OMA-TS-REST_NotificationChannel_API-V1_0-201102039D
Page 14 V(36)

·
·
·
·
	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API –
Notification Channel

	Draft Version 1.0 – 09 02 2011

	Open Mobile Alliance

	OMA-TS-REST_NotificationChannel_API-V1_0-201102039D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
Notification Channel API definition
9
5.1
Resources Summary
10
5.2
Notification Channel RESTful Network API Data Types
12

N
12
5.2.1
XML Namespaces
12
5.2.2
Structures
12
5.2.2.1
Type: NotificationChannelList
12
5.2.2.2
Type: NotificationChannel
13
5.2.2.3
Type: NotificationList
13
5.2.2.4
Type: Notification
14
5.2.3
Values of the Link “rel” attribute
14
5.3
Sequence Diagrams
15
5.3.1
Create notification channel
15
5.3.2
Notifications delivered to client
16
5.3.3
Notification delivered to client using content indirection
17
5.3.4
Multiple notifications delivered to client in response
18
5.3.5
Request timeout response
19
6.
Detailed specification of the resources
20
6.1
Resource: Notification Channels
20
6.1.1
Request URI variables
20
6.1.2
Response Codes
20
6.1.2.1
Response Codes
20
6.1.2.2
Exception fault codes
20
6.1.3
GET
20

Example: Retrieve active notification channels (Informative)
20
6.1.3.1
20
6.1.3.1.1
Request
20
6.1.3.1.2
Response
21
6.1.4
PUT
21
6.1.5
POST
21
6.1.5.1
Example: Create notification channel (Informative)
21
6.1.5.1.1
Request
21
6.1.5.1.2
Response
22
6.1.6
DELETE
22
6.2
Resource: Individual notification Channel
22
6.2.1
Request URI variables
22
6.2.2
Response Codes
23
6.2.2.1
Response Codes
23
6.2.2.2
Exception fault codes
23
6.2.3
GET
23
6.2.3.1
Example: Retrieve individual notification channel (Informative)
23
6.2.3.1.1
Request
23
6.2.3.1.2
Response
23
6.2.4
PUT
23
6.2.5
POST
23
6.2.6
DELETE
24
6.2.6.1
Example: Removing notification channel (Informative)
24
6.2.6.1.1
Request
24
6.2.6.1.2
Response
24
6.3
Resource: Notification list
24
6.3.1
Request URI variables
24
6.3.2
Response Codes
24
6.3.2.1
Response Codes
24
6.3.2.2
Exception fault codes
24
6.3.3
GET
25
6.3.4
PUT
25
6.3.5
POST
25
6.3.5.1
Example 1: Single notification delivered including content (Informative)
25
6.3.5.1.1
Request
25
6.3.5.1.2
Response
25
6.3.5.2
Example 2: Multiple notifications delivered including content (Informative)
26
6.3.5.2.1
Request
26
6.3.5.2.2
Response
26
6.3.5.3
Example 3: Single notification delivered using content indirection (Informative)
27
6.3.5.3.1
Request
27
6.3.5.3.2
Response
27
6.3.5.3.3
Request
27
6.3.5.3.4
Response
27
6.3.5.4
Example 4: Multiple notifications delivered using content indirection (Informative)
28
6.3.5.4.1
Request
28
6.3.5.4.2
Response
28
6.3.6
DELETE
28
6.4
Resource: Individual notification
28
6.4.1
Request URI variables
29
6.4.2
Response Codes
29
6.4.2.1
Response Codes
29
6.4.2.2
Exception fault codes
29
6.4.3
GET
29
6.4.3.1.1
Request
29
6.4.3.1.2
Response
29
6.4.4
PUT
30
6.4.5
POST
30
6.4.6
DELETE
30
Appendix A.
Change History (Informative)
31
A.1
Approved Version History
31
A.2
Draft/Candidate Version 1.0 History
31
Appendix B.
Static Conformance Requirements (Normative)
32
B.1
SCR for RESTfulFUNCAREA Server
32
B.1.1
SCR for RESTfulFUNCAREA.FUNCTION Server
32
Appendix C.
Application/x-www-form-urlencoded Request Format for Selected REST Operations (Normative)
33
C.1
[Operation]
33
C.1.1
Example (Informative)
34
C.1.1.1
Request
34
C.1.1.2
Response
34
Appendix D.
JSON examples (Informative)
35
D.1
[Example Title] (section [section number cross reference])
35
Appendix E.
[Baseline specification] operations mapping (Informative)
36

