Doc# OMA-ARC-PEEM-2007-0051-INP_PEM_1_TS_updates[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-PEEM-2007-0051-INP_PEM_1_TS_updates
Input Contribution

Input Contribution

	Title:
	PEM-1 TS updates
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	Sept 7 2007

	Source:
	Paulus Karremans, Ericsson, Paulus.karremans@ericsson.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att x>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att y>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att z>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	<previous revision DocIdent> or n/a

1 Reason for Contribution

Document PEEM-2007-0049 (PEEM TS issue list) has been created; and consequently discussions have started on the reflector. On some matters it appeared some PEM-1 related conclusions were reached:

- SOAP or Diameter PEM-1 Support; in either case one is compliant to PEEM

- A vendor needs to comply with support for internal policies and MAY also support external policies
2 Summary of Contribution

To reflect the list outlined above in the PEM-1TS. See detailed proposal.
3 Detailed Proposal

----------- start of modified PEM-1 TS sections -------------
5.1 Specification of the PEM-1 interface

5.1.1 BLOB behavior

The PEM-1 interface MUST support a BLOB interface [J2SEBLOB] for input and output:

· Any input can be passed via PEM-1 by a requester

· Any output may be returned via PEM-1 to the requester

Inputs are parsed and examined and outputs are generated based on the Policy processed by PEEM.Interpretation of the BLOB input data structure and generation of output data is always driven by the policy that is processed. If a PEM-1 Template is used within a BLOB, as described in section 5.1.2, the data structure is expected to follow the PEM-1 Template and the policy is expected to be designed to interpret the data structure accordingly.
When a policy is written, it should take into account any existing constraints that a requestor may have in providing and processing the BLOB internal data structure.

Editor’s note: need explanation for “existing constraints”

There needs to be a way for the requester to know the BLOB’s data structure to send as input and expect as output. This may be for example according to PEM-1 Templates as discussed in sections 5.1.2 and after.

In order to use the PEM-1 interface of PEEM, the requester is aware of the input it needs to provide, and the output behaviour. How the requester is made aware of these details, (e.g. the PEM-1 Template to follow and expect) is out of scope of PEEM specifications and it is assumed to be communicated in a separate communication channel. Some informative considerations are provided in Appendix C.

BLOBs allow for any bindings to the interface.

5.1.2 PEM-1 Templates

The policies determine how to interpret the incoming data PEM-1 Parameters and how to construct outgoing PEM-1 Parameters. PEM-1 Templates define what input PEM-1 Parameters are expected to be provided as input by the requestor for the consumption by the policy and what output PEM-1 Parameters may be generated by the policy for the requestor’s consumption.

PEM-1 Templates are defined to permit binding of the PEM-1 interface to as many of the known bindings as possible.

A PEM-1 Template is Standard, as defined in section 5.1.3, (i.e. defined by OMA and included with the PEEM specifications) or Custom (e.g. defined by the Service Provider which deploys PEEM). A PEM-1 Template defines the input and output data structure. The actual input is interpreted by the policy, and the generated output is determined by the policy. Policy and PEM-1 Templates should be designed considering the constraints of the requester and service provider who defines the policies.

PEM-1 parameters and Standard PEM-1 Templates are specified as part of some OMA enablers. PEEM PEM-1 TS should capture those PEM-1 Parameters/ PEM-1 Templates (e.g. identified by other OMA enablers) which can be reused by other OMA enablers.

5.1.3 Standard PEM-1 Templates

The PEM-1 interface MUST support all the Standard PEM-1 Templates (i.e. understand the data structure of associated input and output and support policies that interpret such data structures), unless indicated differently.

To support a PEM-1 Standard Template means that a policy can interpret the incoming data and/or generate outgoing outputs as defined by the PEM-1 Template. Standard PEM-1 Templates are not mutually exclusive. PEM-1 Templates are expressed independently of the binding to a particular technology. Specific bindings are discussed in section 5.3.

5.1.4 Custom PEM-1 Templates

Custom PEM-1 Templates are outside the scope of the PEEM specification, but provide a similar way for service providers to define SP-specific PEM-1 Templates that would be processed by a set of policies used by the service provider.

Custom PEM-1 Templates are PEM-1 Templates defined by the Service Provider in order to support their specific policy needs. Custom PEM-1 Templates are similar to the Standard PEM-1 Templates and similarly used. They may re-use some or all of the input/output PEM-1 Parameters specified in the Standard PEM-1 Templates, and/or may add new input/output PEM-1 parameters.

