OMA-TS-ParlayREST-Presence-V1_0-20100526-D
Page 91 V(98)

	[image: image1.jpg]
	

	RESTful bindings for Parlay X Web Services –
Presence

	Draft Version 1.0 –26 May 2010

	Open Mobile Alliance

	OMA-TS-ParlayREST-Presence-V1_0-20100526-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
4
2.1
Normative References
4
2.2
Informative References
4
3.
Terminology and Conventions
4
3.1
Conventions
4
3.2
Definitions
4
3.3
Abbreviations
4
4.
Introduction
4
4.1
Version 1.0
4
5.
Presence API definition
4
5.1
Resources Summary
4
5.2
Presence ParlayREST API Data Structures
4
5.2.1
Type: PresenceSourceList
4
5.2.2
Type: PresenceSource
4
5.2.3
Type: Presence
4
5.2.4
Type: PersonAttributes
4
5.2.5
Type: ServiceAttributes
4
5.2.6
Type: DeviceAttributes
4
5.2.7
Type: PresenceSourceIndexList
4
5.2.8
Type: PresenceSourceIndex
4
5.2.9
Type: PresenceContactList
4
5.2.10
Type: PresenceContact
4
5.2.11
Type: ContentList
4
5.2.12
Type: Content
4
5.2.13
Type: PresenceSubscriptionList
4
5.2.14
Type: PresenceSubscription
4
5.2.15
Type: PresenceNotification
4
5.2.16
Type: WatchersList
4
5.2.17
Type: Watcher
4
5.2.18
Type: PresenceResourceList
4
5.2.19
Type: WatchersSubscriptionList
4
5.2.20
Type: WatchersSubscription
4
5.2.21
Type: WatchersNotification
4
5.2.22
Type: Identities
4
5.2.23
Type: DefaultDecision
4
5.2.24
Type: Activities
4
5.2.25
Type: PlaceType
4
5.2.26
Type: Privacy
4
5.2.27
Type: Sphere
4
5.2.28
Type: Mood
4
5.2.29
Type: PlaceIs
4
5.2.30
Type: TimeOffset
4
5.2.31
Type: StatusIcon
4
5.2.32
Type: Note
4
5.2.33
Type: Location
4
5.2.34
Type: CircleData
4
5.2.35
Type: CivicAddress
4
5.2.36
Type: OverridingWillingness
4
5.2.37
Type: LinkAttribute
4
5.2.38
Type: Contact
4
5.2.39
Type: NetworkAvailability
4
5.2.40
Enumeration: SubscriptionState
4
5.2.41
Enumeration: PersonResourceAttributes
4
5.2.42
Enumeration: ServiceResourceAttributes
4
5.2.43
Enumeration: DeviceResourceAttributes
4
5.2.44
Enumeration: DefaultDecisionValue
4
5.2.45
Enumeration: ActivityValue
4
5.2.46
Enumeration: PlaceTypeValue
4
5.2.47
Enumeration: PrivacyValue
4
5.2.48
Enumeration: SphereValue
4
5.2.49
Enumeration: MoodValue
4
5.2.50
Enumeration: PlaceIsAudio
4
5.2.51
Enumeration: PlaceIsVideo
4
5.2.52
Enumeration: PlaceIsText
4
5.2.53
Enumeration: OpenOrClosed
4
5.2.54
Enumeration: ActiveOrTerminated
4
5.2.55
Enumeration: AutomaticOrManual
4
5.2.56
Enumeration: HomeOrVisited
4
5.2.57
Values of the Link “rel” attribute
4
5.3
Sequence Diagrams
4
5.3.1
Application startup; publish presence, fetch watcher information, subscribe to watcher info
4
5.3.2
Adding a watcher; subscribe for presence and updating of presence information.
4
5.3.3
Update of presence status
4
5.3.4
Shutdown; remove resources
4
5.4
Resource: [Description of the resource]
4
5.4.1
Request URI variables
4
5.4.2
Response Codes
4
5.4.2.1
Response Codes
4
5.4.2.2
Exception fault codes
4
5.4.3
GET
4
5.4.3.1
Example 1: [Example title] (Informative)
4
5.4.3.1.1
Request
4
5.4.3.1.2
Response
4
5.4.3.2
Example 2: [Example title] (Informative)
4
5.4.3.2.1
Request
4
5.4.3.2.2
Response
4
5.4.4
PUT
4
5.4.5
POST
4
5.4.5.1
Example 1: [Example title] (Informative)
4
5.4.5.1.1
Request
4
5.4.5.1.2
Response
4
5.4.5.2
Example 2: [Example title] (Informative)
4
5.4.5.2.1
Request
4
5.4.5.2.2
Response
4
5.4.6
DELETE
4
Appendix A.
Change History (Informative)
4
A.1
Approved Version History
4
A.2
Draft/Candidate Version 1.0 History
4
Appendix B.
Static Conformance Requirements (Normative)
4
B.1
SCR for ParlayREST.Presence Server
4
B.1.1
SCR for ParlayREST.Presence.FUNCTION Server
4
Appendix C.
Application/x-www-form-urlencoded Request Format for Selected REST Operations
4
C.1
[Operation]
4
C.1.1
Example (Informative)
4
C.1.1.1
Request
4
C.1.1.2
Response
4
Appendix D.
JSON examples (Informative)
4
D.1
[Example Title] (section [section number])
4
D.2
[Example Title] (section [section number])
4