Figures

Error! No table of figures entries found.
1. Scope

This specification defines a RESTful API for Notification Channel using HTTP protocol bindings.

2. References

2.1 Normative References

	
	

	[OMA_REST_TS_Common]
	“Common definitions and specifications for OMA REST interfaces”, Open Mobile Alliance™, OMA-TS-REST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for OMA REST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_REST_API_specifications, URL:http://www.openmobilealliance.org/

	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	
	

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	
	

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	

4. Introduction

The Technical Specification for the OMA RESTful Notification Channel API contains HTTP protocol bindings for any specification which requires asynchronous delivery of notifications, using the RESTful architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).

4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Application manages notification channel
· Application retrieves asynchronous notifications
·

5. Notification Channel API definition
This section is organized to support a comprehensive understanding of the Notification Channel API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This specification introduces a method for a client (e.g. a browser application) to receive asynchronous notifications from a notification server about events the client has subscribed for in each enabler. This method used is based on HTTP requests and often referred as “long polling”. The notifications are conveyed through a common notification channel and before a “long polling” request can be invoked the client must first establish a notification channel.
The channel is created by initiating a request to the notification server, which will provide two URL:s in the response. The first URL is used as call-back URL when subscribing for notifications towards enabler(s) for events that the client would like to be informed about. A single notification channel may handle notifications from several enablers. Note that subscriptions are specific for each enabler and they are not in the scope of this contribution. Each enabler will send subsequent notifications using this call-back URL pointing to the notification server. The second URL is used to retrieve the notifications from the notification server using the “long-polling” mechanism.
When the notification server receives a notification from an enabler, it conveys the notification to the client with the response to the pending “long-polling” request.
A notification channel has certain time-to-live and will automatically be refreshed when accessed by a client, either when accessing the notification channel or by a “long-polling” request. The lifetime of a notification channel in case of inactivity is decided by server policy.

It should be noted that in order not to disclose underlying network topology, the server usually sends to the client a mapped version of the real call-back address. In opposite direction, when the server receives such mapped URL, it will apply de-mapping of the URL before it can be used. How this mapping and de-mapping is performed on the server is out of scope for this specification.

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common(if needed)] resp. [OMA_REST_TS_Common].
The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Finally, Appendix E lists the [Baseline specification] equivalent operation for each supported REST resource and method combination, where applicable. [This paragraph only applies verbatim if there is a baseline specification such as Parlay X.]
For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [OMA_REST_TS_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription.
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the Notification Channel API.

[image: image2.emf]//{serverRoot}/{apiVersion}

/{userId}

/notificationchannel

/{channelId}

/notificationChannels

/{notificationId}

/notifications

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: Management of notification channels and delivery of notifications
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/notificationchannel
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Notification Channels

	/{userId}/notificationChannels

	NotificationChannelList
(used for GET)

NotificationChannel
(used for POST)

	

Retrieves a list of notification channels
	
No
	
Creates a new notification channel
	

No

	Individual notification channel
	/{userId}/notificationChannels/{channelId}

	NotificationChannel
(used for GET)
	Retrieves an individual notification channel
	No
	No
	Removes an individual notification channel

	Notification list
	/{userId}/notificationChannels/{channelId}/notifications
	NotificationList
	No
	No
	Retrieves pending notifications from the server
	No

	Individual notification
	/{userId}/notificationChannels/{channelId}/notifications/{notificationId}
	Notification
	No
	No
	Retrieves a single notification from the server
	No

	

	
	

	

	
	
	
	

	

5.2 Notification Channel RESTful Network API Data Types
N
5.2.1 XML Namespaces
The XML namespace for the Notification Channel data types is:

urn:oma:xml:rest:notificationchannel:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_TS_Common] (delete if not used). The use of namespace prefixes such as 'xsd' is not semantically significant.
5.2.2 Structures
<< Intro in case the document does not use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in this RESTful API.
Some of the structures can be instantiated as so-called root elements.

