Doc# OMA-ARC-REST-2009-0020-CR_ParlayREST_TS_ContentManagement0_0_Section5.doc[image: image1.jpg]
Change Request

Doc# OMA-ARC-REST-2009-0020-CR_ParlayREST_TS_ContentManagement0_0_Section5.doc
Change Request

Change Request

	Title:
	Section 5
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-REST

	Doc to Change:
	OMA-TS-ParlayREST_ContentManagement-V0_0-20090731-D

	Submission Date:
	15 Aug 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Ki-Sook Chung, ETRI, kschung@etri.re.kr

	Replaces:
	n/a

1 Reason for Change

This contribution is the TS document Section 5 for the ParlayREST for the Content Management part. This CR is written based on the TS baseline proposed by the input contribution (INP 0015).
2 Impact on Backward Compatibility

n.a.
3 Impact on Other Specifications

n.a.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR contribution seeks ARC-REST approval.
6 Detailed Change Proposal

5. Content management REST Definition

The Content Management REST service is to provide operations for:

- submitting, modifying, querying, and deleting content
- An asynchronous notification mechanism for new content matching keywords, plus a mechanism to start and stop the notification of new content
Note : in the examples below, the responses are provided as XML. This is purely for illustration purposes.
5.1 XML Schema data type definition

Content structure

The data structure for the content stored in the content server.

	Name
	Type
	Optional
	Description

	ContentIdentifer
	xsd:string
	No
	Globally unique ContentIdentifier, generated by Content Management Web Service

	ContentMetaData
	ContentData
	Yes
	Content description information about content location, content name, content description, content provider, content version, keywords and IsDerivative.

	ContentMediaData
	ContentMedia
	Yes
	Data related to content media, including content type, duration and file size.

	ContentControlData
	ContentControl
	Yes
	Data related to content control, including content access restrictions, content charging and content validity.

	contentState
	xsd:string
	Yes
	Content state is defined externally (visible, invisible, retired)

	ContentUploadDate
	xsd:dateTime
	No
	Content upload date is generated by the content server.

ContentData structure

The structure of content data stored in the content server.

	Name
	Type
	Optional
	Description

	contentLocation
	xsd:anyURI
	No
	Location which content exists. Where a content item consists of multiple parts (e.g. a Java game - .jar .jad files), it may be necessary to specify multiple locations.

	contentName
	xsd:string
	Yes
	Human-readable name for the content

	contentDescription
	xsd:string
	Yes
	Human-readable description of the content

	contentProvider
	xsd:anyURI
	No
	Entity that provides the content, which is distinct from the content owner (e.g. the record company or movie studio)

	contentVersion
	xsd:decimal
	Yes
	Content version, larger number represents later versions. 1.0 is the canonical first version

	keywords
	xsd:string[0..unbounded]
	Yes
	Content keywords which is used to provide search expressions

	IsDerivative
	xsd:boolean
	No
	Boolean flag whether allows the manipulation of original content. If this flag is true, the manipulation of original content is permitted. If not present, default value is true.

ContentMedia structure

The structure of content media stored in the content server.

	Name
	Type
	Optional
	Description

	contentType
	xsd:string
	Yes
	MIME Type e.g. audio, video, code etc

	contentLength
	xsd:int
	Yes
	Content length how long does it run

	contentFileSize
	xsd:decimal
	Yes
	Content file size how much space does it take up

ContentControl structure

The structure of control data related to content & charging.

	Name
	Type
	Optional
	Description

	contentAccessRestrictions
	xsd:string
	Yes
	Some pre-defined coding, e.g. MPAA rating (e.g. U,PG, PG-12,R, NC-17), ICRA or RSACi ratings (e.g. lc, lz)

	ContentCharging
	common:ChargingInformation
	Yes
	Note: not a currency amount, but 10 units, 20 units etc. Envisaged that the optional 'code' parameter of ChargingInformation structure will be used

	contentValidity
	xsd:dateTime
	Yes
	The available period of the content

The common types are specified in OMA-TS-ParlayREST_Common-V1_0-20090525-D.
5.2 Content management REST methods
5.2.1. Submit content
This REST method is based on the submitContent SOAP method to send a SMS to a terminal. It uses the HTTP POST method. The following parameters are available for this method:

	Parameter
	 Type
	Optional
	Description

	ContentMetaData
	ContentData
	No
	Content description information about content location, content name, content description, content provider, content version, keywords and IsDerivative.

	ContentMediaData
	ContentMedia
	Yes
	Data about content media, including content type, length and file size.

	ContentControlData
	ContentControl
	Yes
	Data about content control, including content access restrictions, content charging and content validity.

	notifyURL
	xsd:anyURI
	Yes
	It defines the application endpoint that will be used to notify the application of the result of uploading the content.

	correlator
	xsd:string
	Yes
	It defines the application correlator that will be used to notify the application of the result of uploading the content.