Figures

Error! No table of figures entries found.
1. Scope

This specification defines an HTTP protocol binding for an abstract API using the REST architectural style, based on an existing OMA enabler namely the Presence, as defined in [3GPP 29.199-14].
<< Use Times New Roman font size 10 for main body text >>
2. References

2.1 Normative References

	[3GPP 29.199-14]
	3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part X: Presence (Release 8)”, URL:http://www.3gpp.org/

	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

<< The ParlayREST reference labels are as follows

[REST_TS_COMMON]
[REST_TS_SMS]

[REST_TS_MMS]

[REST_TS_Payment]

[REST_TS_Location]

[REST_TS_Presence]

[REST_TS_AddressListMgt]

[REST_TS_ConnProf]

[REST_TS_3PCall]

[REST_TS_CallNotif]

[REST_TS_QoS]

[REST_TS_OneAPI]

[REST_WP]

[REST_ERP]

>>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_ParlayREST_API_specifications, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	[N/A]
	[N/A]

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	PX
	Parlay X

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

The ParlayREST Technical Specification for Presence contains the HTTP protocol binding for the Parlay X Presence Web Services specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).

4.1 Version 1.0

Version 1.0 of Presence ParlayREST API specification supports the following operations:
<< Include a list of supported operations >>

5. Presence API definition
This section is organized to support a comprehensive understanding of the Presence API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). In addition, for each supported resource/verb combination, the table lists the Parlay X equivalent operation, where applicable. What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

The remaining subsections in section 5 contain the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the Presence API.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image2.png]
Figure 1
Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. The “PX” row indicates the Parlay X SOAP equivalent operation.

Purpose: Create or update presence data on the server on-behalf of a user
	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence source management
	/{presentityId}/presenceSource
	PresenceSourceList
(used for GET)

PresenceSource
(used for POST)

MIME content:
application/pidf+xml
(used for POST)
	Retrieves all presence sources related to a Presentity
	This operation creates presence source
	No
	No

	
	
	
	No PX equivalent
	PX: publish
	-

	Management of presence information
	/{presentityId}/presenceSource/{presenceSourceId}

	PresenceSource
(used for PUT/GET)

MIME content:
application/pidf+xml
(used for PUT/GET)

	Retrieves the Presentity presence data

NOTE: This operation just retrieves the data for this particular presenceSourceId and is not the operation a Watcher shall use
	No

	Updates presence data for a Presentity.

	Removes the presence data for a Presentity for the specified ‘presenceSourceId’

	
	
	
	No PX equivalent
	-
	Partial PX equivalent: publish
	No PX equivalent

	Management of individual presence attribute

	/{presentityId}/presenceSource/{presenceSourceId}/{presenceResource}

	PresenceSource
(used for PUT/GET)
	Retrieves the value of the specified presence attribute
	No

	This operation updates a presence attribute
	This operation removes a presence attribute.

