Doc# OMA-ARC-PEEM-2007-0023R02-INP_Flow_PEL_constructs[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2007-0023R02-INP_Flow_PEL_constructs[image: image4.png]Initiate policy
processing request
for userld

v
Initiate Initiate
s Authentication -> e
Autharization ->
Calculation Determination
Subscriptian?
v v v
Complete Apply charges and Aply
Rate preference and decide | | Preference
Calculation on access Determination
P
Determine

Results

Input Contribution

Input Contribution

	Title:
	Flow-based PEL constructs for PEEM Policy Expression Language
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	7 Apr 2007

	Source:
	Stéphane H. Maes, Oracle
+1-203-300-7786
stephane.maes@oracle.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

Following next steps discussed after presentation of OMA-ARC-2006-0105-PEL_constructs_and_progress_proposal and according to the decision in Paris to compile input proposals for PEL construct, this contribution proposes a set of constructs for PEL using BPEL.
This contribution updates OMA-ARC-2006-0136R01-PEL_constructs based on comments received in Osaka and OMA-ARC-2006-0334-INP_PEL_constructs_input based on comments received in Athens.
R01 correct errors based on comments received on mailing list.
R02 corrects some text inconsistencies resulting from extracting the text from the WSBPEL 2.0 specifications.
2 Summary of Contribution

This contribution proposes BPEL as a policy expression language.

3 Detailed Proposal

Proposed input to section 2.

2.1 Normative References

[…]
	[BPEL]
	“Business Process Expression Language”, OASIS,
URL: Web Services Business Process Execution Language Version 2.0

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

	[…]
	[…]

	[XPATH1.0]
	W3C Recommendation, “XML Path Language (XPath) Version 1.0”, J. Clark, S. DeRose, November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116

[…]

Proposed changes to section 3:

3.3 Abbreviations

[…]
	BPEL
	“Business Process Expression Language”

	IMA
	Inbound Message Activity

[…]

Proposed input to section 5.
5.x Constructs for a PEL based on workflows
The PEL language based on Workflow is based on WSBPEL 2.0 [BPEL].

This section provides a summary of the WS-BPEL syntax and constructs introduced in [BPEL]. It provides only a brief overview; the details of each language construct are normatively described in [BPEL]. The example itself is based on section 5.2 of [BPEL].

5.x.1 Overview
The basic structure of a policy expressed as a flow language is described below. It should be considered as illustrative superseded by the corresponding normative statement provided in [BPEL]. Syntax details are also specified in [BPEL].
<process name="PolicyName" targetNamespace="anyURI"

 queryLanguage="anyURI"?

 expressionLanguage="anyURI"?

 suppressJoinFailure="yes|no"?

 exitOnStandardFault="yes|no"?

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <extensions>?

 <extension namespace="anyURI" mustUnderstand="yes|no" />+

 </extensions>

 <import namespace="anyURI"?

 location="anyURI"?

 importType="anyURI" />*

 <partnerLinks>?

 <!-- Note: At least one role must be specified. -->

 <partnerLink name="PolicyName"

 partnerLinkType="QName"

 myRole="PolicyName"?

 partnerRole="PolicyName"?

 initializePartnerRole="yes|no"?>+

 </partnerLink>

 </partnerLinks>

 <messageExchanges>?

 <messageExchange name="PolicyName" />+

 </messageExchanges>

 <variables>?

 <variable name="BPELVariableName"

 messageType="QName"?

 type="QName"?

 element="QName"?>+

 from-spec?

 </variable>

 </variables>

 <correlationSets>?

 <correlationSet name="PolicyName" properties="QName-list" />+

 </correlationSets>

 <faultHandlers>?

 <!-- Note: There must be at least one faultHandler -->

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 (faultMessageType="QName" | faultElement="QName")? >*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 </faultHandlers>

 <eventHandlers>?

 <!-- Note: There must be at least one onEvent or onAlarm. -->

 <onEvent partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 (messageType="QName" | element="QName")?

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>*

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 <scope ...>...</scope>

 </onEvent>

 <onAlarm>*

 <!-- Note: There must be at least one expression. -->

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)?

 <repeatEvery expressionLanguage="anyURI"?>

 duration-expr

 </repeatEvery>?

