Doc# OMA-ARC-PEEM-2007-0076-INP_PEL_TS_Restructuring_PEL_for_business_process_section.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-PEEM-2007-0076-INP_PEL_TS_Restructuring_PEL_for_business_section.doc
Input Contribution

Input Contribution

	Title:
	PEL TS Restructuring PEL for business process section
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	October 5 2007

	Source:
	Michael Brenner, Alcatel-Lucent

mrbrenner@alcatel-lucent.com

	Attachments:
	
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Progressing PEL TS.
2 Summary of Contribution

The contribution proposes moving XML fragments/example to an informative new Appendix, following any Appendix that deals with Ruleset PEL (note that all Appendices may have to be revised/consolidated). Minor text changes are included to adapt content to the suggested move.
3 Detailed Proposal
Change1:
5.2 PEL for Business Processes

The PEL language for Business Processes is WSBPEL 2.0 [BPEL].

This section provides a summary of the WS-BPEL syntax and constructs introduced in [BPEL]. It provides only a brief overview; the details of each language construct are normatively described in [BPEL]. An example based on section 5.2 of [BPEL] is available in Appendix X.

5.2.1 Overview

The top-level attributes in BPEL are as follows:

· Process. This attribute represents a policy or a policy sub-graph (i.e. subset of combinations of conditions and actions within a policy).

· queryLanguage. This attribute specifies the query language used in the process for selection of nodes in assignment. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
· expressionLanguage. This attribute specifies the expression language used in the <process>. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
The value of the queryLanguage and expressionLanguage attributes on the <process> element are global defaults and can be overridden on specific constructs, such as <condition> of a <while> activity, as defined in [BPEL]. In addition, the queryLanguage attribute is also available for use in defining WS-BPEL <vprop:propertyAlias>es in WSDL. WS-BPEL processors MUST:

· statically determine which languages are referenced by queryLanguage or expressionLanguage attributes either in the WS-BPEL process definition itself or in any WS-BPEL property definitions in associated WSDLs and

· if any referenced language is unsupported by the WS-BPEL processor then the processor MUST reject the submitted WS-BPEL process definition.

In addition,

· suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all activities in the process. The effect of the attribute at the process level can be overridden by an activity using a different value for the attribute. The default for this attribute is "no" at the process level. When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the <process> if no enclosing activity specifies this attribute.

· exitOnStandardFault. If the value of this attribute is set to “yes”, then the process MUST exit immediately as if an <exit> activity has been reached, when a WS-BPEL standard fault other than bpel:joinFailure is encountered. If the value of this attribute is set to “no”, then the process can handle a standard fault using a fault handler. The default value for this attribute is “no”. When this attribute is not specified on a <scope> it inherits its value from its enclosing <scope> or <process>.

If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”, then a fault handler that explicitly targets the WS-BPEL standard faults MUST NOT be used in that scope. A process definition that violates this condition MUST be detected by static analysis and MUST be rejected by a conformant implementation.

· The syntax of Abstract Process has its own distinct target namespace. Additional top-level attributes are defined for Abstract Processes.

· <documentation> construct may be added to virtually all WS-BPEL constructs as the formal way to annotate processes definition with human documentation.

· Correlation is defined in [BPEL]

5.2.2 Constructs

Regarding the explicit flow constructs, each business process (i.e. policy or policy sub-graph) has one main activity (or construct).

A WS-BPEL activity can be any of the following (for more details see Appendix X.1):

· <receive>: wait for a matching message to arrive
The <receive> activity allows the business process to wait for a matching message to arrive. The <receive> activity completes when the message arrives.

· <reply>: send a message in reply to a message that was received through a <receive>.
The <reply> activity allows the business process to send a message in reply to a message that was received by an inbound message activity (IMA), that is, <receive>, <onMessage>, or <onEvent>.

· <invoke>: initiate a one-way or request-response operation offered by another resource
The <invoke> activity allows the business process to invoke a one-way or request-response operation.

· <assign>: update the values of variables with new data
The <assign> activity is used to update the values of variables with new data.

· <throw>: generates a fault from inside the policy processing

The <throw> activity is used to generate a fault from inside the business process.

· <exit>: allows
· to immediately end a business process instance within which the <exit> activity is contained.
All currently running activities MUST be terminated as soon as possible without any termination handling, fault handling, or compensation behavior.

· <wait>: allows you to wait for a given time period or until a certain time has passed
The <wait> activity is used to wait for a given time period or until a certain point in time has been reached. Exactly one of the expiration criteria MUST be specified.

· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
The <empty> activity is a "no-op" in a business process. This is useful for synchronization of concurrent activities, for instance.

· <sequence>: define a collection of activities to be performed sequentially in lexical order
The <sequence> activity is used to define a collection of activities to be performed sequentially in lexical order.

· <if>: Select exactly one branch of activity from a set of choices
The <if> activity is used to select exactly one activity for execution from a set of choices.

· <while> Contained activity is repeated while a predicate holds
The <while> activity is used to define that the child activity is to be repeated as long as the specified <condition> is true.

· <repeatUntil>: Contained activity is repeated until a predicate holds
The <repeatUntil> activity is used to define that the child activity is to be repeated until the specified <condition> becomes true. The <condition> is tested after the child activity completes. The <repeatUntil> activity is used to execute the child activity at least once.

· <forEach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable
The <forEach> activity iterates its child scope activity..

· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity
The <pick> activity is used to wait for one of several possible messages to arrive or for a time-out to occur. When one of these triggers occurs, the associated child activity is performed. When the child activity completes then the <pick> activity completes.

· <flow>: specify one or more activities to be performed concurrently

The <flow> activity is used to specify one or more activities to be performed concurrently. <links> can be used within a <flow> to define explicit control dependencies between nested child activities.

· <scope>: defines a nested activity with its own associated variables, fault handlers, and compensation handler
The <scope> activity is used to define a nested activity with its own associated <partnerLinks>, <messageExchanges>, <variables>, <correlationSets>, <faultHandlers>, <compensationHandler>, <terminationHandler>, and <eventHandlers>.

· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)

The <compensate> activity is used to start compensation on all inner scopes that have already completed successfully, in default order. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.

· <compensateScope>: used to invoke functions to reverse previous operations (on one completed child).
The <compensateScope> activity is used to start compensation on a specified inner scope that has already completed successfully. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.

· <rethrow>: Forward a fault from inside a fault handler

The <rethrow> activity is used to rethrow the fault that was originally caught by the immediately enclosing fault handler. The <rethrow> activity MUST only be used within a fault handler (i.e. <catch> and <catchAll> elements). This syntactic constraint MUST be statically enforced.

· <validate>: Validate format for input or output data
The <validate> activity is used to validate the values of variables against their associated XML and WSDL data definition. The construct has a variables attribute, which points to the variables being validated.

· <extensionActivity>
The <extensionActivity> element is used to extend WS-BPEL by introducing a new activity type. The contents of an <extensionActivity> element MUST be a single element that MUST make available WS-BPEL's standard-attributes and standard-elements.

End of Change 1

·
·

Change 2:
Appendix X. Example of business process policy expression.
The basic structure of a policy expressed as a flow language is described below. It should be considered as illustrative superseded by the corresponding normative statement provided in [BPEL]. Syntax details are also specified in [BPEL].
<process name="PolicyName" targetNamespace="anyURI"

 queryLanguage="anyURI"?

 expressionLanguage="anyURI"?

 suppressJoinFailure="yes|no"?

 exitOnStandardFault="yes|no"?

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <extensions>?

 <extension namespace="anyURI" mustUnderstand="yes|no" />+

 </extensions>

 <import namespace="anyURI"?

 location="anyURI"?

 importType="anyURI" />*

 <partnerLinks>?

 <!-- Note: At least one role must be specified. -->

 <partnerLink name="PolicyName"

 partnerLinkType="QName"

 myRole="PolicyName"?

 partnerRole="PolicyName"?

 initializePartnerRole="yes|no"?>+

 </partnerLink>

 </partnerLinks>

 <messageExchanges>?

 <messageExchange name="PolicyName" />+

 </messageExchanges>

 <variables>?

 <variable name="BPELVariableName"

 messageType="QName"?

 type="QName"?

 element="QName"?>+

 from-spec?

 </variable>

 </variables>

 <correlationSets>?

 <correlationSet name="PolicyName" properties="QName-list" />+

 </correlationSets>

 <faultHandlers>?

 <!-- Note: There must be at least one faultHandler -->

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 (faultMessageType="QName" | faultElement="QName")? >*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 </faultHandlers>

 <eventHandlers>?

 <!-- Note: There must be at least one onEvent or onAlarm. -->

 <onEvent partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 (messageType="QName" | element="QName")?