 Custom PEM-1 Templates are not mutually exclusive, neither are they mutually exclusive when considered in combination with Standard PEM-1 Templates. A PEEM implementation MUST support any number of Standard PEM-1 Templates, and MAY support any number of Custom PEM-1 Templates.

5.1.5 Encapsulating PEM-1 Templates in PEM-1 BLOB Parameters
PEM-1 parameters (input or output) are combined to form PEM-1 Templates (Standard or Custom).

A PEM-1 Template is encapsulated in BLOB as a binary string. An input binary string is referred to as the PEM-1 Input BLOB Parameter. An output binary string is referred to as the PEM-1 Output BLOB Parameter. Each PEM-1 parameter representation in a PEM-1 Template will be in the form of an “Attribute-Value-Pair”: it will include an identifier (which has an associated data type, as per the PEM-1 Parameter definition, see section 5.6.1) and the actual value of the PEM-1 Parameter, and will be encoded according to a specific scheme (see following section). In case of two or more PEM-1 Parameters, pairs of identifier-value are encoded and concatenated to form the PEM-1 Input or Output BLOB Parameter. The PEM-1 Parameter identifiers are all specified as part of the PEM-1 Template description (see section 5.6.1 for details), and therefore are known by the PEEM requestors and by the PEEM enabler implementation. The specified nature of the PEM-1 Parameter identifiers allows the PEEM enabler implementation, respectively the PEEM requestors to appropriately interpret the encoded PEM-1 Parameter representation during parsing of the PEM-1 Input BLOB Parameter, respectfully the PEM-1 Output BLOB Parameter. It is assumed that each PEEM enabler implementation will have access to a repository that defines all supported PEM-1 Templates, all supported PEM-1 Parameters, their associated identifiers and their corresponding data types, and optional allowable values, in accordance to the PEM-1 Templates definition (see section 5.6.1). The implementation of such a repository, and how PEEM requestors and/or PEEM enabler implementation accesses the information in such repository is out-of-scope for the PEM-1TS. Similarly, how a Service Provider (SP) publishes and advertises the supported Standard and Custom PEM-1 Templates and Parameters is out-of-scope for the PEM-1 TS.

Figure 1 below illustrates through an informative flow the use of the PEM-1 interface when passing a single binary string BLOB in which a PEM-1 Template was binary encoded. The details of the evaluation process in the PEEM enabler implementation, and the enforcement process of the decision in the Policy Evaluation Requestor have been left out intentionally.

Error! Objects cannot be created from editing field codes.
Figure 1: Handling input/output-policy-data as encapsulated PEM-1 templates in a BLOB

A Policy Evaluation Requestor has access to SP published/supported PEM-1 Templates specification (the specification follows the PEM-1 TS, but the form it is represented and accessed in the PEEM enabler implementation is out-of-scope for the PEM-1 TS). All the steps that make up flow 1 can be performed at runtime or ahead of runtime. The Policy Evaluation Requestor selects a PEM-1 Template applicable to its application and uses the published specification to obtain the PEM-1 Parameters that it needs to pass, their types and optionally, allowable values. It then encodes each of the attributes by concatenating them and using the specified binary encoding method (details in a separate following section) (flow 1) to form the PEM-1 Input BLOB Parameter. It then uses the protocol of choice, out of those supported by the PEM-1 TS specification, to forward the request for evaluation, including the single PEM-1 Input BLOB parameter (flow 2). The PEEM enabler implementation receives the request using the binding to the supported protocol. It extracts the PEM-1 Input BLOB Parameter and parses it with the help of the SP published/supported PEM-1 Templates specification (flow 3). That specification allows the PEEM implementation to know how to interpret each attribute in the PEM-1 Input BLOB Parameter, using the binary encoding specification (details in a separate following section). It identifies the PEM-1 Template used by the Policy Evaluation Requestor, to determine what PEM-1 Parameters may be expected. It may identify a PEM-1 Parameter that references an internal or external policy to be used (see section 5.4 and 5.5) in order to identify the applicable policy rules (flow 4). PEEM enabler implementation then processes the evaluation request which may result in a response (flow 5). The response is then encoded in a PEM-1 Output BLOB Parameter, again with help from the information available from a SP published/supported PEM-1 Template specification (flow 6). The response is sent using the selected protocol, to the Policy Evaluation Requestor (flow 7). The Policy Evaluation Requestor parses the PEM-1 Output BLOB Parameter, using the SP published/supported PEM-1 Templates specification and obtains the decision issued by PEEM (flow 8).

