Doc# OMA-ARC-REST-2010-0177R01-INP_CR_Presence_resource_definition.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-REST-2010-0177R01-INP_CR_Presence_resource_definition.doc
Input Contribution

Input Contribution

	Title:
	Resource definition for Presence TS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Submission Date:
	13 Apr 2010

	Source:
	Vitomir Ilic, Ericsson, vitomir.ilic@ericsson.com
SunHwan Lim, ETRI, shlim@etri.re.kr

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Need to update resource summary section for ParlayREST Presence TS.
2 Summary of Contribution

This contribution proposes initial resource structure definition for ParlayREST Presence TS that shall be used to replace the existing information in section 5.1, Resource Summary, in the skeleton TS document, OMA-TS-ParlayREST_Presence-V1_0-20100415-D.doc.
3 Detailed Proposal
5.1
Resources Summary

This section summarizes all the resources used by the Presence API.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image1.emf]//{serverRoot}/{apiVersion}

/presence

/presencesource/{presenceSourceId}

/{presentityId}

/authorization

/{presenceResource}

/watcherinfolist

/subscriptions

/{subscriptionId}

/{watcherSubscriptionStatus}

/default

/rules

/{identityType}/{identity}

/{watcherAuthorizationType}

/{watcherId}

/presencecontact/{presentityId}

/{subscriptionId}

/subscriptions

/presencecontactlist/{contactListId}

/{subscriptionId}

/subscriptions

/{watcherId}/subscribedAttributes

/{ruleId}

Figure 1
Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. The “PX” row indicates the Parlay X SOAP equivalent operation.

Purpose: Create or update presence data on the server on-behalf of a user
	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Management of presence information
	/{presentityId}/presencesource/{presenceSourceId}

	
	Retrieves the Presentity presence data

NOTE: This operation will just retrieve the data for this particular presenceSourceId and is not the operation a Watcher shall use
	Creates presence data for a Presentity

	Updates presence data for a Presentity.

This operation will replace any existing presence data for the specified ‘presenceSourceId’.
	Removes the presence data for a Presentity for the specified ‘presenceSourceId’

	
	
	
	No PX equivalent
	PX: publish
	No PX equivalent
	No PX equivalent

	Management of individual presence attributes

	/{presentityId}/presencesource/{presenceSourceId}/{PresenceResource}

NOTE: ‘{PresenceResource}’ represents the path down to the attribute to update, e.g:
‘/person/mood/’ or
‘service/{serviceId}/{serviceVersion}/serviceAvailability’
	
	Retrieves the value of the specified presence attribute
	This operation creates a new presence attribute
	This operation updates a presence attribute
	This operation removes a presence attribute.

	
	
	
	No PX equivalent
	PX: publish
	No PX equivalent
	No PX equivalent

Purpose: To allow Watcher to retrieve presence from a single Presentity or a Contact list

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher retrieval of presence information for a single presentity

	/{watcherId}/presencecontact/{presentityId}
	
	This operation retrieves the composite presence from a Presentity, which means that it might include presence data from several presence sources (after presence authorization and privacy filtering).
	No
	No
	No

	
	
	
	PX: getUserPresence
	

	Watcher retrieval of presence data for a contact list
	/{watcherId}/presenceContacList/{contactListId}

	
	This operation allows a Watcher to retrieve the presence data for all users in a contact list.
	No
	No
	No

	
	
	
	PX: getUserPresence
	

Purpose: To allow Presentity to upload content (like pictures/avatars/icons) and share it with other users

A recommended implementation of Content Management may be to map it to the concept introduced in Presence Content XDMS in OMA PRS 2.0. This means that when a Presentity uploads content it will actually be stored in the Presence Content XDMS together with the meta information (mime-type, size and encoding etc). The content Id should be mapped to the directory+filename used in the Presence Content XDMS.

After a Presentity has uploaded the content it will typically store/update the data related to the ‘/person/status-icon’ attribute.

In this specification the ‘contentOwnerId’ corresponds to the ‘presentityId’ and ‘userId’ corresponds to the ‘watcherId’.

NOTE: These operations belong to a new function in OMA Presence SIMPLE 2.0 and hence not included in the Presence Parlay-X SOAP version. Listed equivalent opeartions are from Parlay-X Content Management (3GPP TS 29.199-21)

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/contentManagement
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presentity contents management
	/{contentOwnerId}

	
	Allows a Presentity to retrieve all its own content (e.g. pictures)
	Create new content.
	No
	Allows a user to remove all its content

	
	
	
	PX: readContent
	PX: submitContent
	-
	PX: deleteContent

	Presentity content management
	/{contentOwnerId}/{contentId}

	
	Allows a user to retrieve content (e.g. picture) as specified in the ‘contentId’.