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>*

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 <scope ...>...</scope>

 </onEvent>

 <onAlarm>*

 <!-- Note: There must be at least one expression. -->

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)?

 <repeatEvery expressionLanguage="anyURI"?>

 duration-expr

 </repeatEvery>?

 <scope ...>...</scope>

 </onAlarm>

 </eventHandlers>

 activity

</process>
X1. Constructs details
Regarding the explicit flow constructs, each business process (i.e. policy or policy sub-graph) has one main activity (or construct).

A WS-BPEL activity can be any of the following:

· <receive>: wait for a matching message to arrive
The <receive> activity allows the business process to wait for a matching message to arrive. The <receive> activity completes when the message arrives. The portType attribute on the <receive> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <receive> activity.
<receive partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 createInstance="yes|no"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</receive>
· <reply>: send a message in reply to a message that was received through a <receive>.
The <reply> activity allows the business process to send a message in reply to a message that was received by an inbound message activity (IMA), that is, <receive>, <onMessage>, or <onEvent>. The combination of an IMA and a <reply> forms a request-response operation on a WSDL portType for the process. The portType attribute on the <reply> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity (see also partnerLink description in the next section). The optional messageExchange attribute is used to associate a <reply> activity with an IMA.
<reply partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 faultName="QName"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

</reply>
· <invoke>: initiate a one-way or request-response operation offered by another resource
The <invoke> activity allows the business process to invoke a one-way or request-response operation on a portType offered by a partner. In the request-response case, the invoke activity completes when the response is received. The portType attribute on the <invoke> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity.
<invoke partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 inputVariable="BPELVariableName"?

 outputVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"?

 pattern="request|response|request-response"? />+

 </correlations>

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 faultMessageType="QName"?

 faultElement="QName"?>*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 <compensationHandler>?

 activity

 </compensationHandler>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</invoke>
· <assign>: update the values of variables with new data
The <assign> activity is used to update the values of variables with new data. An <assign> construct can contain any number of elementary assignments, including <copy> assign elements or data update operations defined as extension under other namespaces.

<assign validate="yes|no"? standard-attributes>

 standard-elements

 (

 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>

 from-spec

 to-spec

 </copy>

 |

 <extensionAssignOperation>

 assign-element-of-other-namespace

 </extensionAssignOperation>

)+

</assign>
· <throw>: generates a fault from inside the policy processing

The <throw> activity is used to generate a fault from inside the business process.

<throw faultName="QName"

 faultVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

</throw>
· <exit>:

The <exit> activity is used to immediately end a business process instance within which the <exit> activity is contained.

<exit standard-attributes>

 standard-elements

</exit>
· <wait>: allows you to wait for a given time period or until a certain time has passed
The <wait> activity is used to wait for a given time period or until a certain point in time has been reached. Exactly one of the expiration criteria MUST be specified.

<wait standard-attributes>
 standard-elements

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>
 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>
)

</wait>
· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
The <empty> activity is a "no-op" in a business process. This is useful for synchronization of concurrent activities, for instance.

<empty standard-attributes>

 standard-elements

</empty>
· <sequence>: define a collection of activities to be performed sequentially in lexical order
The <sequence> activity is used to define a collection of activities to be performed sequentially in lexical order.

<sequence standard-attributes>

 standard-elements

 activity+

</sequence>
· <if>: Select exactly one branch of activity from a set of choices
The <if> activity is used to select exactly one activity for execution from a set of choices.

<if standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 <elseif>*

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 </elseif>

 <else>?

 activity

 </else>

</if>
· <while> Contained activity is repeated while a predicate holds
The <while> activity is used to define that the child activity is to be repeated as long as the specified <condition> is true.

<while standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

</while>
· <repeatUntil>: Contained activity is repeated until a predicate holds
The <repeatUntil> activity is used to define that the child activity is to be repeated until the specified <condition> becomes true. The <condition> is tested after the child activity completes. The <repeatUntil> activity is used to execute the child activity at least once.

<repeatUntil standard-attributes>
 standard-elements

 activity

 <condition expressionLanguage="anyURI"?>bool-expr</condition>
</repeatUntil>
· <forEach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable
The <forEach> activity iterates its child scope activity exactly N+1 times where N equals the <finalCounterValue> minus the <startCounterValue>. If parallel="yes" then this is a parallel <forEach> where the N+1 instances of the enclosed <scope> activity SHOULD occur in parallel. In essence an implicit flow is dynamically created with N+1 copies of the <forEach>'s <scope> activity as children. A <completionCondition> may be used within the <forEach> to allow the <forEach> activity to complete without executing or finishing all the branches specified.

