OMA-TS-ParlayREST-AudioCall-V1_0-20100506-D
Page 17  V(33)


	[image: image1.jpg]
	

	RESTful bindings for Parlay X Web Services – 

Audio Call

	Draft Version 1.0 – 06 May 2010

	Open Mobile Alliance

	OMA-TS-ParlayREST-AudioCall-V1_0-20100506-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
4.1
Version 1.0
9
5.
Audio Call API definition
10
5.1
Resources Summary
10
5.2
Audio Call ParlayREST API Data Structures
17
5.2.1
Type: DigitConfig
17
5.2.2
Type: RecConfig
17
5.2.3
Type: PlayConfig
17
5.2.4
Type: MessageStatusList
18
5.2.5
Type: MediaMessageStatus
18
5.2.6
Type: MessageList
18
5.2.7
Type: TextMessage
18
5.2.8
Type: MediaMessage
19
5.2.9
Type: InteractionList
20
5.2.10
Type: DigitCapture
21
5.2.11
Type: RecordingCapture
21
5.2.12
Enumeration: MessageStatus
22
5.2.13
Enumeration: AnnouncementFormat
23
5.2.14
Enumeration: MediaFormat
23
5.2.15
Values of the Link “rel” attribute
23
5.3
Sequence Diagrams
23
5.3.1
Play Audio Message and Check Status
23
5.3.2
Play Audio Message and Terminate the Playing of the Message
25
5.3.3
Play Media and Collect Digits
25
5.4
Resource: [Description of the resource]
26
5.4.1
Request URI variables
27
5.4.2
Response Codes
27
5.4.2.1
Response Codes
27
5.4.2.2
Exception fault codes
27
5.4.3
GET
27
5.4.3.1
Example 1: [Example title]  (Informative)
27
5.4.3.1.1
Request
28
5.4.3.1.2
Response
28
5.4.3.2
Example 2: [Example title]  (Informative)
28
5.4.3.2.1
Request
28
5.4.3.2.2
Response
28
5.4.4
PUT
28
5.4.5
POST
28
5.4.5.1
Example 1: [Example title]  (Informative)
28
5.4.5.1.1
Request
28
5.4.5.1.2
Response
29
5.4.5.2
Example 2: [Example title]  (Informative)
29
5.4.5.2.1
Request
29
5.4.5.2.2
Response
29
5.4.6
DELETE
29
Appendix A.
Change History (Informative)
30
A.1
Approved Version History
30
A.2
Draft/Candidate Version 1.0 History
30
Appendix B.
Static Conformance Requirements (Normative)
31
B.1
SCR for ParlayREST.FUNCAREA Server
31
B.1.1
SCR for ParlayREST.FUNCAREA.FUNCTION Server
31
Appendix C.
Application/x-www-form-urlencoded Request Format for Selected REST Operations
32
C.1
[Operation]
32
C.1.1
Example     (Informative)
32
C.1.1.1
Request
32
C.1.1.2
Response
32
Appendix D.
JSON examples  (Informative)
33
D.1
[Example Title] (section [section number])
33
D.2
[Example Title] (section [section number])
33


Figures

11Figure 1 Resource structure defined by this specification


24Figure 2 [Figure caption describing the flow]




1. Scope

This specification defines an HTTP protocol binding for an abstract API using the REST architectural style, based on an existing OMA enabler namely the Audio Call, as defined in [3GPP 29.199-11]. 

2. References

2.1 Normative References

	[3GPP 29.199-11]
	3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part 11: Audio Call  (Release 8)”, URL:http://www.3gpp.org/ 

	[REST_TS_ CallNotif]
	“RESTful bindings for Parlay X Web Services – Call Notification”, Open Mobile Alliance™, OMA-TS-ParlayREST_CallNotification-V1_0, URL:http://www.openmobilealliance.org/

	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt 

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC] 
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>


<< The ParlayREST reference labels are as follows

[REST_TS_COMMON]

[REST_TS_SMS]

[REST_TS_MMS]

[REST_TS_Payment]

[REST_TS_Location]

[REST_TS_Presence]

[REST_TS_AddressListMgt]

[REST_TS_ConnProf]

[REST_TS_3PCall]

[REST_TS_CallNotif]

[REST_TS_QoS]

[REST_TS_OneAPI]

[REST_WP]

[REST_ERP]

>>

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_ParlayREST_API_specifications, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	[N/A]
	[N/A]


3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	PX
	Parlay X

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>


4. Introduction

The ParlayREST Technical Specification for Audio Call contains the HTTP protocol binding for the Parlay X Audio Call Web Services specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding). 