This mechanism allows the entire PEM-1 Template to be passed as a single interface parameter (a PEM-1 Input BLOB or PEM-1 Output BLOB) by any protocol chosen to support the PEM-1 requests and responses. Both input PEM-1 Template and output PEM-1 Template are handled in a similar way, although the content of the templates may be quite different, according to the PEM-1 Template definition. This allows complete decoupling of the PEM-1 interface specification from the particular PEM-1 Templates that it needs to transport, and from the particular PEM-1 Parameters inside the templates. It also supports the principle of neutrality to technology, since a binary string parameter (a PEM-1 BLOB Parameter) is the only parameter that needs to be transported over any binding, and any considered binding for the PEM-1 TS supports the passing of a binary string data type. Furthermore, this also significantly reduces the complexity of mapping the interface to different bindings, and provides a true scalable way to deal with adding new PEM-1 Templates and parameters. Finally, supported by a simple binary encoding mechanism, this is the most efficient way to transport parameters, and alleviates the need on policy evaluation requestors and on the PEEM enabler implementations of stopping/re-compiling/re-starting a deployed system, since the PEM-1 interface does not have to change; the only adaptation needed for a PEEM implementation and/or the policy evaluation requestors is to be able to interpret and handle the content of a PEM-1 Template. That ensures stability of an implementation for the one part of the implementation that handles the communication protocol, and moves the burden of adaptability to the part that needs to deal with the understanding of the PEM-1 parameters, which is unavoidable anyway, since new policies, with new parameters, need to be continuously supported. The binary encoding scheme of PEM-1 Parameters into PEM-1 BLOB Parameters is described in the following section. The mapping to and use of the PEM-1 Input BLOB Parameter and PEM-1 Output BLOB Parameter for specific bindings are described in section 5.7.

5.1.6 Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters
PEM-1 uses ASN.1 syntax [ASN.1 Notation] to represent the parameters passed through the BLOB and encodes the notation with one of the standard ASN.1 encoding schemes [ASN.1 encoding]. The structure declaration and the encoding scheme must be known by the requester.

Editor note: The encoding schemes FFS.

Illustrative examples are provided below

5.1.6.1 Encoding of Principal ID (Informative)

The following is example ASN.1 syntax for describing a principal containing a userid and domainid, along with an example instantiation.
BCAS DEFINITIONS ::= BEGIN

 Principal ::= SEQUENCE {

 userId IA5String,

 domainId IA5String

 }

 myPrincipal Principal ::= {

 userId "johnsmith",

 domainId "someprovider.com"

 }

END

The resulting XER encoding after running it through an ASN.1 compiler

is:

<Principal><userId>johnsmith</userId><domainId>someprovider.com</domainId></Principal>

Length: 86 bytes.

The resulting of encoding with BER is:

30801609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D00 00

Length: 33 bytes.
The result of using DER as the encoding rules is:

301D1609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D

Length: 31 bytes

Finally, the result of using Packaged Encoding Rules (PER) yields:

09D5BF46 EE7B74F4 D021CF7E DCBC396F EDA7265E 4BB1EFDA

Length: 24 bytes
5.1.6.2 Encoding of context-based authorization request (Informative)

The following is a more sophisticated example of an Authorization Request, containing a requesting principal, a target principal, a targetAttribute enumeration, and an intervals field (integer).

BCAS DEFINITIONS ::= BEGIN

 AuthorizationRequest ::= SEQUENCE {

 reqUserId IA5String,

 reqDomainId IA5String,

 targUserId IA5String,

 targDomainId IA5String OPTIONAL,

 targetAttribute ENUMERATED

 { location(0), presence(1) },

 intervals INTEGER

 }

 myReq AuthorizationRequest ::= {

 reqUserId "johnsmith",

 reqDomainId "someprovider.com",

 targUserId "janedoe",

 targetAttribute location,

 intervals 60

 }

END

Note that the targetDomainId is optional if the users are in the same domain.

The resulting encodings are for XER:

<AuthorizationRequest><reqUserId>johnsmith</

reqUserId><reqDomainId>someprovider.com</

reqDomainId><targUserId>janedoe</

targUserId><targetAttribute><location/></

targetAttribute><intervals>60</intervals></AuthorizationRequest>

Length: 223 bytes

DER encoding:

302C1609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D16 076A616E 65646F65 0A010002 013C

Length: 46 bytes

PER encoding:

04EADFA3 773DBA7A 6810E7BF 6E5E1CB7 F6D3932F 25D8F7ED 07D58776 5C9BF280 4F00

Length: 34 bytes

5.2 Input / Output Standard PEM-1 Templates

The following Standard PEM-1 Templates MUST be supported PEM-1 as explained in section 5.1.3, unless indicated differently.

Editor’s note: This section will contain templates selected by the WG. Template details may be put in appendices - TBD. The following sections describe templates that have been pre-identified as necessary, but others such sections may be added as this concept develops.

