Doc# OMA-ARC-REST-2010-0075R03-CR_xml2json_ambiguity_fix.doc
Change Request

Doc# OMA-ARC-REST-2010-0075R03-CR_xml2json_ambiguity_fix.doc
Change Request

Change Request

	Title:
	XML2JSON ambiguity fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Doc to Change:
	OMA-TS-ParlayREST_Common-V1_0-20100216-D

	Submission Date:
	3 Mar 2010

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Uwe Rauschenbach, Nokia Siemens Networks, uwe.rauschenbach@nsn.com
Kevin Smith, Vodafone, kevin.smith@vodafone.com
Sonsoles Fernández, Telefonica, msfv@tid.es

	Replaces:
	n/a

	Attachment:
	n/a

1 Reason for Change

R02 addresses comments from Telefonica in the REST confcalls on 23 Feb
R03 represents the compromise reached offline between NSN, Vodafone and Telefonica, and adds Telefonica as a co-signer.
This CR highlights an ambiguity in the XML-to-JSON conversion rules, illustrates the different deployment possibilities and their specialities, and proposes a resolution that maintains interoperability.
The issue:

The current conversion rules for elements that can occur more than once are ambiguous. What does “appear more than once” mean? The following interpretations are possible

(a) Actually appear more than once in a particular XML instance document

(b) Be allowed to appear more than once as defined in our spec (and, as it happens, in the XSD by a “maxOccurs” value greater than one)

Let us now look at a simplified example, an outbound SMS that may be sent to one or to multiple recipients.

Spec text example:

Type: OutboundSMS

	Element
	Type
	Optional
	Description

	address
	xsd:anyURI [1..unbounded]
	No
	Destination addresses for the Message.

	message
	xsd:string
	No
	The message

XML schema:

<xs:complexType name=”OutboundSMS”>
<xs:sequence>

<xs:element name=”address” type=”xs:anyURI” minOccurs=”1” maxOccurs=”unbounded”/>

<xs:element name=”message” type=”xs:string” />

</xs:sequence>

</xs:complexType>

<xs:element name=”outboundSMS” type=”OutboundSMS” />

Two example XML instances:

(1)

<outboundSMS>

<address>+491733083573</address>

<message>Time to REST?</message>

</outboundSMS>

(2)

<outboundSMS>

<address>+491733083573</address>

<address>+491708154711</address>

<message>Time to REST?</message>

</outboundSMS>

Now let us look at how the different interpretations would affect the JSON.
In case interpretation (a) is followed, we will have the following:
{"outboundSMS": {

 "address": "+491733083573", (scalar
 "message": "Time to REST?"

}}

{"outboundSMS": {

 "address": ["+491733083573", "+491708154711"], (array
 "message": "Time to REST?"

}}

(it can be seen that an XML instance with one address is treated different than all other instances (with more than one address). So, the code that handles address needs to be able to distinguish between scalar and array. This requires special handling in the parser when using languages with strong typing concept such as Java.
In case interpretation (b) is followed, we will have the following:

{"outboundSMS": {

 "address": ["+491733083573"], (array
 "message": "Time to REST?"

}}

{"outboundSMS": {

 "address": ["+491733083573", "+491708154711"], (array
 "message": "Time to REST?"

}}

(it can be seen that an XML instance with one address is treated the same way as all other instances (with more than one address). So, the code that handles address just needs to handle an array.

Danger if not fixed

As the implementations of different vendors may be based on different interpretations, IOP issues (in particular in the common case of lists with only one element) can be predicted.
Relationship to deployments
Basically, two different deployment options are possible w.r.t. generating the XML and JSON message data for ParlayREST.
Option 1 creates both JSON and XML as serializations of the internal data model. In this deployment, the serializer has access to the data model, and will generate JSON according to (b).

Option 2 follows a chained approach. The XML is generated by serializing the internal data structure, and then this instance is passed into a converter. In this case, data model information may not be available to the converter, which means the converter would generate output according to option (a).

In order to have no IOP issue, while not putting any limitation on deployments, a receiving application must therefore be able to handle both flavors.

[image: image1.emf]XML

Serializer

JSON

Serializer

Internal

Datastore

XML

Message

JSON

Message

XML

Serializer

Internal

Datastore

XML2JSON

Converter

XML

Message

JSON

Message

Deployment 1Deployment 2

JSON

De-Serializer

Internal

Datastore

Proposed way forward

· Add text to the spec that makes clear both options (a) and (b) exist and are valid

· Point out that a generating application MAY use either convention, and a consuming application MUST be able to handle both.
2 Impact on Backward Compatibility

There is no impact on backward compatibility.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is kindly requested to review and agree the changes.
6 Detailed Change Proposal

Change 1: Make the statement on multiple elements non-ambiguous
5.7 JSON encoding in HTTP Requests/Responses
5.7.1 Serialization rules: general conversion
Specifications of ParlayREST APIs include XML schema files defining the data structures used by the API, for its direct usage in XML format. The following are general rules for mapping between the Parlay REST XML and JSON data format:
a. XML elements that appear at the same XML hierarchical level (i.e. either root elements or within the same XML parent element), are mapped to a set of name:value pairs within a JSON object, as follows:

(i) Each XML element appearing only once at the same hierarchical level (“single element”) is mapped to an individual name:value pair. The name is formed according to bullet b, while the value is formed according to bullet c.