 <scope ...>...</scope>

 </onAlarm>

 </eventHandlers>

 activity

</process>

The top-level attributes are as follows:

· Process in this cases represent a policy or a policy sub-graph (i.e. subset of combinations of conditions and actions within a policy).
· queryLanguage. This attribute specifies the query language used in the process for selection of nodes in assignment. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
· expressionLanguage. This attribute specifies the expression language used in the <process>. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
The value of the queryLanguage and expressionLanguage attributes on the <process> element are global defaults and can be overridden on specific constructs, such as <condition> of a <while> activity, as defined in [BPEL]. In addition, the queryLanguage attribute is also available for use in defining WS-BPEL <vprop:propertyAlias>es in WSDL. WS-BPEL processors MUST:

· statically determine which languages are referenced by queryLanguage or expressionLanguage attributes either in the WS-BPEL process definition itself or in any WS-BPEL property definitions in associated WSDLs and

· if any referenced language is unsupported by the WS-BPEL processor then the processor MUST reject the submitted WS-BPEL process definition.
In addition,
· suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all activities in the process. The effect of the attribute at the process level can be overridden by an activity using a different value for the attribute. The default for this attribute is "no" at the process level. When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the <process> if no enclosing activity specifies this attribute.

· exitOnStandardFault. If the value of this attribute is set to “yes”, then the process MUST exit immediately as if an <exit> activity has been reached, when a WS-BPEL standard fault other than bpel:joinFailure is encountered. If the value of this attribute is set to “no”, then the process can handle a standard fault using a fault handler. The default value for this attribute is “no”. When this attribute is not specified on a <scope> it inherits its value from its enclosing <scope> or <process>.

If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”, then a fault handler that explicitly targets the WS-BPEL standard faults MUST NOT be used in that scope. A process definition that violates this condition MUST be detected by static analysis and MUST be rejected by a conformant implementation.

· The syntax of Abstract Process has its own distinct target namespace. Additional top-level attributes are defined for Abstract Processes.
· <documentation> construct may be added to virtually all WS-BPEL constructs as the formal way to annotate processes definition with human documentation.
· Correlation is defined in [BPEL]
5.x.2 Constructs
Regarding the explicit flow constructs, each business process (i.e. policy or policy sub-graph) has one main activity (or construct).

A WS-BPEL activity can be any of the following:

· <receive>: wait for a matching message to arrive
The <receive> activity allows the business process to wait for a matching message to arrive. The <receive> activity completes when the message arrives. The portType attribute on the <receive> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <receive> activity.
<receive partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 createInstance="yes|no"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</receive>
· <reply>: send a message in reply to a message that was received through a <receive>.
The <reply> activity allows the business process to send a message in reply to a message that was received by an inbound message activity (IMA), that is, <receive>, <onMessage>, or <onEvent>. The combination of an IMA and a <reply> forms a request-response operation on a WSDL portType for the process. The portType attribute on the <reply> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity (see also partnerLink description in the next section). The optional messageExchange attribute is used to associate a <reply> activity with an IMA.
<reply partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 faultName="QName"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

</reply>
· <invoke>: initiate a one-way or request-response operation offered by another resource
The <invoke> activity allows the business process to invoke a one-way or request-response operation on a portType offered by a partner. In the request-response case, the invoke activity completes when the response is received. The portType attribute on the <invoke> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity.
<invoke partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 inputVariable="BPELVariableName"?

 outputVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"?

 pattern="request|response|request-response"? />+

 </correlations>

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 faultMessageType="QName"?

 faultElement="QName"?>*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 <compensationHandler>?

 activity

 </compensationHandler>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</invoke>
· <assign>: update the values of variables with new data
The <assign> activity is used to update the values of variables with new data. An <assign> construct can contain any number of elementary assignments, including <copy> assign elements or data update operations defined as extension under other namespaces.

<assign validate="yes|no"? standard-attributes>

 standard-elements

 (

 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>

 from-spec

 to-spec

 </copy>

 |

 <extensionAssignOperation>

 assign-element-of-other-namespace

 </extensionAssignOperation>

)+

</assign>
· <throw>: generates a fault from inside the policy processing
The <throw> activity is used to generate a fault from inside the business process.

<throw faultName="QName"

 faultVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

</throw>
· <exit>:
The <exit> activity is used to immediately end a business process instance within which the <exit> activity is contained.