	
	
	
	No PX equivalent
	-
	Partial PX equivalent: publish
	No PX equivalent

	Management of persistent presence data
	/{presentityId}/presenceSource//persistent
	PresenceSource
	Retrieves the persistent presence data
	No
	Creates or updates the persistent presence data.
	Removes the persistent presence data.

	
	
	
	No PX equivalent
	-
	No PX equivalent
	No PX equivalent

	Management of individual persistent presence attributes
	/{presentityId}/presenceSource/persistent/{presenceResource}
	PresenceSource
	Retrieves the value of the specified presence attribute
	No
	This operation updates a persistent presence attribute
	This operation removes a persistent presence attribute.

	
	
	
	No PX equivalent
	-
	No PX equivalent
	No PX equivalent

	Retrieval of subset of presence sources
	/{presentityId}/presenceSource/index
	PresenceSourceList

Editor’s note: this is the incorrect data type.
	Retrieve a subset of the data in the presence sources
	No
	No
	No

	
	
	
	No PX equivalent
	-

Purpose: To allow Watcher to retrieve presence from a single Presentity or a Contact list

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher retrieval of presence information for a single Presentity

	/{watcherId}/presenceContact/{presentityId}

	PresenceContact
	This operation retrieves the composite presence from a Presentity, which means that it might include presence data from several presence sources (after presence authorization and privacy filtering).
	No
	No
	No

	
	
	
	PX: getUserPresence
	-

	Watcher retrieval of individual presence attribute for a single Presentity
	/{watcherId}/presenceContact/{presentityId}/{presenceResource}

	PresenceContact
	Same as “Watcher retrieval of presence information for a single Presentity” but for retrieval of a single presence attribute.
	No

	Watcher retrieval of presence data for a contact list
	/{watcherId}/presenceContacList/{contactListId}

	PresenceContactList
	This operation allows a Watcher to retrieve the presence data for all users in a contact list.
	No
	No
	No

	
	
	
	PX: getUserPresence
	-

	Watcher retrieval of individual presence attribute for a contact list
	/{watcherId}/presenceContacList/{contactListId}}/{presenceResource}

	PresenceContactList
	Same as “Watcher retrieval of presence data for a contact list” but for retrieval of a single presence attribute from respective user in the contact list.
	No
	No
	No

	
	
	
	PX: getUserPresence
	-

Purpose: These operations allow the Presentity to upload content (like pictures/avatars/icons) and share it with other users

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presentity retrieval of content
	/{presentityId}/content
	ContentList
	Retrieves all contentIds related to a Presentity
	No
	No
	No

	
	
	
	No PX equivalent
	-

	Management of content
	/{presentityId}/content/{contentId}

	Any MIME content
	Allows a user to retrieve its own content (e.g. a picture).

NOTE: This operation will retrieve the Presentity’s own content and is not the operation a Watcher shall use
	No
	Create/replace content on the server.
	Allows a Presentity to remove its own content from the server.

	
	
	
	No PX equivalent
	-
	No PX equivalent
	No PX equivalent

Purpose: This operation allows a user to retrieve content from another user

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watcher retrieval of content from a presentity
	/{watcherId}/content/{presentityId}/{contentId}

	Any MIME content
	This operation allows a Watcher to retrieve content (e.g. picture) from another user.
	No
	No
	No

	
	
	
	No PX equivalent
	-

Purpose: To allow Watcher to manage subscriptions for presence notifications for a single Presentity

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Management of presence subscriptions
	/{watcherId}/presenceContact/{presentityId}/subscriptions
	PresenceSubscriptionList
(Used for GET)

PresenceSubscription
(Used for POST)
	This operation allows a Watcher to retrieve all active presence subscriptions.
	This operation allows Watcher to create subscription for presence information
	No
	No

	
	