(ii) XML elements appearing more than once at the same hierarchical level (“element list”) are mapped to only one, individual name:value pair. The name is formed according to bullet b, while the value is a JSON array containing one value per each occurrence of the XML element. The name is formed according to bullet b whilst values are formed according to bullet c.

(iii) Name and Value of JSON objects will go between “”. Additionally, any JSON representation of an element of complex type will go between {}, according to [JSON].

b. The name of the name:value pair is the name of the XML elements (i.e. XML_element_name:value)

c. The value is formed as follows:

i. when the XML element has neither attributes nor child XML elements, the value is equal to the value of the XML element. In case the element is nill (i.e it has no value), it will be indicated as having a “null” value within JSON.

ii. when the XML element has child elements and/or attributes, the value is a JSON object containing the following name:value pairs:

· one name:value pair per each attribute, where name is the name of the attribute and value is the value of the attribute.

· one name:value pair associated to the text value (simple type content) of the XML element, where name is the string “$t” and value is the value of the XML element.

· name:value pairs associated to XML child elements. These name:value pairs are formed in accordance with bullet a.

Within JSON, there is no need to reflect:

· the first <?xml version="1.0" encoding="UTF-8" ?> tag

· declaration of namespaces or schemaLocations
In order to generate unambiguous JSON from XML instances, based on the rules defined above, the following limitations need to be imposed on the XML data structures:

· it is not allowed that two different elements from different namespaces have the same name, in case they appear at the same level

· within an XML parent element, no attribute is allowed to have the same name as a child element of this parent element.
Note: These general rules have been used to generate the JSON examples from the XML examples in the Technical Specifications of the ParlayREST Enabler.
5.2.1.1 Example
(Informative)
The following is an example illustrating the rules above.
Input XML content:

<Animals>

 <dog>

 <name attr="1234">Rufus</name>

 <BReed>labrador</BReed>

 </dog>

 <dog>

 <name>Marty</name>

 <BReed>whippet</BReed>

 <a/>

 </dog>

 <dog/>

 <cat name="Matilda"/>

 <a/>

</Animals>

Transformed JSON:

{"Animals": {

 "a": null,

 "cat": {"name": "Matilda"},

 "dog": [

 {

 "BReed": "labrador",

 "name": {

 "$t": "Rufus",

 "attr": "1234"

 }

 },

 {

 "BReed": "whippet",

 "a": null,

 "name": "Marty"

 },

 null

]

}}

5.7.2 Serialization rules: structure-aware conversion

The general approach as defined above relies only on the information in the XML data instance.
The structure-aware approach defined in this section considers information in a data instance (e.g. XML) plus further information about the data structure definition (such as the allowed number of element occurrences), as documented in the API specifications and XML Schemas.
This structure-aware approach allows having always the same JSON structure to convey lists of elements.
In this conversion approach, the rules above apply, except for the following modification to the conditions in a (i) and a (ii):

If an element is allowed to appear more than once at the same hierarchical level, it SHALL be treated according to a (ii) as element list, otherwise it SHALL be treated according to a (i) as single element.
5.2.1.2 Example
(Informative)

The following example illustrates the structure-aware serialization.
In the example, the data instance is represented as XML document:
<Animals>

 <dog>

 <name attr="1234">Rufus</name>

 <BReed>labrador</BReed>

 </dog>

 <dog>

 <name>Marty</name>

 <BReed>whippet</BReed>

 <a/>

 </dog>

 <dog/>

 <cat name="Matilda"/>

 <a/>

</Animals>

The information about the data structure is represented as XML schema in this example. Note that the maximum cardinality of the elements is the only piece of information that is used here.
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Animals">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="dog" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name" minOccurs="0">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="attr" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="BReed" type="xsd:string" minOccurs="0"/>

<xsd:element name="a" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="cat" maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="a"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
Transformed JSON:

{"Animals": {

 "dog": [

 {

 "name": {

 "$t": "Rufus",

 "attr": "1234"

 }

 "BReed": "labrador",

 },

 {

 "name": "Marty"

 "BReed": "whippet",

 "a": null,

 },

 null

]

 "cat": [{"name": "Matilda"}],

 "a": null,

}}

5.7.3 Rules for JSON-creating and JSON-consuming applications
A JSON-creating application SHALL use either the structure-aware or the general approach, but not both.
Applications that consume a JSON representation SHALL accept the following two different JSON representations for an array that contains one element:

1. a pair of name and value (e.g. “name”: “one”)

2. a pair of name and array of one value (e.g. “name”: [“one”])
Note: according to JSON [RFC4627], the order of objects is not significant, whilst the order of values within an array is.

5.7.4

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

_1328082011.vsd
�

�

�

Internal Datastore�

XML
Serializer�

JSON
Serializer�

XML
Message�

JSON
Message�

XML
Serializer�

Internal Datastore�

XML2JSON
Converter�

XML
Message�

JSON
Message�

Deployment 1

Deployment 2

JSON
De-Serializer�

Internal Datastore�

