deployment scenario described in chapter D.1.

Note: In this scenario the Autho4API Client can use the Discovery process described in chapter 7.3.2 to identify the URLs of the Autho4API Authorization Server acting as entry point, resulting in a mixed scenario with the one described in chapter 7.8.1.

7.9 Security considerations

Editor’s note: this sub-section could cover the following:

∙How it relates to section 10 of [draft-ietf-oauth-v2]

∙Any other complement to this IETF section

8. Release Information

8.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).
The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>

	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 2: Listing of Supporting Documents in FOO Release
8.2 OMNA Considerations
<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

8.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Version

OMA-ER-Autho4API-V1_0
	29 Mar 2011
	All
	Document creation

	
	18 Apr 2011
	6.2
	Incorporates the Architectural Diagram of OMA-ARC-Autho4API-2011-0018-INP_Architecture_Diagram_from_drafting_session.

	
	31 May 2011
	6.2, Appendix D
	Incorporates the agreed Architectural and DeploymentDiagrams contained in slides 22, 23 and 24 of OMA-ARC-Autho4API-2011-0027R03-INP_Flow_instantiations_of_Architectural_Diagram.

	
	29 Jun 2011
	2, 4.2, 6.3
	Incorporates the agreed CRs:

-
OMA-ARC-Autho4API-2011-0028R02-CR_Components_and_Interfaces_Definition

-
OMA-ARC-Autho4API-2011-0029R02-CR_Additional_Interfaces_Definition

-
OMA-ARC-Autho4API-2011-0032R02-CR_Basic_Flow

-
OMA-ARC-Autho4API-2011-0034R01-CR_References_section

	
	01 Jul 2011
	6.3
	Incorporates the agreed CRs:

-
OMA-ARC-Autho4API-2011-0030R01-CR_additional_component_definition
-
OMA-ARC-Autho4API-2011-0031R02-CR_Components_Definition_of_Resource_Owner’s_User_Agent_

	
	22 Jul 2011
	0, 7
	Incorporates the agreed CRs:

· OMA-ARC-Autho4API-2011-0039R01-CR_Skeleton_for_Technical_Sections

	
	02 Sep 2011
	7.3.1.3, D1, E
	Incorporates the agreed CRs:

· OMA-ARC-Autho4API-2011-0038R02-CR_New_chapter_Shared_Multi_Service_Provider_scenarios
· OMA-ARC-Autho4API-2011-0044R02-CR_Scope_values_Section_and_Appendix

	
	06 Oct 2011
	2.2, 7.4, 7.8
	Incorporates the agreed CRs:
-
OMA-ARC-Autho4API-2011-0042R03-CR_Content_for_Chapter_7.4
-
OMA-ARC-Autho4API-2011-0048R02-CR_Multi_Service_Provider_Scenarios_Description

Appendix B. Use Cases
(Informative)

<< This clause provides high-level use cases focused on the users and deployment scenarios point of view, targeting release’s requirements. The section can be removed if the document does not contain any requirements.

Use cases are additional to the main text and facilitate clarification of the requirements: actually, a use case has to be considered needed (and then added to the document) when it helps the understanding of a set of requirements. For this reason, it is recommended that the total number of use cases be minimised. Pre conditions and Actors involved MAY be described at the beginning of each use case if this is found to be useful.

DELETE THIS COMMENT >>

<text here>

B.1 <Use Case Title>

<< The level of detail of descriptions shall be above technical implementations of protocols. The sub-sections below should consist of one or two sentences.

DELETE THIS COMMENT >>
<text here>

B.1.1 ASK * MERGEFORMAT Short Description

<< Describe the interaction that occurs in this use case.
(mandatory)

DELETE THIS COMMENT >>

<text here>

B.1.2 Market benefits

<< Describe the consequence and benefits for the actors as a result of this use case.

(mandatory)

DELETE THIS COMMENT >>

<text here>

B.2 <Use Case Title>

<< For the second and subsequent Use Cases, the template for section B.1 should be followed. DELETE THIS COMMENT >>

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

This section can be removed in case this document describes a reference release.