	
	No PX equivalent
	PX:
startPresenceNotification
	-
	-

	Management of individual presence subscription
	/{watcherId}/presenceContact/{presentityId}/subscriptions/{subscriptionId}
	PresenceSubscription
	This operation allows a Watcher to retrieve an active presence subscription.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Watcher to update and/or to extend the duration of the subscription for presence information
	This operation terminates a presence subscription

	
	
	
	No PX equivalent
	-
	Partial PX equivalent:
startPresenceNotification
	PX: endPresenceNotification

Purpose: To allow the server to inform Watcher about presence data updates

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence notification
	<Specified by the client when the subscription is created or during provisioning process>
	PresenceNotification
	No
	This operation is used by the server to inform about a presence update.
	No
	No

	
	
	
	-
	PX: statusNotified, statusEnd and subscriptionEnded
	-

Purpose: To allow Watcher to manage subscriptions for presence notifications for a contact list

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Management of presence list subscriptions
	/{watcherId}/presenceContactList/{contactListId}/subscriptions
	PresenceSubscriptionList
(Used for GET)

PresenceSubscription
(Used for POST)
	This operation allows a Watcher to retrieve all active presence list subscriptions.
	This operation allows Watcher to create subscription for a presence contact list
	No
	No

	
	
	
	No PX equivalent
	PX:
startPresenceNotification
	-
	-

	Management of individual presence list subscription
	/{watcherId}/presenceContactList/{contactListId}/subscriptions/{subscriptionId}
	PresenceSubscription
	This operation allows a Watcher to retrieve an individual presence contact list subscription.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Watcher to update and/or to extend the duration of the presence list subscription
	This operation terminates a presence list subscription

	
	
	
	No PX equivalent
	-
	Partial PX equivalent:
startPresenceNotification
	PX: endPresenceNotification

Purpose: To allow the server to inform Watcher about presence data updates for a user in a contact list

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Presence list notification
	<Specified by the client when the subscription is created or during provisioning process>
	PresenceNotification
	No
	This operation is used by the server to inform about a presence update.
	No
	No

	
	
	
	-
	PX: statusNotified, statusEnd and subscriptionEnded
	-

Purpose: To allow Presentity to retrieve the list of Watchers interested in the Presentity’s presence data

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Retrieval of watchers
	/{presentityId}/watchers
	WatchersList
	This operation allows the client to retrieve the list of identities that are interested in the Presentity’s Presence data including the current subscription status.
	No
	No
	No

	
	
	
	PX: getMyWatchers
	-

	Retrieval of individual watcher
	/{presentityId}/watchers/{watcherId}
	Watcher
	This operation allows the Presentity to retrieve the current subscription status and the subscribed attributes for the specified Watcher
	No
	No
	No

	
	
	
	PX:
getSubscribedAttributes
	-

Purpose: To allow Presentity to manage subscriptions for notifications to Watcher Information

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Management of watchers subscriptions
	/{presentityId}/watchers/subscriptions
	WatchersSubscriptionList
(Used for GET)

WatchersSubscription
(Used for POST)
	This operation allows a Presentity to retrieve all subscriptions related to the Watchers list.
	This operation allows Presentity to create subscription for the Watchers list
	No
	No

	
	
	
	No PX equivalent
	Partial PX equivalent:
startMyWatcherNotification
	
	

	Management of individual watchers subscription
	/{presentityId}/watchers/subscriptions/{subscriptionId}
	WatchersSubscription
	This operation allows the Presentity to retrieve a subscription to changes in the watchers list.

(A typical usage is to verify if a subscription is still alive)
	No
	This operation allows Presentity to update and/or to extend the duration of the subscription
	This operation terminates a subscription.

