Doc# OMA-ARC-PEEM-2007-0093_PEM1_TS_Handling_of_status_codes_analysis.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-PEEM-2007-0093-INP_PEM1_TS_Handling_of_status_codes_analysis.doc
Input Contribution

Input Contribution

	Title:
	PEM-1 TS Handling of Status Codes Analysis
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	November 10 2007

	Source:
	Michael Brenner, Alcatel-Lucent

mrbrenner@alcatel-lucent.com

	Attachments:
	
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Progressing PEM-1 TS.
2 Summary of Contribution
PEM-1 responses to PEM-1 requests include status codes (success or error codes). We have agreed on specifying 2 bindings (to Diameter and to SOAP). In the current draft, handling of Policy stats codes is done via the Output Status template. In addition handling of Diameter Base Protocol status codes is by exposing the status codes in the Diameter Result-Code AVP.

Contribution 67R0x advances the handling of status codes, by introducing a proposal for handling status code for the SOAP binding. While the proposal 67R0x may resolve how to handle status codes for SOAP, it leaves a number of issues unaddressed, and possibly introduces new issues. Among those:

1) Should all status codes be exposed to the protocol? The current draft has protocol errors exposed, but for Policy results/errors, there is mixture between them being the Output Status BLOB (for both bindings) and all of them being exposed as well (for SOAP only – proposal 67R0x).

2) If all status codes are exposed to the protocol, do we still need the Policy status codes in the Output Status BLOB? Do we need the Output Status Template at all?
3) If all status codes are exposed to the protocol, can they be designed in a way that is common regardless of protocol?
4) Are the status codes proposed in 67R0x, and the method to extend them, appropriate for both Diameter and SOAP?

5) 67R0x describes status codes (called errors in 67R0x) as a combination of Error Name, Error Code, Error Proposed Text and Required Parameters in the Fault, but it is not obvious which ones are mandatory and when, and whether all 4 are passed back and in what situation.
6) 67R0x also proposes the introduction of an optional statusText parameter in the Output Status Template. That is easy to accommodate, and not an issue (should we decide to keep the Output Status template – see question 2).

The Detailed proposal contains an analysis, and a number of decisions that ARC has to reach before engaging in changes to the PEM-1 TS.

3 Detailed Proposal
1) Should all status codes be exposed to the protocol?

Contribution 67R0x is proposing that for SOAP binding it is advantageous to expose successful status codes (e.g. ALLOW as a policy evaluation decision) in the ResponseMessage, respectively error codes (e.g. DENY as a policy evaluation decision, but also ANY other error coming from PEEM) in the ResponseException.

The advantage may be that it is easier to handle success/failure as 2 different paths, without having to first parse the Output Status Template (the BLOB). This is potentially a valid argument, which raises the question 1).

If we decide this is a good idea, then we may want to extend the exposure of all status codes for Diameter as well.

For Diameter, currently only the Diameter Base Protocol status codes are exposed to the protocol, and no additional status codes have been agreed to be exposed to the protocol. The method for exposing status codes in Diameter is to place them in the Result-Code AVP (an integer). An optional statusText could be passed in an optional string – the Error-Message AVP (we don’t yet make use of this in the Diameter binding for PEM-1).

So in principle, if we decide it is a good idea, we could indeed expose ALL status codes in the case of Diameter (including the Policy decision status code (ALLOW/DENY). And we could support an optional statusText.
This would make the approach in SOAP and Diameter consistent in exposing all status codes (although obviously each of them is exposed differently, because of the differences in the protocols). This decision requires a simple YES/NO decision. A YES decision will imply changes to the Diameter binding sections in the PEM-1 TS.
2) If all status codes are exposed to the protocol, do we still need the Policy status codes in the Output Status BLOB? Do we need the Output Status Template at all?

The question assumes we have answered YES to question 1).

It seems that, if all status codes are exposed (success/failure), there is little need for them to be also included in an Output Status template (although some implementations may find it beneficial). If we decide that there is no more need for them to be duplicated in the Output Status Template, then practically there is no need for an Output Status Template at all (since currently it has no other parameters, other than the templateID, templateVersion, statusCode and possibly statusText). There is however a remaining additional question – namely what to do when the policy wants to provide additional output parameters (this could be resolved by Output Templates that specifically only carry those additional parameters).

This requires a YES/NO decision (where YES means we don’t need to the Output Status Template anymore, and NO means we still keep things as they currently are documented). A YES decision will imply changes (removal) of the Output Status Template, and adding text to address how additional parameters are being passed.

3) If all status codes are exposed to the protocol, can they be designed in a way that is common regardless of protocol?

For Diameter, status codes may be exposed using the Result-Code AVP, which is an integer. RFC 3588 prescribes a taxonomy for designing Result-Codes, which can be summarized as defining Result-Codes in one of 5 possible classes, within a pre-defined range – see below. Diameter Result-Codes also have “names” but the names are not passed/used in the protocol, they are just used to clarify the meaning of the integer code.
The Result-Code data field contains an IANA-managed 32-bit address space representing errors. Diameter provides the following classes of errors, all identified by the thousands digit in the decimal notation:

- 1xxx (Informational). Errors that fall within this category are used to inform the requester that a request could not be satisfied, and additional action is required on its part before access is granted.

- 2xxx (Success). Errors that fall within the Success category are used to inform a peer that a request has been successfully completed.
- 3xxx (Protocol Errors). Errors that fall within the Protocol Error category SHOULD be treated on a per-hop basis, and Diameter proxies MAY attempt to correct the error, if it is possible. Note that these and only these errors MUST only be used in answer messages whose 'E' bit is set.

- 4xxx (Transient Failures). Errors that fall within the transient failures category are used to inform a peer that the request could not be satisfied at the time it was received, but MAY be able to satisfy the request in the future.

- 5xxx (Permanent Failure). Errors that fall within the permanent failures category are used to inform the peer that the request failed, and should not be attempted again.
A non-recognized class (one whose first digit is not defined in this section) MUST be handled as a permanent failure.
Some codes in the different classes are already assigned in RFC 3588 for specific use:

1001

2001-2002

3001-3010

4001-4003

5001-5017

For SOAP, the current proposal (67R0x) is using the SOAP method for exposing status codes. 67R0x describes status codes (called errors in 67R0x) as a combination of Error Name, Error Code, Error Proposed Text and Required Parameters in the Fault.

The first thing that needs to be done for SOAP case, is to validate that indeed those 4 elements are consistent with SOAP, and which ones are passed/used in the protocol. For example, it is not clear if the notion of Status Code (as an integer) is used in SOAP, which is using strings to pass errors.
So at first sight it appears that Diameter is using integers to communicate status codes to the requestor, while SOAP is using strings for the same purposes.

What is needed here, in order to address question 3) is a mapping between Diameter and SOAP with resect to the method of exposing codes – i.e. how do we map Result-Code/Error-Message in Diameter, with the combination of Error Name/Error Code/Proposed Error Text/Required parameters in the Fault in SOAP.

Once we have such a mapping, we could consider doing the following:

· reserving all pre-defined codes by Diameter and SOAP

· using the 5 classes defined in Diameter to categorize type of errors

· allocating new integer codes for Diameter via the Result-Code (and SOAP, or may not be necessary there)

· allocating new statusText (via Error-Message for Diameter, and Proposed Error Text for SOAP – probably?)

· allocating new names (not passed in Diameter, but probably needed in SOAP)

· allocating required parameters in the fault…this requires more explanation. But once it is understood, if needed in both protocols, we need to find the method to expose them and document them

· then describing how status codes extensions can be provided in the future (within the constraints of the “classes” and pre-defined status codes.

A YES/NO decision is needed. A YES decision means ARC thinks it is a good idea to have a clear mapping, and a joint method of defining new codes. A NO decision means ARC thinks we should leave exposing and defining codes for the 2 bindings completely separately. In either case, contributions are needed to clarify the issue.
4) Are the status codes proposed in 67R0x, and the method to extend them, appropriate for both Diameter and SOAP?

The answer is simply NO, if you followed the analysis to question 3). There is no other decision needed, then the decision in 3) which would resolve this issue as well.

5) 67R0x describes status codes (called errors in 67R0x) as a combination of Error Name, Error Code, Error Proposed Text and Required Parameters in the Fault, but it is not obvious which ones are mandatory and when, and whether all 4 are passed back and in what situation. Do we need a clarification ?

The simple answer is YES, if you followed the analysis to question 3). There is a need for contribution clarifying the definition and use of all the elements that composed the status response. Without such a clarification, we cannot address question 3), but neither can we understand what to pass and when even if we only restrict this to SOAP.
6) 67R0x also proposes the introduction of an optional statusText parameter in the Output Status Template. Should this be supported?
Introducing an (optional) statusText is a good suggestion. However, the question is where. If we decide YES on question 1), then the statusText will be introduced a string that may be passed through the Diameter Error-Message AVP, and in the case of SOAP, via the proposal in 67R0x.

If we decide YES on question 2) then there is no more need to introduce it in the Output Status Template.

Simply put, the decision is a qualified YES, but the implementation differs, based on what we decide in questions 1) and 2).

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC to make YES/NO decisions on the issues described, and assign action items to address them according to the decisions.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