The following is a model of a set of SCR tables. DELETE THIS COMMENT

C.1 ERDEF for <<ENABLER>> - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-C-001-<<M/O>>
	<<ENABLER>> Client
	

	
	
	

Table 3: ERDEF for <<ENABLER>> Client-side Requirements

C.2 ERDEF for <<ENABLER>> - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-S-001-<<M/O>>
	<<ENABLER>> Server
	

	
	
	

Table 4: ERDEF for <<ENABLER>> Server-side Requirements

C.3 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

C.4 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix D. Deployment Diagrams (informative)
The following figures present possible deployment scenarios:

[image: image7.emf]Autho4API

Authorization

Server

Net API-X

Server

Autho4API

Access Control

Server

Resource

Owner's

User-Agent

Autho-1

Autho-2

Ext-1

Autho-3

Autho4API

Client

Net API-X

Client

Interface specified by

external resources

Figure 6: Autho-3 invoked by Autho4API Client

[image: image8.emf]Autho4API

Authorization

Server

Net API-X

Server

Autho4API

Access Control

Server

Resource

Owner's

User-Agent

Autho-1

Autho-2

Ext-1

Autho-3

Autho4API

Client

Net API-X

Client

Interface specified by

external resources

Figure 7: Autho-3 invoked by Net API-X Client

D.1 Multi Service Provider Scenario: Case Autho4API Client does not know the specific Service Provider

[image: image9.emf](Shared)

Autho4API

Authorization

Server

Resource Owner’s

User-Agent

Ext-1

Interface specified by

external resources

Autho4API

Authorization

Server (Service

Provider 1)

(Shared)

Autho4API Access

Control Server

Autho4API

Authorization

Server (Service

Provider 2)

Autho-2

Autho-3

Autho4API

Client

Autho4API

Authorization

Server (Service

Provider N)

Autho4API Access

Control Server

(Service Provider

1)

Autho4API Access

Control Server

(Service Provider

2)

Autho4API Access

Control Server

(Service Provider

N)

Autho-1

Autho-2

Autho-3

Figure 8: Multi Service Provider Scenario: Case Autho4API Client does not know the specific Service Provider
D.1.1 Considerations for this deployment scenario

This scenario does not modify Autho4API Architecture described in chapter 6.2. As shown in the picture, in described scenario, the entity Autho4API Authorization Server will perform different functionalities among those described in chapter 6.3, as described below:

· (Shared) Autho4API Authorization Server: Is an Autho4API Authorization Server with limited functions, only those needed to support this scenario.

· Use of Autho-1 interface: the (Shared) Autho4 API Authorization Server behaves as the Autho4API Authorization Server in communications with Resource Owner’s User Agent and can redirect Resource Owner’s User Agent to the Autho4API Authorization Server of a certain Service Provider.

· Use of Autho-2 and Autho-3 interfaces: the (Shared) Autho4API Authorization Server behaves as the Autho4API Authorization Server in communications with Autho4API Client and acts on behalf of Autho4API Client in communications with the Autho4API Authorization Server of a certain Service Provider.
· Autho4API Authorization Server of a certain Service Provider: behaves as a regular Autho4API Authorization Server.

Editor’s Note: The security requirements and mechanisms to protect sensitive information in this scenario still need to be described.

Appendix E. Defining scope values (informative)

This appendix provides guidance on the definition of scope values for a Network API which uses the Autho4API authorization framework.

E.1 Summary

The definition of scope values for a given Network API should specify the following:

· Syntax and semantics of scope values;

· Scope value registration procedure if applicable;

· Construction of the endpoint URL to which Autho4API Client sends the first protocol request (which is either authorization request on Autho-1 or token request on Autho-2 depending on the flow);

· In particular if this endpoint URL is bound or not to a given service provider and/or Network API (organization, API, profile, version, etc.);

· Semantics of scope parameter omitted in client request;

· Downscoping order of processing;

· Returned scope when scope parameter includes multiple scope values, where at least one value is defined for one-time access token issuing;

· Relationship between scope value definitions (exclusive, inclusive, overlapping);
· Whether downscoping is supported, and if so how it applies in case of inclusive definitions;

· For each scope value:

· Mapping to the authorized operations on resources of the Network API;

· Whether this scope value is for the issuing of one-time access tokens;

· Eventual recommendation with regard to expiry time.