<< Intro in case the document does use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in this RESTful API.
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called heavy-weight resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure (so-called light-weight resources). A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].
5.2.2.1 Type: NotificationChannelList
This type defines a list of notification channels.
	Element
	Type
	Optional
	Description

	notificationChannelList
	NotificationChannel
[0..unbounded]
	Yes
	May contain an array of notification channels

	resourceURL
	xsd:anuURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notificationChannelList of type NotificationChannelList is allowed in request bodies.
5.2.2.2 Type: NotificationChannel
This type defines a single notification channel.
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it. The client SHALL NOT be allowed to update the clientCorrelator in a PUT request.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	channelId
	xsd:token
	Yes
	Contains an identifier for a specific notification channel. SHALL only be included in responses.

	callBackURL
	xsd:anuURI
	Yes
	Contains a call back URL used when establishing subscriptions for notifications towards respective enabler (not part of this API). SHALL only be included in responses.

	pollURL
	xsd:anuURI
	Yes
	Contains the URL used to retrieve new events. SHALL only be included in responses.

	maxNotifications
	xsd:int
	Yes
	Defines the maximum number of notifications that may be delivered in a notification list. The default value (if element is missing) is 1.

	useContentIndirection
	xsd:Boolean
	Yes
	If set to ‘true’ all notifications in the notification list are listed using links (content indirection). The default value (if element is missing) is ‘false’.

	resourceURL
	xsd:anuURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notificationChannelList of type NotificationChannelList is allowed in request bodies.

5.2.2.3 Type: NotificationList
This type defines a list of notifications that are being delivered to the client.
	Element
	Type
	Optional
	Description

	notification
	Notification
[1..unbounded]
	No
	Contains one or more new notifications

	resourceURL
	xsd:anuURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notificationList of type NotificationList is allowed in response bodies.

5.2.2.4 Type: Notification
This type defines a single notification.
	Element
	Type
	Optional
	Description

	<element is defined by respective enabler API>
	<element type is defined by respective enabler API>
	Choice
	Contains a single notification as defined by respective enabler API.
The XSD MUST allow extensions here.

	link
	Common:Link
	Choice
	Used for content indirection of delivery of the new notification.

	resourceURL
	xsd:anuURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notification of type Notification is allowed in response bodies.
5.2.2.5

	
	
	
	

	
	
	
	

	

5.2.2.6

	
	
	
	
	

	
	
	
	
	

	

5.2.3

5.2.3.1
	
	

	
	

	

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· Notification
·

5.3 Sequence Diagrams
Below are a number of sequence diagram illustrating how notification channels are created and how notifications are delivered to the client.
5.3.1 Create notification channel
This figure below shows a scenario for the creation of a notification channel by a client..

The resources:

· To create notification channel:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels
· To retrieve new notifications:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications

[image: image7.emf]Application

Notification

Gateway

Enabler

Server X

1. POST Notification Channel

Create notification

channel

2. Response with created channel info incl.

ChannelId, CallBackURL and PolllURL

3. POST Subscription + CallBackURL

4. Response

7. GET Poll URL

“Long” poll request

Subscription for

notifications created

towards each

enabler.