<exit standard-attributes>

 standard-elements

</exit>
· <wait>: allows you to wait for a given time period or until a certain time has passed
The <wait> activity is used to wait for a given time period or until a certain point in time has been reached. Exactly one of the expiration criteria MUST be specified.

<wait standard-attributes>
 standard-elements

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>
 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>
)

</wait>
· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
The <empty> activity is a "no-op" in a business process. This is useful for synchronization of concurrent activities, for instance.

<empty standard-attributes>

 standard-elements

</empty>
· <sequence>: define a collection of activities to be performed sequentially in lexical order
The <sequence> activity is used to define a collection of activities to be performed sequentially in lexical order.

<sequence standard-attributes>

 standard-elements

 activity+

</sequence>
· <if>: Select exactly one branch of activity from a set of choices
The <if> activity is used to select exactly one activity for execution from a set of choices.

<if standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 <elseif>*

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 </elseif>

 <else>?

 activity

 </else>

</if>
· <while> Contained activity is repeated while a predicate holds
The <while> activity is used to define that the child activity is to be repeated as long as the specified <condition> is true.

<while standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

</while>
· <repeatUntil>: Contained activity is repeated until a predicate holds
The <repeatUntil> activity is used to define that the child activity is to be repeated until the specified <condition> becomes true. The <condition> is tested after the child activity completes. The <repeatUntil> activity is used to execute the child activity at least once.

<repeatUntil standard-attributes>
 standard-elements

 activity

 <condition expressionLanguage="anyURI"?>bool-expr</condition>
</repeatUntil>
· <forEach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable
The <forEach> activity iterates its child scope activity exactly N+1 times where N equals the <finalCounterValue> minus the <startCounterValue>. If parallel="yes" then this is a parallel <forEach> where the N+1 instances of the enclosed <scope> activity SHOULD occur in parallel. In essence an implicit flow is dynamically created with N+1 copies of the <forEach>'s <scope> activity as children. A <completionCondition> may be used within the <forEach> to allow the <forEach> activity to complete without executing or finishing all the branches specified.

<forEach counterName="BPELVariableName" parallel="yes|no"

 standard-attributes>

 standard-elements

 <startCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </startCounterValue>

 <finalCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </finalCounterValue>

 <completionCondition>?

 <branches expressionLanguage="anyURI"?

 successfulBranchesOnly="yes|no"?>?

 unsigned-integer-expression

 </branches>

 </completionCondition>

 <scope ...>...</scope>

</forEach>
· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity
The <pick> activity is used to wait for one of several possible messages to arrive or for a time-out to occur. When one of these triggers occurs, the associated child activity is performed. When the child activity completes then the <pick> activity completes.

The portType attribute on the <onMessage> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <onMessage> event.
<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>+

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 activity

 </onMessage>

 <onAlarm>*

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)

 activity

 </onAlarm>

</pick>
· <flow>: specify one or more activities to be performed concurrently
The <flow> activity is used to specify one or more activities to be performed concurrently. <links> can be used within a <flow> to define explicit control dependencies between nested child activities.

<flow standard-attributes>

 standard-elements

 <links>?

 <link name="PolicyName" />+

 </links>

 activity+

</flow>
· <scope>: defines a nested activity with its own associated variables, fault handlers, and compensation handler
The <scope> activity is used to define a nested activity with its own associated <partnerLinks>, <messageExchanges>, <variables>, <correlationSets>, <faultHandlers>, <compensationHandler>, <terminationHandler>, and <eventHandlers>.

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?

 standard-attributes>

 standard-elements

 <partnerLinks>?

 ... see above under <process> for syntax ...

 </partnerLinks>

 <messageExchanges>?

 ... see above under <process> for syntax ...

 </messageExchanges>

 <variables>?

 ... see above under <process> for syntax ...

 </variables>

 <correlationSets>?

 ... see above under <process> for syntax ...

 </correlationSets>

 <faultHandlers>?

 ... see above under <process> for syntax ...

 </faultHandlers>

 <compensationHandler>?

 ...

 </compensationHandler>

 <terminationHandler>?

 ...

 </terminationHandler>

 <eventHandlers>?

 ... see above under <process> for syntax ...