<forEach counterName="BPELVariableName" parallel="yes|no"

 standard-attributes>

 standard-elements

 <startCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </startCounterValue>

 <finalCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </finalCounterValue>

 <completionCondition>?

 <branches expressionLanguage="anyURI"?

 successfulBranchesOnly="yes|no"?>?

 unsigned-integer-expression

 </branches>

 </completionCondition>

 <scope ...>...</scope>

</forEach>
· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity
The <pick> activity is used to wait for one of several possible messages to arrive or for a time-out to occur. When one of these triggers occurs, the associated child activity is performed. When the child activity completes then the <pick> activity completes.

The portType attribute on the <onMessage> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <onMessage> event.
<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>+

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 activity

 </onMessage>

 <onAlarm>*

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)

 activity

 </onAlarm>

</pick>
· <flow>: specify one or more activities to be performed concurrently

The <flow> activity is used to specify one or more activities to be performed concurrently. <links> can be used within a <flow> to define explicit control dependencies between nested child activities.

<flow standard-attributes>

 standard-elements

 <links>?

 <link name="PolicyName" />+

 </links>

 activity+

</flow>
· <scope>: defines a nested activity with its own associated variables, fault handlers, and compensation handler
The <scope> activity is used to define a nested activity with its own associated <partnerLinks>, <messageExchanges>, <variables>, <correlationSets>, <faultHandlers>, <compensationHandler>, <terminationHandler>, and <eventHandlers>.

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?

 standard-attributes>

 standard-elements

 <partnerLinks>?

 ... see above under <process> for syntax ...

 </partnerLinks>

 <messageExchanges>?

 ... see above under <process> for syntax ...

 </messageExchanges>

 <variables>?

 ... see above under <process> for syntax ...

 </variables>

 <correlationSets>?

 ... see above under <process> for syntax ...

 </correlationSets>

 <faultHandlers>?

 ... see above under <process> for syntax ...

 </faultHandlers>

 <compensationHandler>?

 ...

 </compensationHandler>

 <terminationHandler>?

 ...

 </terminationHandler>

 <eventHandlers>?

 ... see above under <process> for syntax ...

 </eventHandlers>

 activity

</scope>
· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)

The <compensate> activity is used to start compensation on all inner scopes that have already completed successfully, in default order. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.
<compensate standard-attributes>

 standard-elements

</compensate>
· <compensateScope>: used to invoke functions to reverse previous operations (on one completed child).
The <compensateScope> activity is used to start compensation on a specified inner scope that has already completed successfully. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.

<compensateScope target="PolicyName" standard-attributes>

 standard-elements

</compensateScope>
· <rethrow>: Forward a fault from inside a fault handler

The <rethrow> activity is used to rethrow the fault that was originally caught by the immediately enclosing fault handler. The <rethrow> activity MUST only be used within a fault handler (i.e. <catch> and <catchAll> elements). This syntactic constraint MUST be statically enforced.

<rethrow standard-attributes>

 standard-elements

</rethrow>
· <validate>: Validate format for input or output data
The <validate> activity is used to validate the values of variables against their associated XML and WSDL data definition. The construct has a variables attribute, which points to the variables being validated.

<validate variables="BPELVariableNames" standard-attributes>

 standard-elements

</validate>
· <extensionActivity>
The <extensionActivity> element is used to extend WS-BPEL by introducing a new activity type. The contents of an <extensionActivity> element MUST be a single element that MUST make available WS-BPEL's standard-attributes and standard-elements.

<extensionActivity>

 <anyElementQName standard-attributes>

 standard-elements

 </anyElementQName>

</extensionActivity>
The "standard-attributes" referenced above are:

name="PolicyName"? suppressJoinFailure="yes|no"?

where the default values are as follows:

· name: No default value (that is, the default is unnamed)

· suppressJoinFailure: When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the process if no enclosing activity specifies this attribute.

The "standard-elements" referenced above are:

<targets>?

 <joinCondition expressionLanguage="anyURI"?>?

 bool-expr

 </joinCondition>

 <target linkName="PolicyName" />+

</targets>

<sources>?

 <source linkName="PolicyName">+

 <transitionCondition expressionLanguage="anyURI"?>?

 bool-expr

 </transitionCondition>

 </source>

</sources>
End of Change 2
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC to agree to proposed changes to PEL TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 16 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