4.1 Version 1.0

Version 1.0 of Audio Call ParlayREST API specification supports the following operations:
<< Include a list of supported operations >>

5. Audio Call API definition

This section is organized to support a comprehensive understanding of the Audio Call API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). In addition, for each supported resource/verb combination, the table lists the Parlay X equivalent operation, where applicable. What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

The remaining subsections in section 5 contain the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR). 
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the Audio Call API.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes. 




[image: image3.wmf]/

messages

//

{

serverRoot}/{apiVersion

}

/

audiocall

/

text

/

{

messageId

}

/

statusList

/

audio

/

{

messageId

}

/

statusList

/

voiceXml

/

{

messageId

}

/

statusList

/

video

/

{

messageId

}

/

statusList

/

interactions

/

collection

/

{

interactionId

}

/

recording

/

{

interactionId

}


Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. The “PX” row indicates the Parlay X SOAP equivalent operation. 



Purpose : Management of Media Messages
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/audiocall
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	All audio call messages
	/messages

	MessageList
	Read all active audio call messages
	no
	no
	no

	
	
	
	No PX equivalent operation
	
	
	

	Text messages
	/messages/text

	MessageList (used for GET)

TextMessage (used for POST)
	Read all active text messages
	Create new text message to be played to call participant(s)
	no
	no

	
	
	
	No PX equivalent operation
	PX: PlayTextMessage
	
	

	Individual text message 
	/messages/text/{messageId}

	TextMessage
	Read text message 
	no
	no
	Terminate and remove text message

	
	
	
	No PX equivalent operation
	
	
	PX: EndMessage

	Text message status
	/messages/text/{messageId}/statusList

	MessageStatusList
	Read message status
	no
	no
	no

	
	
	
	PX: GetMessageStatus
	
	
	

	Audio messages
	/messages/audio

	MessageList (used for GET)

MediaMessage (used for POST)
	Read all active audio messages
	Create new audio message to be played to call participant(s)
	no
	no

	
	
	
	No PX equivalent operation
	PX: PlayAudioMessage
	
	

	Individual audio message
	/messages/audio/{messageId}

	MediaMessage
	Read audio message
	no
	no
	Terminate and remove audio message

	
	
	
	No PX equivalent
	
	
	PX: EndMessage

	Audio message status
	/messages/audio/{messageId}/statusList

	MessageStatusList
	Read message status
	no
	no
	no

	
	
	
	PX: GetMessageStatus
	
	
	

	VoiceXML messages
	/messages/voiceXml

	MessageList (used for GET)

MediaMessage (used for POST)
	Read all active Voice XML messages
	Create new VoiceXML message to be played to call participant(s)
	no
	no

	
	
	
	No PX equivalent
	PX: PlayVoiceXmlMessage
	
	

	Individual VoiceXML message
	/messages/voiceXml/{messageId}

	MediaMessage
	Read Voice XML message
	no
	no
	Terminate and remove audio message

	
	
	
	No PX equivalent
	
	
	PX: EndMessage

	VoiceXML message status
	/messages/voiceXml/{messageId}/statusList

	MessageStatusList
	Read message status
	no
	no
	no

	
	
	
	PX: GetMessageStatus
	
	
	

	Video messages
	/messages/video

	MessageList (used for GET)

MediaMessage (used for POST)
	Read all active video messages
	Create new video message to be played to call participant(s)
	no
	no

	
	
	
	No PX equivalent
	PX: PlayVideoMessage
	
	

	Individual video message
	/messages/video/{messageId}

	MediaMessage
	Read video message
	no
	no
	Terminate and remove audio message

	
	
	
	No PX equivalent
	
	
	PX: EndMessage

	Video message status
	/messages/video/{messageId}/statusList

	MessageStatusList
	Read message status
	no
	no
	no

	
	