(NOTE: Not part of

this API)

Enabler

Server Y

5. POST Subscription + CallBackURL

6. Response

Figure 2 Create Notification Channel
Outline of the flows:

1. Client creates a notification channel by sending a POST request to the notification server
a)
b)
2. A successful response includes a body containing a unique channel id, a call-back URL used when subscribing for notifications as well as a URL to be used when issuing the long polling request.
3. Client creates a subscription for notifications towards an enabler. The call-back URL included will point to the notification server resulting in that all notifications will be sent there. (This operation is not part of this API.)
4. The enabler returns a response. (This operation is not part of this API.)
5. Client creates a subscription for notifications towards an enabler. The call-back URL included will point to the notification server resulting in that all notifications will be sent there. (This operation is not part of this API.)
6. The enabler returns a response. (This operation is not part of this API.)
7. Client initiates a long polling request using the URL received in step 2.
5.3.2 Notifications delivered to client
This figure below shows a scenario when two notifications are delivered to the client, generated by two different enablers.
The resources:

· To retrieve new notifications:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications
[image: image8.emf]Application

Notification

Gateway

Enabler

Server X

1. GET Poll URL

“Long” poll request

Enabler

Server Y

Event: New message

2. POST Notification containing new message

4. Response

3. Response incl. new message notification

9. GET Poll URL

Wait for next event

5. GET Poll URL

Event: Presence update

6. POST Notification containing

presence update

8. Response

7. Response incl. presence update notification

“Long” poll request

Figure 3 Notifications delivered to client
Outline of the flows:

1. Client initiates a long polling request using the URL received when the notification channel was created.
2. A new message is received, which triggers a notification being sent from the enabler to the notification server using the call-back URL provided when the notification channel was created. (This operation is not part of this API.)
3. A response is delivered to the client including the new message.
4. A response to the notification received in step 2 is sent after the response is delivered to the client. (This operation is not part of this API.)
5. Client immediately initiates a new long polling request.

6. A new event occurs; in this case a presence update notification is received in the notification server using the call-back URL provided when the notification channel was created. (This operation is not part of this API.)
7. A response is delivered to the client including the presence update.

8. A response to the notification received in step 6 is sent after the response is delivered to the client. (This operation is not part of this API.)
9. Client immediately initiates a new long polling request and waits for a new event.

5.3.3 Notification delivered to client using content indirection
This figure below shows a scenario when a notification is delivered to the client using content indirection.
The resources:

· To retrieve new notifications:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications
· To retrieve the content of an individual notification based on a received link:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications/{notificationId}
[image: image9.emf]Application

Notification

Gateway

Enabler

Server X

1. GET Poll URL

“Long” poll request

Enabler

Server Y

Event: New message

2. POST Notification containing new message

4. Response

3. Response incl. link for content indirection

7. GET Poll URL

Wait for next event

5. GET Link

6. Response incl. new message notification

Figure 4 Notification delivered to client using content indirection
Outline of the flows:

1. Client initiates a long polling request using the URL received when the notification channel was created.

2. A new message is received, which triggers a notification being sent from the enabler to the notification server using the call-back URL provided when the notification channel was created. (This operation is not part of this API.)
3. A response is delivered to the client including a link referencing the new message.

4. A response to the notification received in step 2 is sent after the response is delivered to the client. (This operation is not part of this API.)
5. Client retrieves the notification using the received link.
6. The response contains the new message.

7. Client immediately initiates a new long polling request.

5.3.4 Multiple notifications delivered to client in response
This figure below shows a scenario when two notifications are delivered to the client in the same response.
The resources:

· To retrieve new notifications:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications
[image: image10.emf]Application

Notification

Gateway

Enabler

Server X

3. GET Poll URL

“Long” poll request

Enabler

Server Y

Event: New message

1. POST Notification containing new message

4. Response

6. Response incl. new message and

presence update notification

7. GET Poll URL

Wait for next event

Event: Presence update

2. POST Notification containing

presence update

5. Response

Figure 5 Multiple notifications delivered to client in response
Outline of the flows:

1. A new message is received, which triggers a notification being sent from the enabler to the notification server using the call-back URL provided when the notification channel was created. (This operation is not part of this API.)
2. A new event occurs; in this case a presence update notification is received in the notification server using the call-back URL provided when the notification channel was created. (This operation is not part of this API.)
3. Client initiates a long polling request using the URL received when the notification channel was created.

