Doc# OMA-ARC-PEEM-2007-0008R01-INP_PEL_TS_remove_support_for_CHAR-datatype.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-PEEM-2007-0008R01-INP_PEL_TS_remove_support_for_CHAR_datatype.doc
Input Contribution

Input Contribution

	Title:
	PEL TS Remove Support for CHAR datatype
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	April 4 2007

	Source:
	Michael Brenner, Alcatel-Lucent

mrbrenner@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

5 Reason for Contribution

Progressing the PEL TS.
6 Summary of Contribution

The current section 5.2.2 lists CHAR as one of the PEL supported data types. The reasoning behind support of CHAR data type was in support of ASCII character set. However, discussions that we have in parallel on support of Internationalization lead to believe that there may be a need for PEEM to support UTF-8, which has no use of a CHAR data type, since it may use several octets to represent a single character, hence it needs to be represented using STRING. In this case, support of CHAR is an unnecessary additional burden, since all characters in any character set can indeed be represented by an appropriate STRING data type. Given that rationale, it is proposed to remove support for CHAR data type in PEL. Similar changes, if needed, may be considered for PEM-1. The detailed proposal show the changes proposed in the PEL TS text.
7 Detailed Proposal

Change 1:
5.2.2 PEL data types for rule sets

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Also, an analysis conducted for PEM-1 interface bindings has also concluded that no new data types have to be added to the basic programming languages data types and/or that such data types can be derived from existing data types if need be. Limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data tpyes, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

Furthermore, an appendix is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown. The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	
	

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

End of Change 1
Change 2:
E.4 Conclusion: data types needed for PEL

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used.

Furthermore, we have documented in an appendix all possible data types, hence, if need be and a policy may need additional data types, those could be easier added later when needed, rather than including the, now when the need is unknown. The data types that we initially include in PEL be are basic data types, and some more complex tpes that are likely to be encountered in writing policies. With those we can later on derive others, if needed.
Of course, analysis needs to be conducted for the Diameter and XML bindings and assess whether there may be a real need to support data types that those protocols support, and may not be included in the data types that are in a basic data types set, typical for programming languages. That said, limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data tpyes, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. Note that CHAR data type has been identified as a basic data type supported in many programming languages. The use of CHAR data type is mainly to support the ASCII character set. However, in order to support internationalization, ASCII character set is insufficient, and the use of UTF-8 or other multiple-octets character sets may be needed instead. Such character sets need the STRING data type for representation, and not the CHAR data type. With this rationale, the following data are useful in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	
	

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	bool
	A type that can only take the values TRUE or FALSE

A typedef construct to facilitate creating additional derived data types is also something that could be considered at a later stage, if policies require the use of such derived data types.
End of Change 2
8 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

9 Recommendation

Agree to the changes proposed for section 5.2.2, and Appendix E4 in the PEL TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

