Doc# OMA-ARC-REST-2010-0264-INP_PUT_issue.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-REST-2010-0063-INP_Closing_proposal_for_echoing_issue.doc
Input Contribution

Input Contribution

	Title:
	PUT issue
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Submission Date:
	12 May 2010

	Source:
	Dieter Gludovacz, dieter.gludovacz@t-mobile.at, Deutsche Telekom AG, TMO

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

The current Payment API TS uses PUT in a not correct way.

2 Summary of Contribution

This contribution describes the issue which is needs to be solved and initiates the discussion on how to solve it.
3 Detailed Proposal

The current version of Payment TS reads:

“Note: the logic on all Payment transactions is that the request body contains transactionStatus values that represent the final desired state of the resource.”

In other words the actual operation is determined by the desired transactionStatus, i.e. tunneled using PUT. But this is not a correct usage of PUT.
E.g. “releaseReservation” operation releases the remaining amount associated with the current transactionId. This operation can only work using POST.
Contribution OMA-ARC-REST-2010-0250-CR_Reserve_Additional_Change_PUT_to_POST has identified these issues already for “releaseAmount” and ‘”reserveAddtionalAmount” and proposed to use POST instead. The same problem exists with “chargeReservation”.
The probably simplest solution would be to use POST instead of PUT, but we should discuss whether we need to use the transactionStatus at all (it is not part of ParlayX), which would need some additional resources.

From HTTP/1.1, part 2: Message Semantics, draft-ietf-httpbis-p2-semantics-09:
7.1.2. Idempotent Methods

Methods can also have the property of "idempotence" in that, aside from error or expiration issues, the intended effect of multiple identical requests is the same as for a single request. The methods PUT, DELETE, and all safe methods are idempotent. It is important to note that idempotence refers only to changes requested by the client:a server is free to change its state due to multiple requests for the purpose of tracking those requests, versioning of results, etc.
7.5. POST

The POST method is used to request that the origin server accept the entity enclosed in the request as data to be processed by the resource identified by the request-target in the Request-Line. POST is designed to allow a uniform method to cover the following functions:
· Annotation of existing resources;
· Posting a message to a bulletin board, newsgroup, mailing list, or similar group of articles;
· Providing a block of data, such as the result of submitting a form, to a data-handling process;
· Extending a database through an append operation.
The actual function performed by the POST method is determined by the server and is usually dependent on the request-target.
The action performed by the POST method might not result in a resource that can be identified by a URI. In this case, either 200 (OK) or 204 (No Content) is the appropriate response status, depending on whether or not the response includes an entity that describes the result.
If a resource has been created on the origin server, the response SHOULD be 201 (Created) and contain an entity which describes the status of the request and refers to the new resource, and a Location header (see Section 9.4).
Responses to this method are not cacheable, unless the response includes appropriate Cache-Control or Expires header fields.However, the 303 (See Other) response can be used to direct the user agent to retrieve a cacheable resource.

7.6. PUT

The PUT method requests that the enclosed entity be stored at the supplied request-target. If the request-target refers to an already existing resource, the enclosed entity SHOULD be considered as a modified version of the one residing on the origin server. If the request-target does not point to an existing resource, and that URI is capable of being defined as a new resource by the requesting user agent, the origin server can create the resource with that URI. If a new resource is created at the request-target, the origin server MUST inform the user agent via the 201 (Created) response. If an existing resource is modified, either the 200 (OK) or 204 (No Content) response codes SHOULD be sent to indicate successful completion of the request. If the resource could not be created or modified with the request-target, an appropriate error response SHOULD be given that reflects the nature of the problem. The recipient of the entity MUST NOT ignore any Content-* headers (headers starting with the prefix "Content-") that it does not understand or implement and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the request-target identifies one or more currently cached entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requests is reflected in the different meaning of the request-target. The URI in a POST request identifies the resource that will handle the enclosed entity. That resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent knows what URI is intended and the server MUST NOT attempt to apply the request to some other resource. If the server desires that the request be applied to a different URI, it MUST send a 301 (Moved Permanently) response; the user agent MAY then make its own decision regarding whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For example, an article might have a URI for identifying "the current version" which is separate from the URI identifying each particular version. In this case, a PUT request on a general URI might result in several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an origin server.

Unless otherwise specified for a particular entity-header, the entity-headers in the PUT request SHOULD be applied to the resource created or modified by the PUT.
From RESTful http in practice (http://www.infoq.com/articles/designing-restful-http-apps-roth):

If the Request‐URI refers to an already existing resource, this resource will be replaced by
the new one. For this reason the PUT method will be used to create a new resource as well as to
update an existing resource. However, by using PUT, the complete state of the resource has to be
transferred. The update request to set the zip field has to include all other fields of the Guest
resource such as firstName or city.

and...

Often the POST method will also be used to update parts of the resource. For instance sending a PUT
requests which contains only the classification (Uwe: one field of HotelResource) to update the Hotelresource violates HTTP. This is not true for the POST method. The POST method is neither idempotent nor safe. Figure 15 shows such a partial update by using a POST method.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform tim
ely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group is requested to discuss the issues and agree on a way forward, such that CRs can be created to resolve these issues.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

