Doc# OMA-ARC-REST-2009-0099-CR_Common_TS_Input[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-ARC-REST-2009-0099-CR_Common_TS_Input
Change Request

Change Request

	Title:
	Including the way for passing from XML to JSON and to URLEncoded
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST AHG

	Doc to Change:
	OMA-TS-ParlayREST_Common-V1_0-20091123-D

	Submission Date:
	Nov 27 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Diego González, Telefónica S.A., diegog@tid.es
Jesús María Martin, Telefónica S.A. jesusmaria.martingarcia@telefonica.es

	Replaces:
	n/a

1 Reason for Change

Change 1: Some guidance is needed for changing from XML to JSON and to URLEncoded
Change 2: Internationalization rules proposed.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR recommends ARC REST AHG to approve the proposed changes to Common TS
6 Detailed Change Proposal

Change 1: New chapter 5.x
5.x.
Common Data Representations

5.x.1
XML

POST and PUT requests MAY include data in XML format. An application/xml body is used in these cases. This XML format SHALL be compliant with the corresponding XML Schemas for the data types.
Responses MAY as well include XML body.

XML is the default representation format for ParlayREST APIs.

5.x.2
JSON
POST and PUT requests MAY include data in JSON format. Details on this format can be found in JSON [Java Script Object Notation, http://www.json.org/]
Responses MAY as well include bodies in JSON format.

5.x.2.1
Serialization guidelines for JSON encoding in HTTP Request/responses.

As XML is the format used by default, specifications of ParlayREST APIs include .XSD files describing the data needed by the API, for its direct usage in XML representations. The following are general rules for mapping between the XML and JSON representations:
a. XML elements that appear at the same XML hierarchical level (i.e. either top-level elements or within the same XML parent element), are mapped to a set of name:value pairs within a JSON object, as follows:

(i) Each XML element appearing only once at the same hierarchical level is mapped to an individual name:value pair. The name is formed according to bullet b, while the value is formed according to bullet c.

(ii) XML elements appearing more than once at the same hierarchical level are mapped to only one, individual name:value pair. The name is formed according to bullet b, while the value is a JSON array containing one value per each occurrence of the XML element. The name is formed according to bullet b whilst values are formed according to bullet c.

(iii) Name and Value of JSON objects will go between “”. Additionally, any JSON representation will go between {}, according to JSON RFC.

b. The name of the name:value pair is the name of the XML elements (i.e. XML_element_name:value)

c. The value is formed as follows:

i. when the XML element has neither attributes nor child XML elements, the value is equal to the value of the XML element. In case the element is nill (i.e it has no value), it will be indicated as having a “null” value within JSON.

ii. when the XML element has child elements and/or attributes, the value is a JSON object containing the following name:value pairs:

· one name:value pair per each attribute, where name is the name of the attribute and value is the value of the attribute.

· one name:value pair associated to the value of the XML element, where name is the string “$t” and value is the value of the XML element.

Note: there is no specific rule on this within JSON RFC or json.org. Hence, Google rules for XML feeds to JSON conversion have been followed (http://code.google.com/intl/es/apis/gdata/json.html) to select “$t” string.

· name:value pairs associated to XML child elements. These name:value pairs are formed in accordance with bullet a.

Within JSON, there is no need to reflect:

ii) the first <?xml version="1.0" encoding="UTF-8" ?> tag

iii) declaration of namespaces or schemaLocations

The following is an example illustrating the guidelines:
Input XML content 1:

<Animals>

 <dog>

 <name attr="1234">Rufus</name>

 <BReed>labrador</BReed>

 </dog>

 <dog>

 <name>Marty</name>

 <BReed>whippet</BReed>

 <a/>

 </dog>

 <dog/>

 <cat name="Matilda"/>

 <a/>

</Animals>

Transformed JSON:

{"Animals": {

 "a": null,

 "cat": {"name": "Matilda"},

 "dog": [

 {

 "BReed": "labrador",

 "name": {

 "$t": "Rufus",

 "attr": "1234"

 }

 },

 {

 "BReed": "whippet",

 "a": null,

 "name": "Marty"

 },

 null

]