 </eventHandlers>

 activity

</scope>
· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)
The <compensate> activity is used to start compensation on all inner scopes that have already completed successfully, in default order. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.
<compensate standard-attributes>

 standard-elements

</compensate>
· <compensateScope>: used to invoke functions to reverse previous operations (on one completed child).
The <compensateScope> activity is used to start compensation on a specified inner scope that has already completed successfully. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.

<compensateScope target="PolicyName" standard-attributes>

 standard-elements

</compensateScope>
· <rethrow>: Forward a fault from inside a fault handler
The <rethrow> activity is used to rethrow the fault that was originally caught by the immediately enclosing fault handler. [SA00006] The <rethrow> activity MUST only be used within a fault handler (i.e. <catch> and <catchAll> elements). This syntactic constraint MUST be statically enforced.

<rethrow standard-attributes>

 standard-elements

</rethrow>
· <validate>: Validate format for input or output data
The <validate> activity is used to validate the values of variables against their associated XML and WSDL data definition. The construct has a variables attribute, which points to the variables being validated.

<validate variables="BPELVariableNames" standard-attributes>

 standard-elements

</validate>
· <extensionActivity>
The <extensionActivity> element is used to extend WS-BPEL by introducing a new activity type. The contents of an <extensionActivity> element MUST be a single element that MUST make available WS-BPEL's standard-attributes and standard-elements.

<extensionActivity>

 <anyElementQName standard-attributes>

 standard-elements

 </anyElementQName>

</extensionActivity>
The "standard-attributes" referenced above are:

name="PolicyName"? suppressJoinFailure="yes|no"?

where the default values are as follows:

· name: No default value (that is, the default is unnamed)

· suppressJoinFailure: When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the process if no enclosing activity specifies this attribute.

The "standard-elements" referenced above are:

<targets>?

 <joinCondition expressionLanguage="anyURI"?>?

 bool-expr

 </joinCondition>

 <target linkName="PolicyName" />+

</targets>

<sources>?

 <source linkName="PolicyName">+

 <transitionCondition expressionLanguage="anyURI"?>?

 bool-expr

 </transitionCondition>

 </source>

</sources>
5.x.3. Language Extensibility and support of OMA specific conditions
WS-BPEL supports extensibility by allowing namespace-qualified attributes to appear on any WS-BPEL element and by allowing elements from other namespaces to appear within WS-BPEL defined elements. This is allowed in the XML Schema specifications for WS-BPEL.

Extensions are either mandatory or optional (see section 14. Extension Declarations). In the case of mandatory extensions not supported by a WS-BPEL implementation, the process definition MUST be rejected. Optional extensions not supported by a WS-BPEL implementation MUST be ignored.

In addition, WS-BPEL provides two explicit extension constructs: <extensionAssignOperation> and <extensionActivity>. See [BPEL] section 8.4. for Assignment and section 10.9. for adding new Activity Types – ExtensionActivity.

Extensions MUST NOT contradict the semantics of any element or attribute defined by the WS-BPEL specification.

Extensions are allowed in WS-BPEL constructs used in WSDL definitions, such as <partnerLinkType>, <role>, <vprop:property> and <vprop:propertyAlias>. The same syntax pattern and semantic rules for extensions of WS-BPEL constructs are applied to these extensions as well. For the WSDL definitions transitively referenced by a WS-BPEL process, extension declaration directives of this WS-BPEL process are applied to all extensions used in WS-BPEL constructs in these WSDL definitions (see [BPEL] section 14. for Extension Declarations).

The optional <documentation> construct is applicable to any WS-BPEL extensible construct. Typically, the contents of <documentation> are for human targeted annotation. Example types for those content are: plain text, HTML and XHTML. Tool-implementation specific information (e.g. the graphical layout details) should be added through elements and attributes of other namespaces, using the general WS-BPEL extensibility mechanisms.

This can be used as an extensible formalism to express OMA specific rules, e.g.(non exhaustive):

· Security statements (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging statements

· Logging statements

· Privacy statements

· Preference statements

· Permission statements

· Content screening statements

· Content categorization statement

These can be expressed in PEL as partnerlinks WSDL. They can be predefined by OMA specifications or defined by the service provider.
5.x.4. Example of a policy [informative]
This section presents a simple example of a WS-BPEL process for handling a policy processing. The aim is to introduce the most basic structures and some of the fundamental concepts of the language.