	
	PX: GetMessageStatus
	
	
	


Purpose : Management of Media Capture
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/audiocall
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	All media capture interactions
	/interactions

	InteractionList 
	Read all active media capture interactions 
	no
	no
	no

	
	
	
	No PX equivalent
	
	
	

	Play-and-collect interactions
	/interactions/collection

	InteractionList (used for GET)

DigitCapture (used for POST)
	Read all active audio calls where media is being played to participant(s) and digits being collected
	Play a media file  call participant(s) and and collect digits from the participant(s)
	no
	no

	
	
	
	No PX equivalent
	PX: StartPlayAndCollectInteraction
	
	

	Individual play-and-collect interaction
	/interactions/collection/{interactionId}

	DigitCapture
	Read individual play-and-collect interaction
	no
	no
	Stop interaction and remove information

	
	
	
	No PX equivalent
	
	
	PX: StopMediaInteraction

	Play media and record participant(s) response
	/interactions/recording

	InteractionList (used for GET)

RecordingCapture (used for POST)
	Read all active audio calls where media is being played to participant(s) and information being recorded from the partcipant(s)
	Play a media file to call participant(s) and and record information (media) from the  participant(s)
	no
	no

	
	
	
	No PX equivalent
	PX: StartPlayAndRecordInteraction
	
	

	Individual play-and-record interaction
	/interactions/recording/{interactionId}

	RecordingCapture
	Read individual play-and-record interaction
	no
	no
	Stop interaction and remove information

	
	
	
	No PX equivalent
	
	
	PX: StopMediaInteraction


5.2 Audio Call ParlayREST API Data Structures
The namespace for the Audio Call data types is:


urn:oma:xml:rest:audiocall:1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.

5.2.1 

5.2.2 Type: DigitConfig
5.2.3 Defines the configuration parameters for the input part of capture (collection) of digits from the phone keypad.
	Element Name
	Element Type
	Optional
	Description

	maxDigits
	xsd:unsignedInt
	Yes
	The maximum number of digits that will be collected.
If not given, the behaviour is implementation-specific.

	



	minDigits
	xsd:unsignedInt
	Yes
	The minimum number of digits that will be collected. If this isn't achieved, then a default prompt shall be played requesting for more digits to be entered.
If not given, the behaviour is implementation-specific.

	interruptMedia
	xsd:boolean
	No
	Indicates whether the application allows the end user to interrupt, or pause, the prompt.


5.2.4 Type: RecConfig
Defines the configuration parameters for the input part of the recording of a user’s voice.
	Element Name
	Element Type
	Optional
	Description

	recFileLocation
	xsd:anyURI
	Yes
	The location for storing the information recorded from the terminal.
If not given, the behaviour is implementation-specific.

	maxRecordingLength
	common:TimeMetric
	Yes
	The maximum time to record the media for


5.2.5 Type: PlayConfig
Defines the configuration parameters for the playback of the prompt as part of the recording of a user’s voice. 
Note that if the file to be played is of format VoiceXML, this may include interactions on its own. These interactions are processed internally in the VoiceXML script and are not returned to the Application.
	Element Name
	Element Type
	Optional
	Description

	playFileLocation
	xsd:anyURI
	choice
	The location of the file that will be played to the endpoint, including VoiceXML script location

	textString
	xsd:string
	choice
	The text to be converted by a Text-To-Speech engine

	messageFormat
	AnnouncementFormat
	No
	The type of announcement prompt to play to the end user

	mediaType
	xsd:string
	Yes
	MIME media type of the content to be played

	interruptMedia
	xsd:boolean
	No
	Indicates whether the application allows the end user to interrupt, or pause, the prompt.


5.2.6 Type: MessageStatusList 
Status of a particular message for a list of participants.
	Element name
	Element type
	Optional
	Description

	participantStatus
	MediaMessageStatus[0..unbounded]
	Yes
	Message status

	resourceURL
	xsd:anyURI
	Yes
	Self-reference. MUST be given if root element.


A root element named messageStatusList of type MessageStatusList is allowed in request and response bodies.