4. A response to the notification received in step 1 is sent after the response is delivered to the client. (This operation is not part of this API.)
5. A response to the notification received in step 2 is sent after the response is delivered to the client. (This operation is not part of this API.)
6. A response is delivered to the client including the new message and the presence update notification (assuming that the client allowed multiple notifications in the response when the notification channel was created).

7. Client immediately initiates a new long polling request.
5.3.5 Request timeout response
This figure below shows a scenario when a long polling request times out and a new GET is sent.
The resources:

· To retrieve new notifications:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications
[image: image11.emf]Application

Notification

Gateway

1. GET Poll URL

“Long” poll request

2. Response sent due to connection timeout

Wait for next event

3. GET Poll URL

Figure 5 Request timeout
Outline of the flows:

1. Client initiates a long polling request using the URL received when the notification channel was created.

2. No new event is received within a given time limit causing the request to timeout. An empty response is returned to the client.
3. Client immediately initiates a new long polling request.

6. Detailed specification of the resources
6.1 Resource: Notification Channels

The resource used is:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels

The userId must be percent-encoded according to [RFC3986].

This resource is used for create a new notification channel as well as to obtain a list of active notification channels for the specified user.

6.1.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use (e.g. 1 for version 1.x)

	

6.1.2 Response Codes

6.1.2.1 Response Codes

For HTTP response codes, see [OMA_REST_TS_Common].
6.1.2.2 Exception fault codes
6.1.2.3 Not applicable

Remove??
6.1.3 GET

This operation is used for retrieval of active notification channels.

Request URL parameters are:

	
	
	
	

	
	
	
	

	

6.1.3.1 Example: Retrieve active notification channels
(Informative)
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5
6.1.3.6
6.1.3.7
6.1.3.8
6.1.3.9
6.1.3.10
6.1.3.11
6.1.3.12
6.1.3.13
6.1.3.14
6.1.3.15
6.1.3.16
6.1.3.17
6.1.3.18
6.1.3.18.1 Request

	GET /exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels HTTP/1.1
Host: example.com:80
Accept: application/xml

6.1.3.18.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannelList xmlns:nc="urn:oma:xml:rest:notificationchannel:1">
<notificationChannel>
 <clientCorrelator>123</clientCorrelator>

 <applicationTag>myApp</applicationTag>
 <channelId>ch123</channelId>

 <callBackURL>http://example.com/callBackUrl/cbu111</callBackURL>

 <pollURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications</pollURL>
 <resourceURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch123</resourceURL>
</notificationChannel>
<notificationChannel>
 <clientCorrelator>456</clientCorrelator>

 <applicationTag>someOtherApp</applicationTag>
 <channelId>ch456</channelId>

 <callBackURL>http://example.com/callBackUrl/cbu333</callBackURL>

 <pollURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch456/notifications</pollURL>

 <resourceURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch456</resourceURL>

</notificationChannel>

<resourceURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels</resourceURL>
</nc:notificationChannelList>

6.1.3.19

6.1.3.19.1
	

6.1.3.19.2
	

6.1.3.19.3
	

6.1.3.19.4
	

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

6.1.4.1

6.1.4.1.1
	

6.1.4.1.2
	

6.1.4.2

6.1.4.2.1
	

6.1.4.2.2
	

6.1.5 POST

This operation is used for creation of a notification channel in order to receive notifications from an enabler that the client has subscribed for notification from.