NOTE: This operation will retrieve the user’s own content and is not the operation another user shall use
	No
	This operation replaces existing content
	Allows a user to remove content from the server.

	
	
	
	PX: readContent
	-
	PX: modifyContent
	PX: deleteContent

Purpose: To allow a user to retrieve content from another user

NOTE: These operations belong to a new function in OMA Presence SIMPLE 2.0 and hence not included in the Presence Parlay-X SOAP version. Listed equivalent opeartions are from Parlay-X Content Management (3GPP TS 29.199-21)

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/contentManagement
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher retrieval of content from a presentity
	/{userId}/content/{contentOwnerId}/{contentId}

	
	This operation allows a user to retrieve content (e.g. picture) from another user.
	No
	No
	No

	
	
	
	PX: readContent
	-

Purpose: To allow Watcher to manage subscriptions for presence notifications for a single Presentity

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence subscriptions
	/{watcherId}/presencecontact/{presentityId}/subscriptions
	
	This operation allows a Watcher to retrieve all active presence subscriptions.
	This operation allows a Watcher to create a subscription for presence information
	No
	No

	
	
	
	No PX equivalent
	PX: startPresenceNotification
	-

	Individual presence subscription
	/{watcherId}/presencecontact/{presentityId}/subscriptions/{subscriptionId}
	
	This operation allows a Watcher to retrieve an active presence subscription.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Watcher to update his/her subscription for presence information
	This operation terminates a presence subscription

	
	
	
	No PX equivalent
	-
	PX:
startPresenceNotification
	PX: endPresenceNotification

Purpose: To allow the server to inform Watcher about presence data updates

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence notification
	<Specified by the client when the subscription is created or during provisioning process>
	
	No
	This operation is used by the server to inform about a presence update.
	No
	No

	
	
	
	-
	PX: statusNotified, statusEnd and subscriptionEnded
	-

Purpose: To allow Watcher to manage subscriptions for presence notifications for a contact list

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence list subscriptions
	/{watcherId}/presenceContactList/{contactListId}/subscriptions
	
	This operation allows a Watcher to retrieve all active presence list subscriptions.
	This operation allows a Watcher to create a presence list subscription
	No
	No

	
	
	
	No PX equivalent
	PX: startPresenceNotification
	-

	Individual presence list subscription
	/{watcherId}/presenceContactList/{contactListId}/subscriptions/{subscriptionId}
	
	This operation allows a Watcher to retrieve an individual presence list subscription.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Watcher to update his/her presence list subscription
	This operation terminates a presence list subscription

	
	
	
	No PX equivalent
	-
	PX:
startPresenceNotification
	PX: endPresenceNotification

Purpose: To allow the server to inform Watcher about presence data updates for a user in a contact list

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence list notification
	<Specified by the client when the subscription is created or during provisioning process>
	
	No
	This operation is used by the server to inform about a presence update.
	No
	No

	
	
	
	-
	PX: statusNotified, statusEnd and subscriptionEnded
	-
	-

Purpose: To allow Presentity to retrieve the list of Watchers that are interested in the Presentity’s presence data
It allows the Presentity to retrieve the current status of Watcher subscriptions towards the Presentity. The desired state is provided in the ‘watcherSubscriptionStatus’ resource (e.g. unauthorized and active). The terminated state is not considered to be needed. ‘Unauthorized’ maps to both pending and waiting state in RFC 3857.
We currently don’t see any need of being able to retrieve the entire list (/{presentityId}/watcherinfolist) in one request, normally you retrieve either ‘unauthorized’ or ‘active’ Watchers.

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Retrieval of watcher information
	/{presentityId}/watcherinfolist/{watcherSubscriptionStatus}
	
	This operation allows the client to retrieve the list of identities that are interested in the Presentity’s Presence data. The client may retrieve the current status of the watcher subscriptions including unauthorized and authorized users.
	No
	No
	No

	
	
	
	PX: getMyWatchers
	-

	Retrieval of subscribed attributes
	/{presentityId}/watcherinfolist/{watcherId}/subscribedAttributes
	
	This operation allows the Presentity to retrieve the current subscription status and the subscribed attributes for the specified Watcher
	No
	No
	No

	
	
	
	PX:
getSubscribedAttributes
	-

Purpose: To allow Presentity to manage subscriptions for notifications to Watcher Information

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher information subscriptions
	/{presentityId}/watcherinfolist/subscriptions
	
	This operation allows a Presentity to retrieve all active Watcher information list subscriptions.
	This operation allows a Presentity to create a Watcher information list subscription
	No
	No

	
	
	
	No PX equivalent
	PX: startMyWatchersNotification
	-

	Individual watcher information subscription
	/{presentityId}/watcherinfolist/subscriptions/{subscriptionId}
	