E.2 Considerations

This section provides considerations on the task of defining scope values.

E.2.1 Expressing access scope
The actual access scope represented by an issued access token is functionally characterized by all the following:

· identity of service provider which exposes resources through the Network API;

· in the scope of this service provider, identity of resource owner;

· in the scope of this service provider, identity of Autho4API Client;

· Network API identification, characterized for instance by:

· organization defining the API;
· API itself (distinguished from other APIs defined by the organization);

· profile of the API if applicable;

· version.
· in the scope of this Network API, identification of the (REST operations on) resources.

One first element which can play a role in the definition of access scope is the endpoint URL to which the first protocol request is sent, which is:

· for the flows involving explicit resource owner’s authorization (i.e. authorization code flow, implicit grant flow), the authorization request sent on Autho-1 to authorization endpoint URL; or

· for the other flows, the token request sent on Autho-2 to token endpoint URL.

This endpoint URL, simply called “endpoint URL” further in this appendix can be bound to some scoping information (such as service provider and Network API identification), binding which can be done for instance:

· Dynamically when the endpoint URL is obtained by Autho4API client through a discovery process where some scoping information like service provider or Network API identification is provided by client side or inferred by server side;

· Statically when the endpoint URL has a publicly documented construction, with URL components conveying service provider or network API identification, etc.
Given the endpoint URL, the Autho4API Client can besides explicitly narrow down the access scope by including in the very first request of the protocol:

· the OAuth scope parameter, listing a number of scope values;

· some endpoint extension parameters.

The more the endpoint URL is bound to access scope information, the less scope values need to convey access scope information. As opposite examples:

1. For an endpoint URL not bound to any scoping information at all (like a URL shared by multiple service providers exposing multiple APIs defined by multiple organizations), the first protocol request could convey via scope values and eventually extension parameters the identification of service provider and Network API (organization, API, version…).

2. For an endpoint URL bound to much scoping information (like a URL specific to one service provider exposing a single version of a unique API), the first protocol request would include simple scope values identifying resources without further context information. Ultimately for very simple APIs, scope values could even not be needed at all.

E.2.2 Syntax and semantics

E.2.2.1 Scope value syntax

Scope values are encoded as a space-delimited list in the scope parameter, which can be present as a percent-encoded value in:

· the authorization request;

· the token request;

· the token response of implicit grant flow;

· (for bearer tokens) in the unsuccessful response to a protected resource request, when scope represented by the access token is insufficient.

The scope parameter can also be present as a JSON string in:

· the token response of flows other than implicit grant flow.

There are therefore no restrictions with regard to the set of characters usable to construct scope values. They can therefore be:

· A free-text value;

· A text value conforming to a well-known textual format (URN, URI, JSON object, etc.).

Overlong scope values may cause transport problems though, especially when scope parameter is carried as a URI query parameter (i.e. authorization request).

E.2.2.2 Scope value semantics

[draft-ietf-oauth-v2] does not constrain the semantics of content conveyed in a scope value:

· Typically it consists of a string token identifying by convention a set of authorized operations on some network resources. It can also include information scoping the resources such as Network API identification.

· Alternatively, and to avoid the publication of string token semantics, a scope value could contain the URI identifying the resource on which authorized access is requested. But this technique has its downsides:

· For an API exposing many resources, scope parameter size could grow up very quickly (i.e. list of many Resource URIs);

· On this Resource URI, granularity of access finer that “full access” cannot be granted.
E.2.3 Overlapping and conflicting definitions

E.2.3.1 Overlapping scope values
For a given API, the mapping between (operations on) resources and scope values can be:

· exclusive: each (operation on a) resource is mapped to one scope value at most;

· overlapping: some (operation on a) resource is mapped to several scope values;

· inclusive: some (operation on a) resource is mapped to several scope values, but in that case scope values have a strict superset/subset relationship with each other.

These mapping models are all usable, with the reservation that overlapping scope values present limitations with regard to downscoping functionality (see section E.6).
E.2.3.2 Conflicting scope values
Collision of conflicting scope values occur when at the same time:

· for different APIs (defined by same or different organizations), the same scope value is defined;

· for these different APIs, the same endpoint is serving the requests for authorization.