6.1.5.1 Example: Create notification channel
(Informative)

6.1.5.1.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels HTTP/1.1
Host: example.com:80
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns: nc="urn:oma:xml:rest:notificationchannel:1">
<clientCorrelator>123</clientCorrelator>

<applicationTag>myApp</applicationTag>
<maxNotifications>5</maxNotifications>
</nc:notificationChannel>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<nc:notificationChannel xmlns: nc="urn:oma:xml:rest:notificationchannel:1">
<clientCorrelator>123</clientCorrelator>

<applicationTag>myApp</applicationTag>
<channelId>ch123</channelId>

<callBackURL>http://example.com/callBackUrl/cbu111</callBackURL>

<pollURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications</pollURL>
<maxNotifications>5</maxNotifications>
<resourceURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch123</resourceURL>

</nc:notificationChannel>

6.1.5.1.3
	

6.1.5.1.4
	

6.1.5.2

6.1.5.2.1
	

6.1.5.2.2
	

6.1.5.2.3
	

6.1.5.2.4
	

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual notification Channel
The resource used is:

http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}
The userId must be percent-encoded according to [RFC3986].

This resource is used for management of an individual notification channel. The lifetime of a notification channel is extended upon access, either when it is retrieved using this resource or as long as there is an outstanding poll request waiting for new notifications. In case of inactivity, the notification channel will automatically be terminated by the server. The inactivity timer value is decided by server policy.

6.2.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use (e.g. 1 for version 1.x)

6.2.2 Response Codes

6.2.2.1 Response Codes

For HTTP response codes, see [OMA_REST_TS_Common].

6.2.2.2 Exception fault codes

Not applicable
Remove??

6.2.3 GET
This operation is used for retrieval of an individual notification channel.

Request URL parameters are:

6.2.3.1 Example: Retrieve individual notification channel
(Informative)
6.2.3.1.1 Request

	GET /exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch456 HTTP/1.1
Host: example.com:80
Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:notificationchannel:1">
<clientCorrelator>456</clientCorrelator>

<applicationTag>someOtherApp</applicationTag>
<channelId>ch456</channelId>

<callBackURL>http://example.com/callBackUrl/cbu333</callBackURL>

<pollURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch456/notifications</pollURL>

<resourceURL>http://exampleAPI/1/notiif/tel%3A%2B1-555-100/notificationChannels/ch456</resourceURL>

</nc:notificationChannel>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used for removing an individual notification channel. Any outstanding poll request will immediately be responded with a 404 Not Found.
6.2.6.1 Example: Removing notification channel
(Informative)

6.2.6.1.1 Request

	DELETE /exampleAPI/1/notif/tel%3A%2B1-555-100/notificatiionChannels/ch456 HTTP/1.1
Host: example.com:80

6.2.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

6.3 Resource: Notification list
The resource used is:

http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications
The userId must be percent-encoded according to [RFC3986].

This resource is used for retrieval of new notifications, which the client has subscribed for notification from (towards respective enabler). New notification may either be delivered as a list of notifications or with references to respective notification.

6.3.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use (e.g. 1 for version 1.x)

6.3.2 Response Codes

6.3.2.1 Response Codes

For HTTP response codes, see [OMA_REST_TS_Common].

6.3.2.2 Exception fault codes

Not applicable
Remove??

6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used for retrieval of new notifications.
6.3.5.1 Example 1: Single notification delivered including content
(Informative)
6.3.5.2 In this example a presence update is delivered to the client.
6.3.5.2.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications HTTP/1.1
Host: example.com:80

6.3.5.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<nc:notificationList xmlns: nc="urn:oma:xml:rest:notificationchannel:1">

<notification>

 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:presence:1">

 <presentityUserId>tel:+1-555-100</presentityUserId>

 <callbackData>1234</callbackData>

 <resourceStatus>Active</resourceStatus>

 <presence>

 <person>

 <mood>

 <moodValue>Happy</moodValue>

 </mood>

 </person>

 </presence>

 <link rel="PresenceSubscription"

 href="http://example.com/exampleAPI/1/presence/tel%3A%2B1-555-101/subscriptions/presenceSubscriptions/tel%3A%2B1-555-100/sub001"/>