An example of how this method would be called:

POST /<path>/content/data?version=1.0& notifyURL=http://myapp.developer.com/submitApprove&correlator=123456 HTTP/1.1
Host: www.example.com
Content-Type: text/xml
<SubmittedData version=”1.0”>
<ContentMetaData contentLocation=”http//myapp.developer.com/ucc/birthday.avi” contentName=”My Birthday Party 2009” contentProvider=”tel:+82421231234” isDerivative=Truekeywords=”party” />
<ContentMediaData contentType=”Video”/>
</SubmittedData>
This operation would return a result containing the ID of the content just submitted, for example:

HTTP Status: 201 Created
<SubmitContentResponse version=”1.0” contentId=”1234”/>

Note 1: in the example above we have left address and notifyURL unencoded for readability purposes, for example, it would have to be encoded as

address=tel%3A%2B82421231234 and
notifyURL =http%3A%2F%2Fmyapp.developer.com%2FsubmitApprove
5.2.2. Notify Approval status
This REST method is based on the notifyApprovalStatus SOAP method to inform a content provider of the result of content submission. It uses the HTTP POST method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	contentId
	xsd:string
	No
	content identification

	approvalDecision
	xsd:boolean
	No
	Boolean flag whether content server gets and stores the content from location which content exists. If this flag is true, content server stored the submitted content successfully.

	approvalDecisionReason
	xsd:string
	Yes
	The reason why content server can't store the submitted content.

An example of how this method would be called:

POST /contentApproval?version=1.0&contentId=1234& approvalDecision=True HTTP/1.1

Host: myapp.developer.com

The application would be expected to return a HTTP Status: 204 No Content.

5.2.3. Modify content

This REST method is based on the modifyContent SOAP method to enable a content provider to update the submitted content and its meta data. It uses the HTTP PUT method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	contentIdentifer
	xsd:string
	No
	Globally unique ContentIdentifier, generated by Content Management Web Service

	ContentMetaData
	ContentData
	No
	Content description information about content location, content name, content description, content provider, content version, keywords, IngestionRequired and IsDerivative.

	ContentMediaData
	ContentMedia
	Yes
	Data related to content media, including content type, duration and file size.

	ContentControlData
	ContentControl
	Yes
	Data related to content control, including content access restrictions, content charging and content validity.

	contentState
	xsd:String
	Yes
	visible, invisible, retired

An example of how this method would be called:

PUT /<path>/content/data?version=1.0&contentId=1234 HTTP/1.1

Host: www.example.com
Content-Type: text/xml
<ModifiedData version=”1.0”>
<ContentMetaData contentLocation=”http//myapp.developer.com/ucc/birthday.avi” contentName=”My Birthday Party 2009” contentProvider=”tel:+82421231234” isDerivative=True keywords=”party”/>
contentState=”visible”

</ModifiedData>

This would return a HTTP Status: 200 OK and the content id of updated content, for example

<ModifyContentResponse version=”1.0” contentId=”1234”/>

5.2.4. Delete Content

This REST method is based on the deleteContent SOAP method to allow a content provider to delete content. It uses the HTTP DELETE method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	contentId
	xsd:string
	No
	One or more content identifications

An example of how this method would be called:

DELETE /<path>/content/data?version=1.0&contentId=1234&contentId=5678 HTTP/1.1

Host: www.example.com

This would return a HTTP Status: 200 OK and a list of identifications of the deleted contents, for example

<deleteContentResponse version=”1.0” contentId=”1234” contentId=”5678”/>

5.2.5. Read Content data
This REST method is based on the readContent SOAP method to allow a content provider to read the meta data of content. It uses the HTTP GET method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	contentId
	xsd:string
	No
	One or more content identifications

An example of how this method would be called:

GET /<path>/content/data?version=1.0&contentId=1234 HTTP/1.1

Host: www.example.com

This would return a HTTP Status: 200 OK and a list of meta data of the requested contents, for example

<readContentResponse version=”1.0”>
<Content contentId=”1234”
<ContentMetaData contentLocation=”http//myapp.developer.com/ucc/birthday.avi” contentName=”My Birthday Party 2009” contentProvider=”tel:+82421231234” isDerivative=True keywords=”party”/>
<ContentMediaData contentType=”Video”/>
contentState=”visible”

</Content>
</readContentResponse>
5.2.6. Query Content data
This REST method is based on the queryContent SOAP method to allow a content provider to query the meta data of content. It uses the HTTP GET method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	keywords
	xsd:string[0..unbounded]
	No
	One or more keywords

An example of how this method would be called:

GET /<path>/content/data?version=1.0&keywords=party HTTP/1.1

Host: www.example.com

This would return a HTTP Status: 200 OK and a list of meta data of contents having the keywords, for example