In this situation, the Autho4API Authorization Server could incorrectly grant access to resources not actually requested by the client. This inconsistent behavior could be exploited by malware clients.

E.2.3.3 API versioning

Another conflicting situation can arise when at the same time:

· different versions of the same API happen to be deployed in Autho4API clients and servers;

· some scope values are reused from one API version to another, with some changes of mapping between scope values and resources;

· scope values do not convey API version information;

· endpoint URLs are not bound to a specific API version.

In this situation, the Autho4API Authorization Server could grant access to less or more resources than those actually requested by the client.
E.2.4 Omission of requested scope

The absence of scope in the first protocol request can be given the following semantics:

3. It is not allowed, the service provider mandates the inclusion of scope parameter on this endpoint URL;

4. It is allowed, and the requested scope is implicitly understood as a basic access to some resources of the API, according to a documented convention;

5. It is allowed, and the requested scope is implicitly understood as a full access to all resources of the API.

The allowed omission of scope can besides coexist with well-defined scope values. As an example, in the requested conforming to case 3 above, downscoping could occur, i.e. the response could contain a scope parameter listing well-known scope value(s).

The allowed omission of scope likely constrains the endpoint URL to convey scope information (e.g. dedicated URL for serving authorization requests of a single API).
E.2.5 Downscoping

E.2.5.1 Principles

Subsequently to the Autho4API Client request including a specific scope, one or both of the following steps can take place:

· The Autho4API Authorization Server can narrow down the requested scope, based on e.g. security considerations;

· The resource owner can narrow down the requested scope, when prompted for authorization.

Depending on how scope values are defined, the downscoping operation can result for the Autho4API client in:

· The granting of less functional access, when each scope value maps to a functional group of resources;

· The granting of less privileged access, when each scope value maps to privileged-specific operations on the same resources.

As a result, enabling downscoping can help reduce the damages caused by leaked bearer tokens.

The Autho4API Authorization Server can signal to the client that downscoping has occurred, by including a scope parameter in the response delivering the access token. This response is:

· For the implicit grant flow, the token response subsequent to authorization request;

· For the other flows, the token response subsequent to token request.

Note: consequently for the authorization code flow, downscoping signaling is not done in the response to the authorization request (where requested scope is included), but later on in the response to the token request.

E.2.5.2 Order of processing

Whether the Autho4API Authorization Server downscoping occurs before or after resource owner downscoping is affecting end-user experience. Taking the example where the Autho4API client requests “read write” access scope and the server intends to downscope to “read”:

· The server downscopes before resource owner authorization; then the resource owner is prompted to authorize the application for “read” access; or

· The resource owner authorizes the application for “read write” access; then the server downscopes this authorization to “read” only, and the resource owner could later on wonder why the application is only able to perform read-only access to the resource.

E.2.5.3 Returned scope values

[draft-ietf-oauth-v2] does not constrain the scope resulting from downscoping to be a strict subset of the requested scope values. Downscoping is on the other hand constrained by the way scope values relate to each other. Specifically:

· In case of exclusive definitions, the narrower scope can consist of a strict subset of the values listed in the request (e.g. “sms mms” is requested, and “sms” is returned);

· In case of inclusive definitions, the narrower scope can consist of other values than those listed in the request (e.g. “messaging” is requested, and “sms” is returned);

· In case of overlapping definitions, the narrower scope cannot be signaled and the authorization request has to be rejected.

In any case it is critical for the Autho4API client to understand the returned scope, so to behave consistently with regard to further resource access. In particular, attempts to access to protected resources with an access token of insufficient scope result in poor end-user experience (as the resource owner will be directed again for authorization) and unduly overloads Autho4API servers.

E.2.6 Characteristics of scope values

E.2.6.1 Expiry time management

By the inclusion of “expires_in” parameter in the token response, the Autho4API Authorization Server can optionally signal to Autho4API clients that the issued access token has a certain lifetime. Clients supporting this parameter can thus anticipate access token expiry and avoid sending resource requests containing expired tokens.

This access token has besides being issued for a given list of scope values negotiated by the Autho4API client during the authorization process, meaning that the same expiry time is attached to each of these “granted” scope values.