5.2.7 
	
	

	
	

	


5.2.8 Type: MediaMessageStatus
Status of the message for each callParticipant after message operation has been invoked.

	Element name
	Element type
	Optional
	Description

	callParticipant
	xsd:anyURI
	No
	Call Participant identifier

	status
	MessageStatus
	No
	Current playing status of the participant


5.2.9 Type: MessageList
List of messages.
	Element name
	Element type
	Optional
	Description

	textMessage
	TextMessage[0..unbounded]
	Yes
	List of text messages 

	audioMessage
	MediaMessage[0..unbounded]
	Yes
	List of audio messages 

	voiceXmlMessage
	MediaMessage[0..unbounded]
	Yes
	List of VoiceXML messages 

	videoMessage
	MediaMessage[0..unbounded]
	Yes
	List of video messages 

	resourceURL
	xsd:anyURI
	Yes
	Self-reference. MUST be given if root element.


A root element named messageList of type MessageList is allowed in event notification request bodies.
5.2.10 Type: TextMessage
This structure represents a text message, usually presented via Text-to-Speech.
	Name
	Type
	Optional
	Description

	callSessionIdentifier
	xsd:string
	No
	Identifies the call session to which the message is played.

	callParticipant
	xsd:anyURI [0..unbounded]
	Yes
	The set of participant addresses contained within the callSession to which the message is to be played. 

If no participants are specified, the message is played to all participants.

	text
	xsd:string
	No
	Text to process with a Text-To-Speech engine

	language
	xsd:string
	No
	Language of text (ISO string)
Ed. Note: There needs to be a reference but PX does not provide one, just mentions ISO spec. We have ISO 2-letter language codes (639-1) and ISO 3-letter language codes (639-2). 
We may also think of xml:lang which is based on RFCs 4646 and 4647 (a superset of the ISO specs).
Which to support? All?

	status
	MessageStatusList
	No
	Message status

	charging
	common:ChargingInformation
	Yes
	Charge to apply for the playing of this message. If charging is not supported then a PolicyException (POL0008) will be returned.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL



A root element named textMessage of type TextMessage is allowed in request and response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in section 5.6.1 of [REST_TS_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. Section 5.6.1 of [REST_TS_Common] provides a recommendation regarding the generation of the value of this field.

5.2.11 Type: MediaMessage
This structure represents a media message in audio, video or VoiceXML format.
	Name
	Type
	Optional
	Description

	callSessionIdentifier
	xsd:string
	No
	Identifies the call session to which the message is played.

	callParticipant
	xsd:anyURI [0..unbounded]
	Yes
	The set of participant addresses contained within the callSession to which the message is to be played. 

If no participants are specified, the message is played to all participants.

	mediaUrl
	xsd:anyURI
	No
	Location of content (audio, video, voiceXml) to play

	mediaFormat
	MediaFormat
	No
	The media format

	mediaType
	xsd:string
	Yes
	MIME media type of the content to be played

	status
	MessageStatusList
	No
	Message status

	charging
	common:ChargingInformation
	Yes
	Charge to apply for the playing of this message. If charging is not supported then a PolicyException (POL0008) will be returned.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL



A root element named mediaMessage of type MediaMessage is allowed in request and response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in section 5.6.1 of [REST_TS_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. Section 5.6.1 of [REST_TS_Common] provides a recommendation regarding the generation of the value of this field.

5.2.12 Type: InteractionList
List of interactions.
	Element name
	Element type
	Optional
	Description

	digitCapture
	DigitCapture[0..unbounded]
	Yes
	List of digit capture interactions

	recordingCapture
	RecordingCapture[0..unbounded]
	Yes
	List of digit recording capture interactions

	resourceURL
	xsd:anyURI
	Yes
	Self-reference. MUST be given if root element.


A root element named interactionList of type InteractionList is allowed in request and response bodies.
5.2.13 Type: DigitCapture
This structure represents a digit capture interaction, which combines the playback of a message with the capturing of key presses on the phone keyboard using DTMF.
	Name
	Type
	Optional
	Description

	callSessionIdentifier
	xsd:string
	No
	Identifies the call session for the media interaction.

	callParticipant
	xsd:anyURI
	Yes
	If this is present, the media interaction is with this call participant only.