	
	
	
	No PX equivalent
	-

	Partial PX equivalent:
startMyWatcherNotification
	PX:
endMyWatchersNotification

Purpose: To allow the server to inform Presentity about updates in Watcher’s subscription status

	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Watchers notification
	<Specified by the client when the subscription is created or during provisioning process>
	WatchersNotification
	No
	This operation is used by the server to inform about updates in watcher’s subscription status.
	No
	No

	
	
	
	-
	PX: notifyMyWatchers, notifyMyWatchersEnd and NotifyError
	-

Purpose: Manage access to presence information for individual Watchers and contact lists

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/presence
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Retrieval of authorization list information
	/{presentityId}/authorization/{allowlLst | blockList | politeBlockList}

	Identities
	Retrieve identities in the specified authorization list.
	No
	No
Editor note: we may consider a PUT
	No

	
	
	
	No PX equivalent
	-

	Management of access to presence information
	/{presentityId}/authorization/{allowList | blockList | politeBlockList}/watchers/{watcherId}

or

/{presentityId}/authorization/{allowList | blockList | politeBlockList}/lists/{contactListId}

or

/{presentityId}/authorization/{allowList | blockList | politeBlockList}/domains/{domainName}
	Empty
	Retrieves the specified identity from the specified type of authorization list.

(This operation is typically used to verify if an identity exists in a list)
	No
	Add specified identity to the specified type of authorization list
	Remove specified identity from the specified type of authorization list

	
	
	
	No PX equivalent
	-
	PX: updateAuthorizationRule
	PX: deleteAuthorizationRule

	Default access to presence information
	/{presentityId}/authorization/default

	DefaultDecision
	Retrieve default access decision to presence
	No
	Set default access to presence
	No

	
	
	
	No PX equivalent
	-
	No PX equivalent
	-

	Management of detailed authorization rules
	/{presentityId}/authorization/rules

	MIME content:
application/auth-policy+xml
Editor note: Data type for GET should be a list?
	Retrieve all authorization rules
	Create new authorization rule
	No
	No

	
	
	
	No PX equivalent
	No PX equivalent
	-

	Management of an individual authorization rule
	/{presentityId}/authorization/rules/{ruleId}

	MIME content:
application/auth-policy+xml
	This operation is used to retrieve an authorization rule as specified in the ‘ruleId’
	No
	This operation is used to create and update an authorization rule as specified in the ‘ruleId’
	This operation is used remove an authorization rule as specified in the ‘ruleId’

	
	
	
	No PX equivalent
	-
	PX: updateAuthorizationRule
	PX: deleteAuthorizationRule

5.2 Presence ParlayREST API Data Structures
The namespace for the Presence data types is:

urn:oma:xml:rest:presence:1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.
5.2.1 Type: PresenceSourceList
	Element
	Type
	Optional
	Description

	presenceSource
	PresenceSource
[0..unbounded]
	Yes
	A list of presence source identities.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named presenceSourceList of type PresenceSourceList is allowed in response bodies.

5.2.2 Type: PresenceSource
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	duration
	common:TimeMetric
	Yes
	The duration of the publication in seconds. Only applicable during creation of the resource.

	presence
	Presence
	Yes
	Contains the actual presence attributes.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named presenceSource of type PresenceSource is allowed in request and/or response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in section 5.6.1 of [REST_TS_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. Section 5.6.1 of [REST_TS_Common] provides a recommendation regarding the generation of the value of this field.
Note that applicationTag is used to enable a particular application instance to pick up (if exists) a previously created resource and continue to operate on it. A typical usage is that a client will perform a GET on the parent resource and in the response receive a list of previously created resources from where the application is able to find its previously created resource. It is up to the client application how to construct the application tag. Please note that a typical usage of the client correlator is not enough for a stateless application to identify a previously created resource since it is uniquely generated every time a new resource is created.
5.2.3 Type: Presence
	Element
	Type
	Optional
	Description

	person
	PersonAttributes
	Yes
	The presence attributes related to person.

	service
	ServiceAttributes

[0..unbounded]
	Yes
	The presence attributes related to services.

	device
	DeviceAttributes
[0..unbounded]
	Yes
	The presence attributes related to devices.