Finally, the Autho4API Authorization Server may have internally defined some computation rules for expiry time of issued access tokens, depending on for instance on:

· The type of Autho4API client (public or confidential);

· The type of authorization grant (implicit, authorization code, assertion….);

· The method of end-user authentication on Autho-1 (if applicable), as some are more secure than others;

· The method of client authentication on Autho-2 (if applicable);

· Whether this a first access token issuing, or an access token refresh;

· Resources and operations on these resources, meaning scope values.

Depending on Autho4API Authorization Server policy, each access token can be issued with variable expiry time depending on the list of scope values negotiated by Autho4API client during the authorization process. For example, if this list contains:

· Scope values defined for critical access privileges, the access token would be issued with a short lifetime (e.g. a few minutes);

· Scope values defined for non-critical access privileges, the access token would be issued with a long lifetime (e.g. a few weeks);

· Scope values defined for critical access privileges and scope values defined for non-critical access privileges, the access token would likely be issued with a short lifetime (e.g. for security reasons).
The last point raises the issue that the access token by expiry will not be usable very soon even if the Autho4API client only intends later on to access the non-critical resources. Consequently:

· When refresh tokens are not usable (e.g. implicit grant flow) or not issued by the Autho4API Authorization Server, the resource owner will be frequently directed for authorization renewal;

· When refresh tokens are used, the Autho4API Authorization Server will be frequently requested to refresh the access token.

This issue is caused by a current limitation of the OAuth 2.0 protocol: an authorization grant can only be exchanged for one single access token.

A possible workaround for the Network API is to specify for each scope value some order of magnitude of access token lifetime, so to enable the Autho4API client to request one specific authorization per group of scope values of similar lifetime. However as described earlier in this section, the final expiry time chosen by Autho4API Authorization Server may take into account other parameters than scope values.

E.2.6.2 One-time access tokens

By design, access tokens can be used multiple times till their expiry or revocation, and the OAuth 2.0 protocol does not define any token response parameter declaring a limited count of use for an issued access token.

It is possible though by documentation to explicitly indicate that a scope value is defined for the issuing of one-time access token only. Autho4API clients taking this indication into consideration can avoid attempting to use the obtained access token more than once.

In practice an Autho4API client would only list a single scope value in the scope parameter, when this value is for one-time access token issuing. It is worth clarifying though what scope the Autho4API Authorization Server would grant when the client lists in the scope parameter:

· Several scope values defined for one-time access token;

· A scope value defined for one-time access token, and some scope values defined for multiple-time access token.

Some possible behaviors could be to reject the request, or else to downscope to one of the scope values defined for one-time access token.
E.2.7 Granularity of scope values

In terms of resource access granularity, scope value definition for a given Network API can theoretically range from no scope value defined at all, to one scope value defined per allowed operation on each resource of the API. In practice, the granularity needs to be a compromise:

· If access granularity is too coarse (i.e. too few scope values), the following may not be enabled:

· Feature-driven downscoping, useful when the API consists of functionally distinct groups of resources;

· Security-driven downscoping, useful when the API happens to define different access privileges on the same resources. In particular, the Autho4API Authorization Server may want to force security-driven downscoping for the Autho4API clients identified as “public” and not “confidential” (as per [draft-ietf-oauth-v2] definitions).

· Fine-grained management of access token expiry time (see section E.6.1).
· If access granularity is too fine (i.e. too many scope values), then:

· In the case where the authorization request prompted to resource owner is representing each scope value as one option to check on or off, the to resource owner could be overwhelmed by user-interface complexity;

· Autho4API client side development is complexified.

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20110101-I]

_1378132180.vsd

_1378132697.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1378132929.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1370891392.vsd
Autho4API Client

Resource Owner’s User Agent

Autho4API Authorization Server

Autho4API Access Control Server

a.Authorization Request

b.Authorization Response

c.Access Token Request

d.Access Token Response

e.Resource Access Request

f.Protected Resource

_1373281587.vsd
(Shared) Autho4API Authorization Server

Resource Owner’s User-Agent

Ext-1

Autho4API Authorization Server (Service Provider 1)

Shared Autho4API Authorization Server