<queryContentResponse version=”1.0”>

<Content contentId=”1234”
<ContentMetaData contentLocation=”http//myapp.developer.com/ucc/birthday.avi” contentName=”My Birthday Party 2009” contentProvider=”tel:+82421231234” isDerivative=True keywords=”party”/>
<ContentMediaData contentType=”Video”/>
contentState=”visible”

</Content>
<Content contentId=”5678”
<ContentMetaData contentLocation=”http//myapp.developer.com/ucc/wedding.avi” contentName=”My Wedding Party 2009” contentProvider=”tel:+82421231234” isDerivative=True keywords=”party”/>
<ContentMediaData contentType=”Audio”/>
contentState=”visible”

</Content>
</queryContentResponse>
5.2.7. Notify Content status
This REST method is based on the startNewContentNotificaiton, notifyNewContent and stopNewContentNotification SOAP methods to enable the application to start a notification session, listen for notifications of new content and then stop the session.

5.2.7.1 startNewContentNotification

This REST method is used by the application to start the notifications of newly uploaded content having the specific keyword. It uses the HTTP POST method. The following parameters are available for this method:

	Parameter
	Type
	Optional
	Description

	notifyURL
	xsd:anyURI
	No
	Notification endpoint definition

	correlator
	xsd:string
	No
	Allows the application to correlate the notification

	keywords
	xsd:string
[1..unbounded]
	No
	Keywords to match against to determine the application to receive the notification. These keywords are matched against the keywords of the submitted contents.

	count
	xsd:decimal
	Yes
	Number of maximum notification

An example of how this method would be called:

POST /<path>/content/contentNotification?version=1.0&correlator=1212& notifyURL=http://myapp.developer.com/newContent&
keywords=ring HTTP/1.1
Host: www.example.com

This operation would return a result indicating whether the operation has been successful, for example:

HTTP Status: 204 No Content

Note: in the example above we have left notifyURL unencoded for readability purposes. In reality, they would have to be encoded as notifyURL=http%3A%2F%2Fmyapp.developer.com%2FnewContent
5.2.7.2 notifyNewContent
This REST method notifies the application when new content having specific keywords is uploaded. It uses the HTTP POST method. The following parameters are available for this method:

	Parameter
	Type
	Optional
	Description

	correlator
	xsd:string
	No
	Provided in the start notification request

	keywords
	xsd:string
[1..unbounded]
	No
	Matched keywords

	contentItem
	Content
	No
	Content Information

An example of how this method would be called:

POST /newContent?version=1.0&correlator=1212&keyword=ring HTTP/1.1

Host: myapp.developer.com

<NewContent version=”1.0”>

<Content

contentId =”1010”

<ContentMetaData contentLocation=
“http://myapp.developer.com/movie/queenOfRing.avi”
contentName=”Queen of ring”

 isDerivative=False
contentProvider=”http://www.entertain.com”/>

/Content>
</NewContent>

The application would be expected to return a HTTP Status: 204 No Content.

Note 1: the meta data for each content is included in the body of the POST request.

Note 2: in the example above we have left address unencoded for readability purposes. In reality, they would have to be encoded as

contentLocation=http%3A%2F% myapp.developer.com%2movie%2queenOfRing.avi

5.2.7.3 stopNewContentNotification

This REST method is used by the application to stop the new content notifications. It uses the HTTP DELETE method. The following parameter is available for this method:

	Parameter
	Type
	Optional
	Description

	correlator
	xsd:string
	No
	Correlator of the request to end

An example of how this method would be called:

DELETE /<path>/content/contentNotification?correlator=1212 HTTP/1.1

Host: www.example.com

This operation would return a result indicating whether the operation has been successful, for example:

HTTP Status: 204 No Content

5.3 Exceptions

A ServiceException may be thrown to indicate that a service-related error has occurred as a result of a client invocation on the service. The following error will be returned in the HTTP response:

HTTP/1.1 500 Internal Server Error

Content-Type: text/xml

<error>Internal platform error occurred</error>

If the operator’s service is unavailable the following error will be returned in the XML response:

HTTP/1.1 502 Bad Gateway

Content-Type: text/xml

<error> Error integrating with the external system </error>

A PolicyException may be thrown to indicate a fault relating to a policy associated with the service. For example, the following will be returned in the HTTP response if a minimum message length policy is enforced and the message length is less than the minimum:

HTTP/1.1 402 Forbidden

Content-Type: text/xml

<error>A policy error occurred. </error>

If a parameter is specified incorrectly or is missing, for example, “mess” instead of “message” when sending an SMS, the following error is thrown:

HTTP/1.1 400 Bad Request

Content-Type: text/xml

<error>Message not present</error>

If authorization credentials are incorrect or not present, the following error is thrown:

HTTP/1.1 401 Unauthorized

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 12 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