5.2.4 Type: PersonAttributes

	Element
	Type
	Optional
	Description

	activities
	Activities
	Yes
	The presentity's activity (available, busy, lunch, etc.) [RFC4480]

	placeType
	PlaceType
	Yes
	At what kind of place the presentity is (home, office, etc.) [RFC4480]

	privacy
	Privacy
	Yes
	The amount of privacy the user wants (public, quiet, etc.) [RFC4480]

	sphere
	Sphere
	Yes
	The user's current environment (work, home) [RFC4480]

	mood
	Mood
	Yes
	The user’s mood (angry, confused, happy, etc.) [RFC4480]

	placeIs
	PlaceIs
	Yes
	Describes the properties of the place the user is currently at. [RFC4480]

	timeOffset
	TimeOffset
	Yes
	Describes the number of minutes of offset from UTC that the user is currently at. [RFC4480]

	statusIcon
	StatusIcon
	Yes
	Contains a link to an icon of the user. [RFC4480]

	class
	xsd:token
	Yes
	Defines the particular class. [RFC4480]

	note
	Note
[0..unbounced]
	Yes
	Contains the tagline of the user. [RFC4479]

	location
	Location
	Yes
	Location of a person or device. (RFC 4119&5139)

	overridingWillingness
	OverridingWillingness
	Yes
	The overriding willingness for a person. [OMA-PDE-V1.1]

	link

	LinkAttribute
[0..unbounced]
	Yes
	Defined a labelled link for a person. [OMA-PDE-V1.1]

	card
	xsd:anyURI
	Yes
	URI to a business card. [RFC4482]

	displayName
	xsd:string
	Yes
	A display name of a person or Service. [RFC4482]

	homePage
	xsd:anyURI
	Yes
	URI pointing to general information about a person or Service. [RFC4482]

	icon
	xsd:anyURI
	Yes
	URI pointing to an image/icon of the person or Service. [RFC4482]

Note: It is normally recommended to use the StatusIcon for sharing icons/avatars between users.

	map
	xsd:anyURI
	Yes
	URI pointing to a map related to the person or Service. [RFC4482]

	sound
	xsd:anyURI
	Yes
	URI pointing to a sound related to the person or Service. [RFC4482]

	timestamp
	xsd:dateTime
	Yes
	Timestamp of the latest update.

Mandatory in GET and POST request. [RFC3863]

5.2.5 Type: ServiceAttributes

	Element
	Type
	Optional
	Description

	statusIcon
	StatusIcon
	Yes
	Contains a link to an icon of the user. [RFC4480]

	class
	xsd:token
	Yes
	Defines the particular class. [RFC4480]

	displayName
	xsd:string
	Yes
	A display name of a person or Service. [RFC4482]

	homePage
	xsd:anyURI
	Yes
	URI pointing to general information about a person or Service. [RFC4482]

	icon
	xsd:anyURI
	Yes
	URI pointing to an image/icon of the person or Service. [RFC4482]

Note: It is normally recommended to use the StatusIcon for sharing icons/avatars between users.

	map
	xsd:anyURI
	Yes
	URI pointing to a map related to the person or Service. [RFC4482]

	sound
	xsd:anyURI
	Yes
	URI pointing to a sound related to the person or Service. [RFC4482]

	serviceAvailability
	OpenOrClosed
	Yes
	Service specific availability. ([OMA-PDE-V1.1]

	serviceWillingness
	OpenOrClosed
	Yes
	Service specific willingness. [OMA-PDE-V1.1]

	contact
	Contact
	Yes
	A contact address for a Service. [RFC3863]

	serviceId
	xsd:token
	Yes
	Service identifier. Must be included when creating/updating a resource.

	serviceVersion
	xsd:token
	Yes
	The version of the specified service. Must be included when creating/updating a resource.

	serviceDescription
	xsd:string
	Yes
	A text describing the Service. [OMA-PDE-V1.1]

	sessionParticipation
	OpenOrClosed
	Yes
	Indicates a participation in a session. [OMA-PDE-V1.1]

	registrationState
	ActiveOrTerminated
	Yes
	The registration state for a Service. [OMA-PDE-V1.1]

	barringState
	ActiveOrTerminated
	Yes
	The barring state for a Service. [OMA-PDE-V1.1]

	sessionAnswerMode
	AutomaticOrManual
	Yes
	Indicates answer mode for a session. [OMA-PDE-V1.1]

	deviceId
	xsd:anyURI
[0..unbounded]
	Yes
	Identifies the device which this particular Service is related to. [RFC4479]

	timestamp
	xsd:dateTime
	Yes
	Timestamp of the latest update.