If this is not present, the media interaction is with all participants on the call. 

Ed. Note: FFS. ParlayX defines it this way but: why is this “1 or all”? If “all” is supported, why not “some” (i.e. a list of participants)? Both require handling “multiple”. 

	playingConfiguration
	PlayConfig
	No
	Configuration parameters related to the playing of a media file

	digitConfiguration
	DigitConfig
	No
	Configuration parameters related to digit collection

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL


Ed. Note: PX does not define a status list here, but does so for messages. This is an inconsistency. What was the intention? Do we need to make this consistent (i.e. add a status list to this resource and fix PX)? Or do we decide to leave it as it is (i.e. have a status list in messages but none in interactions)?
A root element named digitCapture of type DigitCapture is allowed in request and response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in section 5.6.1 of [REST_TS_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. Section 5.6.1 of [REST_TS_Common] provides a recommendation regarding the generation of the value of this field.

5.2.14 Type: RecordingCapture
This structure represents a recording interaction, which combines the playback of a message with recording the voice of a participant.
	Name
	Type
	Optional
	Description

	callSessionIdentifier
	xsd:string
	No
	Identifies the call session for the media interaction.

	callParticipant
	xsd:anyURI
	Yes
	If this is present, the media interaction is with this call participant only.

If this is not present, the media interaction is with all participants on the call.
Ed. Note: same ed. note as in “DigitCapture” structure.

	playingConfiguration
	PlayConfig
	No
	Configuration parameters related to the playing of a media file

	recordingConfiguration
	RecConfig
	No
	Configuration parameters related to media recording

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL


Ed. Note: PX does not define a status list here, but does so for messages. This is an inconsistency. What was the intention? Do we need to make this consistent (i.e. add a status list to this resource and fix PX)? Or do we decide to leave it as it is (i.e. have a status list in messages but none in interactions)?
A root element named recordingCapture of type RecordingCapture is allowed in request and response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in section 5.6.1 of [REST_TS_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. Section 5.6.1 of [REST_TS_Common] provides a recommendation regarding the generation of the value of this field.

5.2.15 Enumeration: MessageStatus
Status of the message after play message operation has been invoked. Final states are Played, Error and Terminated.
	Element Name
	Description

	Played
	Message has been played

	Playing
	Message is currently playing

	Pending
	Message has not yet started playing

	Error
	An error has occurred, message will not be played

	Terminated
	The message was terminated by a request from the application.



5.2.16 Enumeration: AnnouncementFormat
This enumeration defines values representing the different formats of an announcement (prompt) in an interaction.
	Enumeration value
	Description

	Audio
	Announcement is in Audio format 

	VoiceXML
	Announcement is in VoiceXML format

	TextToSpeech
	Announcement is in TextToSpeech format

	Video
	Announcement is in Video format

	ApplicationSpecificFormat
	Announcement is in an ApplicationSpecificFormat


5.2.17 Enumeration: MediaFormat
 This enumeration defines values representing the different formats of a message.
	Enumeration value
	Description

	Audio
	Announcement is in Audio format 

	VoiceXML
	Announcement is in VoiceXML format

	Video
	Announcement is in Video format


5.2.18 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

<< Include a bullet list with possible “rel” string values >>

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
5.3.1 Play Audio Message and Check Status
This figure below shows a scenario for initiating the playing of an audio message to a call participant and then checking the status as the message is played.

The resources: 

· To initiate playing of the audio message, create a new resource under
http://{serverRoot}/{apiVersion}/audiocall/messages/audio
· To get the status of the message, do either a or b: 
a. read the newly created resource including the status of the message
http://{serverRoot}/{apiVersion}/audiocall/messages/audio/{messageId}
b. read the status of the message for all participants http://{serverRoot}/{apiVersion}/audiocall/messages/audio/{messageId}/statusList

[image: image5.wmf]Server

Server

1. POST audio message for playing

Response with created resource

2. GET message Status based on created resource

Response Status = Pending

Application

Application

3. GET message Status based on created resource

Response Status = Playing

4. GET message Status based on created resource

Response Status = Played

Message not started 

playing yet

Message starts 

playing

Message finished 

playing


Figure 2 Play audio message and check status
1. An application initiates the playing of an audio message to one or all participants in a call using POST and receives the created request resource with a resource URL containing the messageId. 