5.2.1 PEM-1 Template structure
Each PEM-1 Template (Standard or Custom) is composed of two or more PEM-1 parameters.

Template names SHALL be unique strings. In the case of Standard PEM-1 Templates, template names are defined and administered in OMA. In the case of Custom PEM-1 Templates, template names are defined and administered by the Service Provider.

The parameter names in a Standard PEM-1 Template are defined and administered by OMA. The parameter names in a Custom PEM-1 Template are defined and administered by the Service Provider. The parameter names are associated with a value of pre-determined data type.

The PEM-1 Template SHALL have the following structure:
	PEM-1 Template Header:
	

	Input/Output PEM-1 Parameter Name
	 Input/Output Parameter Type

	templateID
	STRING

	templateVersion
	STRING

Table 5.1.1-1: PEM-1 Template Structure
Where:

· templateID is the name of a PEM-1 parameter, representing a unique identifier of the template. It is mandatory for any PEM-1 template to include a templateID parameter.

· For Standard PEM-1 Templates:

· templateID values will be assigned by OMA using the process described in Appendix G.

· For Custom PEM-1 Templates:

· templateID values will be assigned by the Service Provider using their own process.

· templateVersion is the name of a PEM-1 parameter, representing the version of the template, and used to distinguish between multiple versions of the same template. It is mandatory for any PEM-1 template to include a templateVersion parameter.

· For Standard PEM-1 Templates:

· templateVersion values will be assigned by OMA using the process described in Appendix G
· For Custom PEM-1 Templates:

· templateVersion values will be assigned by the Service Provider using their own process.

A PEM-1 Template (Standard or Custom) can have any number of additional I/O parameters. The mandatory parameters described in Table 5.2.1.1 are used to uniquely identify the remainder of the structure of a PEM-1 Template (i.e. identify the additional parameters).

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of Standard PEM-1 templates are documented in Appendix F.

Editor’s note: FFS. As we understand better how identification & versioning of templates can be expressed in ASN.1, changes to templateID & templateVersion may be necessary (it may even result in removing those parameters if this conflicts with id/versioning mechanisms provided by ASN.1). Future Appendix F will address ASN.1 syntax.
Editor’s note: FFS Appendix G:… do we ask OMNA to administer Standard PEM-1 Template names, parameter names, etc … or do we have a different solution ? I would prefer to allow WGs to self-manage as much as possible, but we need to think how to avoid duplication. An alternative would be for ARC to provide some administration. It’s probably not terrible complex – it depends on how popular defining new templates becomes. In case of Custom PEM-1 Templates, this is SP’s responsibility.

For templateVersion – should we for example specify that the Version is a string that represents the version of the enabler where the Standard PEM-1 Template was specified (possibly including the WI #, to ensure that no 2 enablers that may work on the same template may collide in versions ?)

5.2.2 Output Status code Standard PEM-1 Template

This section specifies how error or status codes can be returned as part of the PEM-1 output.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These error codes MAY be used as a preamble (i.e. separate PEM-1 parameter from rest of returned data value(s)) to an output BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

An explicit indication identifying the internal policy to be applied is realized using the following template:

	Output Standard PEM-1 Template:
OutputStatus Template
	

	Output PEM-1 Parameter Name
	 Output Parameter Type

	Template Header
	

	
	

	
	

	statusCode
	INTEGER

Table 5.2.4-1: OutputStatus Standard PEM-1 Template
Where:

· Template Header, (see section 5.2.1.

· statusCode is the name of a PEM-1 parameter, representing a final status result of the of the policy processing. This parameter is mandatory.

· statusCode values are assigned as follows:

· The range of values 0x0000-0x7fff SHALL be reserved for OMA use

· The range of values 0x0000-0x0FFF SHALL be reserved to represent different degrees of failure, with 0x0000 indicating UNCONDITIONAL FAILURE (i.e. unconditional DENY).

· Other degrees of failure status may be assigned as needed, using the process described in Appendix G
· The range of values 0x1000-0x1FFF SHALL be reserved to represent different degrees of success, with 0x1000 indicating UNCONDITIONAL SUCCESS (i.e. unconditional GRANT)

· Other degrees of failure status may be assigned as needed, using the process described in Appendix G
· The range of values 0x2000-0x7FFF are reserved for future use

· The range of values 0x8000-0xFFFF SHALL be reserved for Service Provider use

Editor’s note: Specific values/ranges are provided, but we could decide to change them later. A process for assigning any additional values needs to be put in place (will it be administered by OMNA, differently?). Needs to be addressed in a future Appendix G.