}}

5.x.3.
URL encoded

As an alternative to XML or JSON, input data in requests may be submitted in application/x-www-form-urlencoded format. In the particular case of GET/DELETE requests this will imply the use of query parameters while in POST/PUT requests it will imply the inclusion of an application/x-www-form-urlencoded body. This is subject to some restrictions in the exchanged information (ASCII alphanumeric plus some unsafe and reserved characters, escaped as %HH). For more information, check internationalization for REST APIs subchapter 3.10.
5.x.3.1 Serialization guidelines for URL style encoding in POST/PUT Requests.
As XML is the format used by default, specifications of REST APIs include .XSD files describing the data needed by the API, for its direct usage in XML representations. The following are general rules for mapping between the XML and application/x-www-form-urlencoded representations:

b) When using this serialization in POST and PUT requests, data will be included in the body of the request and not in the URL. To do this, Content-Type: application/x.www-form-urlencoded will be used.
c) When using this serialization in GET and DELETE requests, data will be included in the URL.
d) Where one of the elements is a complex type, only the simple type child sub (or sub-sub)-elements will be included in the URL encoded data.
e) For every of these sub-elements, they will be included with their full qualified name, according to the XML Schema.

f) In order to include these sub-elements and attributes, the following rules for mapping between the XML and Url-encoded formats shall be applied:

i) UrlEncoded fields have the same name as its counterpart XML element.
ii) For referring to sub-elements or attributes, the character “.” is used in the following way:

element.subelement.attribute

iii) When the XML element has attributes, an Urlencoded object containing one ‘name=value’ pair per attribute will be used, where name=(name of the attribute) and value=(value of the attribute), as showed below:

element.subelement.attribute=value

iv) When an element has an occurrence higher than one, i.e: a multiple element, it is serialized as a vector, in the following way:

element[0].attributeX=valueA&element[0].attributeY=valueB&element[1].attributeX=valueB

v) Similarly, when an attribute has multiple values, it is serialized as follows:

element.subelement.attribute.value[0]=valueA& element.subelement.attribute.value[1]=valueB
g) In the absence or XML hierarchy issues (no several appearances of fields an no multiple values for a field exist in data structure) rules in bullets e.ii to e.v do not need to be applied, and encoding shall look like:

subelement1=valueA

subelement2=valueB

attribute=valueC

this is decided case by case. If this latter approach is followed, it should be documented by means of a table with the result of removing XML hierarchy levels.

Within Urlencoded, there is no indication of the first <?xml version="1.0" encoding="UTF-8" ?> or the declaration of namespaces or schemaLocations

Change 2: New chapter 5.y
5.y.
INTERNATIONALIZATION

XML Serialization: in REST requests/responses, internationalization comes through the use of UTF-8 encoding in XML bodies. This corresponds with a charset=”utf-8”.

Content-Type: application/xml; charset=”utf-8”<?xml version="1.0" encoding="UTF-8"?>

<tns:example>

…..

</tns:example>

For JSON serialization, UTF-8 encoding will be used too as default, as specified in application/json RFC [JSON_RFC RFC 4627 “Application/json media type”, http://www.ietf.org/rfc/rfc4627.txt. Thus, Content-Transfer-Encoding 8bit must be used with this media type.]
Content-Type: application/json;”

Content-Transfer-Encoding: 8bit

<json UTF-8 data>

For URL style serialization, internationalization support is more restricted. According to URL RFC [RFC 1738 “Uniform Resource Locations”, http://www.faqs.org/rfcs/rfc1738.html] and HTML FORMS [HTML_FORMS “HTML Forms, http://www.w3.org/TR/html401/interact/forms.html#h-17.3”], only alphanumeric ASCII characters [0-9, a-z, A-Z] and some other ($-_.+!*'()) may be included directly. Other unsafe and reserved characters may be exchanged too but must escaped (",?, etc.).

This applies to GET/DELETE query parameters and urlencoded bodies in POST/PUT requests, as in the example below.

Content-Type: application/x-wwww-form-urlencoded

message=quedar%EDamos+ma%F1ana&address=621444448

For the exchange of binary data, base64 will be taken as Content-Transfer-Encoding.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