2. The application requests the status of playing the message for all participants, and receives “Pending” as the message did not start playing

3. The application requests the status of playing the message for all participants, and receives “Playing” as the message is actually playing
4. The application requests the status of playing the message for all participants, and receives “Played” as the message has finished playing

For steps 2-4, the application achieves this either by
a) The application requests the resource of the message using GET with the given resource URL (containing the messageId) and receives a representation of the resource which includes the status information, or 

b) The application directly requests the status information, using GET with a specific child “statusList” of the given resource URL (containing the messageId).
5.3.2 Play Audio Message and Terminate the Playing of the Message
This figure below shows a scenario for initiating the playing of  an audio message to a call participant and then terminating playing of the message.

The resources: 

· To initiate playing of the audio message, create new a resource under
http://{serverRoot}/{apiVersion}/audiocall/messages/audio
· To terminate the message, delete the newly created resource 
http://{serverRoot}/{apiVersion}/audiocall/messages/audio/{messageId}
[image: image7.wmf]Server

Server

1. POST audio message for playing

Response with created resource

Application

Application

2. DELETE message based on created resource

Response Status = Terminated

Message starts 

playing


Figure 3 Play audio message and terminate the playing of the message
Outline of the flows:

1. An application initiates the playing of an audio message to one or all participants in a call using POST and receives the created request resource with a resource URL containing the messageId. 

2. The application terminates playing of the message with the given resource URL (containing the messageId) using DELETE on that resourceURL. It receives the status of the message for each participant as part of the representation of the resource delivered in the response of the DELETE operation.
5.3.3 Play Media and Collect Digits
This figure below shows a scenario for initiating the playing of an announcement to a call participant, capturing digits entered by the participant, and then notifying the application about the digits entered. Note that the Audio Call service also allows the recording of a voice response from the call participant, instead of collecting digits. 

This is an asynchronous process involving a notification of the application, which is carried out by the Call Notification service, not the Audio Call service. 
The resources: 

· The resources for Call Notification are defined in [REST_TS_CallNotif]
· To play a media file to one or all participants and collect input from the users via the phone keypad, create a new resource under  
http://{serverRoot}/{apiVersion}/audiocall/interactions/collection
[image: image9.wmf]Audio Call plays 

prompt and detects 

that user has entered 

digits

Server 

(Call Notification)

Server 

(Call Notification)

1. Subscribe to notifications about 

Play&Collect

events

Response with created resource

4. POST 

Play&Collect

event notification to

URL specified when subscription was created 

Response

5. DELETE subscription to notifications 

about 

Play&Collect

events

Response

Server 

(Audio Call)

Server 

(Audio Call)

2. POST 

Play&Collect

Interaction

Response with created resource

Application

Application

Application is notified by Call 

Notification that media has been 

played and digits collected

Initiate playing 

of media to call 

participants and 

collection of digits

Later, the 

application 

cancels the 

subscription

3. Trigger notification (out of scope)


 Figure 4 Play media and collect digits
 Outline of the flows:

1. An application subscribes to notifications about play-and-collect events for an ongoing call using POST. 

2. The application requests the playing of a media file to one or all call participants and the collection of their inputs using POST and receives the created request resource with a resource URL containing the interactionId. 
3. Once the Audio Call service has finished the playback of the media and the collection of the inputs, it triggers the Call Notification service by means out of scope of this specification.
4. The Call Notification service sends a play-and-collect notification using POST to the URL specified when the subscription was created. 

5. The application terminates the subscription to notifications about play-and-collect events for the ongoing call using DELETE.  
 












5.4 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is: 

[resource URL]
This resource is used to [descriptive explanation of the resource].

5.4.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	<< Add/Remove rows to this table as needed - DELETE This Row>>


5.4.2 Response Codes

5.4.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.4.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Audio Call, see [3GPP 29.199-11].
5.4.3 GET

<< This is a blueprint for GET >>

This operation is used for [description of operation].