FFS: do we need other codes?

· Any number of optional additional output parameters may be provided, as dictated by specific policy needs. The values associated to those parameter names can be of any supported type, as determined by the defined name. As a result of creating an OutputStatus Standard PEM-1Template for a specific enabler, additional parameters may be defined. Also, additional parameters may be created, resulting in additional Custom OutputStatus templates, published/advertised by the Service Provider for each specific policy.

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the OutputStatus Standard PEM-1 template are documented in Appendix F.

Note: The OutputStatus Standard PEM-1 template will be passed encapsulated in an output BLOB.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.

Editor’s note: Depending on specific bindings used, the output parameter statusCode value may also populate an equivalent field in the appropriate protocol (see Template Bindings section). This is FFS. New note: probably not a good idea to mix the protocol result codes (e.g. Diameter) with the policy results codes.
Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.
Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)
----------- end of modified PEM-1 TS sections -------------

----------- start of modified PEL TS sections that should be moved to the PEM-1 TS and replace 5.2.3 and 5.2.4-----
5.2.3 Internal Policy reference Standard PEM-1 Template

This section specifies how a reference to an internal policy can be passed with a request through PEM-1. This template can be combined with any other Standard PEM-1 Template. A PEEM implementation uses the reference to identify a specific policy managed by PEM-2.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section Error! Reference source not found..

In general, a PEEM implementation may use a combination of template parameters, in addition to other sources of information, to determine the policies to be evaluated. An explicit indication identifying the internal policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: InternalPolicyReference
	

	Input PEM-1 Parameter Name
	 Input Parameter Type

	Template Header
	

	intPolicyID
	URI

Table 5.2.2-1: Internal Policy Reference Standard PEM-1 Template

Where:

· For Template Header, see section 5.2.1

· intPolicyID is the name of a PEM-1 parameter, representing a unique identifier of a policy internal to PEEM (i.e. a policy that can be managed using the PEM-2 interface). This parameter is mandatory.

· intPolicyID values are assigned by the Service Provider

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the InternalPolicyReference Standard PEM-1 template are documented in Appendix F.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.

Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.

Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)

5.2.4 External Policy reference Standard PEM-1 Template

This section specifies how a reference to an external policy can be passed with a request through PEM-1. This template can be combined with any other Standard PEM-1 Template. A PEEM implementation then uses the external policy for the policy evaluation or evaluation and enforcement.

A PEEM implementation MAY optionally support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section Error! Reference source not found..

A PEEM implementation may be configured to refuse input that include such a Standard PEM-1 Template, if the service provider or vendor wants to prevent passing policies as part of PEM-1 requests.

The use of an external policy is indicated by passing either a reference to the external policy, or passing the external policy itself by value, via a PEM-1 Parameter.

When passing an external policy by reference, an explicit indication identifying the external policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: ExternalPolicyByReference
	

	Input PEM-1 Parameter Name
	Input Parameter Type

	Template Header
	

	
	

	
	

	extPolicyID
	URI

Table 5.2.3-1: External Policy By Reference Standard PEM-1 Template
Where:

· For Template Header, see section 5.2.1.

· extPolicyID is the name of a PEM-1 parameter, representing a policy that is being passed by a URI reference to PEEM. This parameter is mandatory

· extPolicyID values are URIs provided by the PEEM requestor

When passing an external policy by value, an explicit indication identifying the external policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: ExternalPolicyByValue
	

	Input PEM-1 Parameter Name
	Input Parameter Type

	Template Header
	

	
	

	
	

	extPolicyVAL
	STRING

Table 5.2.3-1: External Policy By Value Standard PEM-1 Template
Where:

· For Template Header,(see section 5.2.1.

· extPolicyVAL is the name of a PEM-1 parameter, representing a policy external to PEEM that is being passed by value to PEEM. This parameter is mandatory.

· extPolicyVAL values are binary strings provided by the PEEM requestor
Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the ExternalPolicyByReference and the ExternalPolicyByValue Standard PEM-1 templates are documented in Appendix F.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.

Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.

Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)

----------- end of modified PEL TS sections that should be moved to the PEM-1 TS and replace 5.2.3 and 5.2.4-----
----------- start of modified PEM-1 TS sections -------------

5.3 PEM-1 Template Bindings

PEEM enabler implementations shall offer either one of the following bindings for the PEM-1 Interface:

· Diameter

· SOAP

A PEEM enabler may implement both bindings, this is however not mandated. Other bindings are not precluded, but are not to be described in this specification.
----------- end of modified PEM-1 TS sections -------------

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To discuss and agree on the detailed proposal.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20070101-I]