 </pr:presenceNotification>
 </notification>

</nc:notificationList>

6.3.5.3 Example 2: Multiple notifications delivered including content
 (Informative)
6.3.5.4 In this example a presence update and message notification are delivered to the client.
6.3.5.4.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications HTTP/1.1
Host: example.com:80

6.3.5.4.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<nc:notificationList xmlns: nc="urn:oma:xml:rest:notificationchannel:1">
<notification>
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:presence:1">

 <presentityUserId>tel:+1-555-100</presentityUserId>

 <callbackData>1234</callbackData>

 <resourceStatus>Active</resourceStatus>

 <presence>

 <person>

 <mood>

 <moodValue>Happy</moodValue>

 </mood>

 </person>

 </presence>

 <link rel="PresenceSubscription"

 href="http://example.com/exampleAPI/1/presence/tel%3A%2B1-555-101/subscriptions/presenceSubscriptions/tel%3A%2B1-555-100/sub001"/>

 </pr:presenceNotification>
</notification>
<notification>

 <mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:messaging:1">

 <inboundMessage>

 <destinationAddress>tel:+1-555-0100</destinationAddress>

 <senderAddress>tel:+1-555-0101</senderAddress>
 <resourceURL>http://example.com/exampleAPI/1/messaging/inbound/registrations/reg123/messages/msg123
 </resourceURL>

 <link rel="Subscription" href="http://example.com/exampleAPI/1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg123</messageId>

 <inboundMMSMessage>

 <subject>Who is RESTing on the beach?</subject>

 </inboundMMSMessage>

 </inboundMessage>

 </mms:inboundMessageNotification>
</notification>
</nc:notificationList>

6.3.5.5 Example 3: Single notification delivered using content indirection (Informative)
In this sequence of examples a ‘call notification’ notification is delivered to the client using content indirection.
6.3.5.5.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications HTTP/1.1
Host: example.com:80

6.3.5.5.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<nc:notificationList xmlns: nc="urn:oma:xml:rest:notificationchannel:1">

<notification>
 <link rel="Notification”
 href="http://example.com/exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif123"/>
 </notification>

</nc:notification>

6.3.5.5.3 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif123 HTTP/1.1
Host: example.com:80

6.3.5.5.4 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<nc:notification xmlns: nc="urn:oma:xml:rest:notificationchannel:1">

 <cn:callEventNotification xmlns:cn="urn:oma:xml:rest:callnotification:1">

 <notificationType>CallEvent</notificationType>

 <eventDescription>

 <callEvent>Busy</callEvent>

 <description>optional service-specific information</description>
 </eventDescription>

 <callingParticipant>tel:+15555550102</callingParticipant>

 <callingParticipantName>Peter E. Xample</callingParticipantName>

 <calledParticipant>tel:+15555550101</calledParticipant>

 <callSessionIdentifier>B12345</callSessionIdentifier>

 <link rel="CallEventSubscription" href="http://example.com/exampleAPI/1/callnotification/subscriptions/callEvent/sub001"/>

 <link rel="CallSessionInformation" href="http://example.com/exampleAPI/1/thirdpartycall/callSessions/cs001"/>

 </cn:callEventNotification>
</nc:notification>

6.3.5.6 Example 4: Multiple notifications delivered using content indirection (Informative)
In this example multiple notifications are delivered to the client using content indirection.
6.3.5.6.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications HTTP/1.1
Host: example.com:80

6.3.5.6.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<nc:notificationList xmlns: nc="urn:oma:xml:rest:notificationchannel:1">

<notification>

 <link rel="Notification”
 href="http://example.com/exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif123"/>

</notification>
<notification>

 <link rel="Notification”
 href="http://example.com/exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif456"/>

 </notification>

<notification>

 <link rel="Notification”
 href="http://example.com/exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif789"/>

 </notification>
</nc:notification>

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual notification
The resource used is:

http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/notificationChannels/{channelId}/notifications/{notificationId}
The userId must be percent-encoded according to [RFC3986].