Note: ParlayX SOAP equivalent is [PX equivalent].
<< PX equivalent should match the PX equivalent from the relevant purpose table in section 5.1. If there is no PX equivalent, delete this paragraph >>

Request URL parameters are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>


<< Not all operations have Request URL parameters. Delete this table as appropriate >>

5.4.3.1 Example 1: [Example title] 
(Informative)
<< If there is only one example, remove the sequence number from the title heading >>

5.4.3.1.1 Request

	[XML request]


<< For XML examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

5.4.3.1.2 Response

	[XML response]


5.4.3.2 Example 2: [Example title] 
(Informative)
<< If there is only one example, remove this section >>

5.4.3.2.1 Request

	[XML request]


5.4.3.2.2 Response

	[XML response]


5.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

5.4.5 POST
<< This is a blueprint for POST >>

This operation is used for [description of operation].

Note: ParlayX SOAP equivalent is [PX equivalent].
<< PX equivalent should match the PX equivalent from the relevant purpose table in section 5.1. If there is no PX equivalent, delete this paragraph >>

5.4.5.1 Example 1: [Example title] 
(Informative)
<< If there is only one example, remove the sequence number from the title heading >>

5.4.5.1.1 Request

	[XML request]


5.4.5.1.2 Response

	[XML response]


5.4.5.2 Example 2: [Example title] 
(Informative)
<< If there is only one example, remove this section >>

5.4.5.2.1 Request

	[XML request]


5.4.5.2.2 Response

	[XML response]


5.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA


A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-ParlayREST-AudioCall-V1_0
	15 Apr 2010
	Many
	Skeleton document

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for ParlayREST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-FUNCAREA-SUPPORT-S-001-M
	Support for the [FuncArea] REST Enabler
	5
	

	PARLAYREST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	5
	

	PARLAYREST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	5
	

	PARLAYREST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	Appendix C
	


B.1.1 SCR for ParlayREST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	


Ed. note: VoiceXml, video, text-to-speech optional. 
Appendix C. Application/x-www-form-urlencoded Request Format for Selected REST Operations

This section defines a format for SMS REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type. 

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. 

The following Audio Call REST operations are defined in this section:

<< List the operations for which url-encoded is supported.

NOTE: For ParlayREST v1 these were the OneAPI Profile operations. For ParlayREST v2, there may not be such equivalents >>

C.1 [Operation]
This operation is used to create an outgoing message request.

Note: ParlayX SOAP equivalent is [PX equivalent].

The request parameters are as follows: 

	Parameter
	Optional
	Description

	[Parameter name]
	[Yes/No]
	[Parameter description] 

	<< Add/Remove rows to this table as needed - DELETE This Row>>


C.1.1 Example 



(Informative)

C.1.1.1 Request

	[url-encoded request]


<< For form-urlencoded examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

C.1.1.2 Response

	[xml response] 


Appendix D. JSON examples 
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for Parlay REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request or response for various operations using a JSON binding. The examples follow the XML to JSON serialization guidelines in [REST_WP]. A JSON response may be obtained by following the content negotiation guidelines section of [REST_WP].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request: 

	[JSON example generated from the equivalent XML example using the JSON2XML utility]


Response: 

	[JSON example generated from the equivalent XML example using the JSON2XML utility]


D.2 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

<< For JSON examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

Request: 

	[JSON example generated from the equivalent XML example using the JSON2XML utility]


Response: 

	[JSON example generated from the equivalent XML example using the JSON2XML utility]




































�Note that this state is missing from Parlay X.



( 2010 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
( 2010 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1331396694.ppt






//{serverRoot}/{apiVersion}

/{apiName}

/{urlPath}



/{resource_1}





/{resource_3}





/{resource_2}





For each API the root is the same



Use the name of the api, for example “location”. In this case it does not represent a resource. If it is a real resource, you need to change the format.



In case that the URL contains parts that are not really resources, for example /outboud/{senderAddress}. 



Resources are represented by a yellow rectangle with a pile of documents which indicates that there are operations allowed on the resource








_1335023634.ppt






Application

Server

1. GET / PUT / POST / DELETE [description]

Response with [description of data]

2. GET / PUT / POST / DELETE [description]

Response with [description of data]

Action occurring

at Server

Action occurring

at Application