The operation of the process is very simple, and is represented in Figure 1.

Dotted lines represent sequencing. Free grouping of sequences represents concurrent sequences. Solid arrows represent control links used for synchronization across concurrent activities. Note that this is not meant to be a definitive graphical notation for WS-BPEL processes. It is used here informally as an aid to understanding.

On initiating the policy processing request (in proxy or callable mode) , the process initiates three paths concurrently: calculating the rate for charging, Processing the main policy flow to determine if authentication, authorization and subscription are satisfied, and determining then applying any preferences. While some of the processing can proceed concurrently, there are control and data dependencies between the three paths. In particular, the subscription details are required to finalize the rate calculation, and the preferences are required for the complete fulfillment of the policy. When the three concurrent paths are completed, results of the processing are returned or processed request is allowed or denied.

[image: image1]
Figure 1 – Example of policy processing

5.x.5 Implementation Example [informative]

An example implementation of a simplified version of the above can be:
· Web Service “LocationWS” (mockup)

· Offers “getLocation” operation to return nearest street address of client

· Deployed at http://host:port/locationWS/locationWS
· Web Service “TelcoPolicy” (mockup)

· Billing Provider

· Offers “prePaid”, “cancelPaid”, and “postPaid” operations

· Deployed at http://host:port/telcoPolicy/telcoPolicy
· J2EE Web App “TelcoConsole” (mockup)

· User Account Manager/Service Subscription Mgmt UI

· Simulates Telco users, services which can be subscribed to for a cost (e.g. LocationWS), and account credits, quota, etc for users

· Deployed at http://host:port/telcoConsole/faces/subscribers.jspx

Where the effect of the policies are:

· Intercept calls to LocationWS

· Authorize user to call LocationWS if sufficient account credits exist (hold funds)

· Allow intercepted call to proceed and return response

· If call succeeds, charge account, deduct funds

· If call fails, cancel authorization and return held funds to account balance

Policy creation:

· Create 2 Custom Steps (1 Java class + xml descriptor)

· PrepaidStep: Given incoming user credentials

· invoke TelcoPolicy billing service operation “prePaid”

· Provide as arguments, attempted WS and operation (e.g. LocationWS “getLocation”)

· XML descriptor specifies default parameter names for OWSM UI configuration form (e.g. default Billing Provider WS URL)

· PostpaidStep: Given incoming user credentials

· Check if invocation of WS succeeded (e.g. getLocation response)

· If so, invoke TelcoPolicy op “postPaid”

· Else, invoke TelcoPolicy op “cancelPaid”

· XML descriptor same as above

Implementation:

· In Web Service “Gateway” mode:
· Proxies WS requests

· Maps “services” to “policies”

· Policies map to “Pipeline”

· Pipeline consists of series are phases: “prerequest”, “request”, “response”, “postresponse”

· Each phase consists of steps

· OWSM provides many many built-in steps

· SGW provides Telco enabler steps

· Using the Prepaid/Postpaid example

· Insert “Prepaid” step into “Request” phase of pipeline

· Insert “Postpaid” step into “Response” phase of pipeline

· Request runs before WS is invoked

· Response runs after invocation is finished

How WS interception works:

· In WS gateway mode

· SGW creates new service URLS, so

· http://locatorhost:port/locationWS/locationWS is mapped to

· http://webservicegateway:port/gateway/serviceId
· The SGW URL is published to clients, the original locationWS would typically disallow clients from invoking directly

· Higher latency, more LAN traffic, more CPU burned

· “In Process”

· Run on same server as WS (e.g. locationWS)

· Higher performance, but less deployment flexibility

[image: image2]
Figure 2 – Implementation example in proxy mode. The flow may be precompiled or executed as BPEL

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendations
We recommend that the ARC WG agrees to add this text in the PEEM PEL TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

[image: image5.png]invoke getLocation .
on Locations WS Gateway LocationWs

- """"""""""" Interceptor for Find Position

LocationWs seivice Reverse Geocode

Pollcy Enforcement Poi

Implemented via
Java Classes or BPEL

Can also be calls to a Telcg:al:sl;igws ,,,,,,)
rule engine e s

TelcoConsole user
User Management