This resource is used for retrieval of a single notification using content indirection. The received event included a link pointing to the actual notification, which is retrieved using this resource.
6.4.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use (e.g. 1 for version 1.x)

6.4.2 Response Codes

6.4.2.1 Response Codes

For HTTP response codes, see [OMA_REST_TS_Common].

6.4.2.2 Exception fault codes

Not applicable
Remove??

6.4.3 GET
6.4.4 This operation is used to retrieve content of a notification that was references using a link.
6.4.5 Example: Retrieve content of a notification
6.4.5.1.1 Request

	POST /exampleAPI/1/notif/tel%3A%2B1-555-100/notificationChannels/ch123/notifications/notif123 HTTP/1.1
Host: example.com:80

6.4.5.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notification xmlns: nc="urn:oma:xml:rest:notificationchannel:1">

 <mms:deliveryInfoNotification xmlns:mms="urn:oma:xml:rest:messaging:1">

 <deliveryInfo>

 <address>tel:+1-555-0103</address>

 <deliveryStatus>DeliveredToTerminal</deliveryStatus>

 </deliveryInfo>

 <deliveryInfo>

 <address>tel:+1-555-0104</address>

 <deliveryStatus>DeliveredToTerminal</deliveryStatus>

 </deliveryInfo>

 <link rel="OutboundMessageRequest"

 href="http://example.com/exampleAPI/1/messaging/outbound/tel%3A%2B1-555-0100/requests/req123" />

 </mms:deliveryInfoNotification>
</nc:notification>

6.4.6 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.4.7 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.4.8 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

6.4.8.1

6.4.8.1.1
	

6.4.8.1.2
	

6.4.8.2

6.4.8.2.1
	

6.4.8.2.2
	

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-REST_[FuncArea]_API-V1_0
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for RESTfulFUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the [FuncArea] REST API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for RESTfulFUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<
If an Item is MANDATORY (-M) it has no requirement.
If an Item is OPTIONAL, but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”
>>

Appendix C. Application/x-www-form-urlencoded Request Format for Selected REST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are only POST methods for notification defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

For selected operations, this section defines a format for the OMA RESTful [FuncArea] Network API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type. XML wrapper elements (the root of a complexType) have been omitted from the x-www-form-urlencoded model, since it has no hierarchy. Instead, the sub-elements of the complex Type are represented in the parameter tables below.

Note : only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server.

Names and values MUST follow the application/x-www-formurlencoded character escaping rules at [W3C-URLENC].

X-www-form-urlencoded bindings for the following operations are defined in this section:

· One

· Two

<< List the operations for which url-encoded is supported. >>

C.1 [Operation]
This operation is used to create an outgoing message request.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	
	
	

	
	
	

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using a JSON binding. The examples follow the XML to JSON serialization rules in [OMA_REST_TS_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [OMA_REST_TS_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

D.2

	

	

Appendix E. [Baseline specification] operations mapping
(Informative)
<< This appendix is only needed for specifications which define a REST binding for an existing interface / API, such as Parlay X. For other specs it will not be present.
For ParlayREST specifications, substitute [Baseline specification] with “Parlay X”>>

The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline specification] [[Reference]] equivalent operations.

	OMA REST Resource
	OMA REST
Method
	OMA REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1: [Baseline specification] operations mapping

�Note that this may change subject to the decisioon in the API versioning discussion

�Note that this may change subject to the decisioon in the API versioning discussion

�Note that this may change subject to the decisioon in the API versioning discussion

�Note that this may change subject to the decisioon in the API versioning discussion

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1357635463/example-structure.zip

example-structure.ppt

/callSessions

//{serverRoot}/{apiVersion}

/ thirdPartyCall

/{callSessionId}

/participants

/{participantId}

/terminate

_1358710251/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