	This operation allows the Presentity to retrieve a subscription as specified in the ‘subscriptionId’.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Presentity to update his/her subscription for Watcher information list
	This operation terminates a Watcher information list subscription

	
	
	
	No PX equivalent
	-
	PX:

startMyWatcherNotification
	PX: endMyWatchersNotification

Purpose: To allow the server to inform Presentity about updates in Watcher’s subscription status

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher information notification
	<Specified by the client when the subscription is created or during provisioning process>
	
	No
	This operation is used by the server to inform about updates in Watcher’s subscription status.
	No
	No

	
	
	
	-
	PX: notifyMyWatchers, notifyMyWatchersEnd and NotifyError
	-

Purpose: Manage access to presence information for individual Watchers and contact lists
The idea is to provide three simple default authorization lists which are managed by the resource ‘watcherAuthorizationType’ where the values may be ‘’allowList’, ‘blockList’ or ‘politeBlockList’). If for instance a Watcher is stored in the ‘allowList’ it will have access to all presence attributes of the Presentity.

The ‘identityType’ is used to distinguish if the ‘identity’ to authorize is a ‘watcher’, ‘list’ or a ‘domain’ corresponding to a ‘watcherId’, ‘contactListId’ or ‘domainId’ respectively as defined in the ‘identity’.

The default access resource is used to specify a policy that applies if there are no rules applicable for a Watcher.

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Management of access to presence information
	/{presentityId}/authorization/{watcherAuthorizationType}/{identityType /{identity}
	
	No
	Add specified identity to the specified type of authorization list
	No
	Remove specified identity from the specified type of authorization list

	
	
	
	-
	PX: updateAuthorizationRule
	-
	PX: deleteAuthorizationRule

	Retrieval of authorization list information
	/{presentityId}/authorization/{watcherAuthorizationType}

	
	Retrieve Watchers in the specified authorization list.
	No
	No
	No

	
	
	
	No PX equivalent
	-

	Default access to presence information
	/{presentityId}/authorization/default

	
	Retrieve default access decision to presence
	No
	Update default access to presence
	No

	
	
	
	No PX equivalent
	-
	No PX equivalent
	-

	Management of detailed authorization rules
	/{presentityId}/authorization/rules

	
	Retrieve all authorization rules
	This operation is used to create a new authorization rule.
	No
	This operation is used to remove all authorization rules

	
	
	
	No PX equivalent
	PX: updateAuthorizationRule
	-
	PX: deleteAuthorizationRule

	Management of an individual authorization rule
	/{presentityId}/authorization/rules/{ruleId}

	
	This operation is used to retrieve an authorization rule as specified in the ‘ruleId’
	No
	This operation is used to update and an authorization rule as specified in the ‘ruleId’
	This operation is used remove an authorization rule as specified in the ‘ruleId’

	
	
	
	No PX equivalent
	-
	PX: updateAuthorizationRule
	PX: deleteAuthorizationRule

	
	
	
	

	
	
	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

	

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To review and agree with the proposed initial resource structure definition for Presence TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

_1332252710.ppt

//{serverRoot}/{apiVersion}

/presence

/presencesource/{presenceSourceId}

/{presentityId}

/authorization

/watcherinfolist

/{watcherId}

/{presenceResource}

/subscriptions

/{subscriptionId}

/{watcherSubscriptionStatus}

/default

/rules

/{identityType}/{identity}

/{watcherAuthorizationType}

/presencecontact/{presentityId}

/{subscriptionId}

/subscriptions

/presencecontactlist/{contactListId}

/{subscriptionId}

/subscriptions

/subscribedAttributes/{watcherId}

/{ruleId}

_1332639674.ppt

//{serverRoot}/{apiVersion}

/presence

/presencesource/{presenceSourceId}

/{presentityId}

/authorization

/watcherinfolist

/{watcherId}

/{presenceResource}

/subscriptions

/{subscriptionId}

/{watcherSubscriptionStatus}

/default

/rules

/{identityType}/{identity}

/{watcherAuthorizationType}

/presencecontact/{presentityId}

/{subscriptionId}

/subscriptions

/presencecontactlist/{contactListId}

/{subscriptionId}

/subscriptions

/{watcherId}/subscribedAttributes

/{ruleId}

_1331396694.ppt

//{serverRoot}/{apiVersion}

/{apiName}

/{urlPath}

/{resource_1}

/{resource_3}

/{resource_2}

For each API the root is the same

Use the name of the api, for example “location”. In this case it does not represent a resource. If it is a real resource, you need to change the format.

In case that the URL contains parts that are not really resources, for example /outboud/{senderAddress}.

Resources are represented by a yellow rectangle with a pile of documents which indicates that there are operations allowed on the resource