Mandatory in GET and POST request. [RFC3863]

5.2.6 Type: DeviceAttributes

	Element
	Type
	Optional
	Description

	class
	xsd:token
	Yes
	Defines the particular class. [RFC4480]

	location
	Location
	Yes
	Location of a person or device. (RFC 4119&5139)

	link
	LinkAttribtue
[0..unbounced]
	Yes
	Defined a labelled link for a person or Service. [OMA-PDE-V1.1]

	networkAvailability
	NetworkAvailability
	Yes
	The network availability for a device. [OMA-PDE-V1.1]

	timestamp
	xsd:dateTime
	Yes
	Timestamp of the latest update.

Mandatory in GET and POST request. [RFC3863]

5.2.7 Type: PresenceSourceIndexList
	Element
	Type
	Optional
	Description

	presenceSourceIndex
	PresenceSourceIndex [0..unbounded]
	Yes
	A list of presence source indexes.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named presenceSourceIndexList of type PresenceSourceIndexList is allowed in response bodies
5.2.8 Type: PresenceSourceIndex
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

5.2.9 Type: PresenceContactList
	Element
	Type
	Optional
	Description

	presenceContact
	PresenceContact
 [0..unbounded]
	Yes
	The presence data structure for each Presentity in the contact list.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named presenceContactList of type PresenceContactList is allowed in response bodies.

5.2.10 Type: PresenceContact
	Element
	Type
	Optional
	Description

	presentityId
	xsd:anyURI
	No
	Represents the owner of the presence data.

	subscriptionState
	SubscriptionState
	Yes
	Indicates the state of the Watcher request.

When subscribing for notifications this parameter must be included.

	presence
	Presence
	Yes
	The actual presence data for the Presentity.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named presenceContact of type PresenceContact is allowed in response bodies.

5.2.11 Type: ContentList
	Element
	Type
	Optional
	Description

	content
	Content

[0..unbounded]
	Yes
	The list of content stored in the server.

A root element named contentList of type ContentList is allowed in response bodies.
5.2.12 Type: Content
	Element
	Type
	Optional
	Description

	contentRelPath
	xsd:anyURI

[0..unbounded]
	Yes
	Link to a particular content stored in the server.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

5.2.13 Type: PresenceSubscriptionList
	Element
	Type
	Optional
	Description

	presenceSubscription
	PresenceSubscription

[0..unbounded]
	Yes
	Can contain an array of presence subscriptions (either for individual Presentity or a contact list)

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

A root element named presenceSubscriptionList of type PresenceSubscriptionList is allowed in response bodies.
5.2.14 Type: PresenceSubscription

	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	duration
	common:TimeMetric
	Yes
	The duration of the subscription in seconds. When this time has elapsed the subscription will expire unless it has been refreshed.
The server shall always include a value in the response to a GET and PUT. If omitted in a PUT request then default duration will be used defined by local policy.

	filter
	PresenceResource
[0..unbounded]
	Yes
	The attribute types the watcher wants to access. (The same attributes for all list members). An empty array means monitoring of all attribute types.

	frequency
	common:TimeMetric
	Yes
	Maximum frequency of notifications (can also be considered minimum time between notifications).

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. Contains the URL for the subscription.

A root element named presenceSubscription of type PresenceSubscription is allowed in request and/or response bodies.

5.2.15 Type: PresenceNotification
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData as passed by the application during the associated subscription

	presenceContact
	PresenceContact
	Choice
	The presence data structure for the Presentity.

	presenceContactList
	PresenceContactList
	Choice
	Contains data for each Presentity in the contact list

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. In this case it should contain the URL pointing to the same resource as in “Watcher retrieval of presence information for a single Presentity”.

	link
	common:Link
	Yes
	Link to other resources that are in relationship with the resource. In this case it may point to the subscription.

A root element named presenceNotification of type PresenceNotification is allowed in presence notification request.

5.2.16 Type: WatchersList

	Element
	Type
	Optional
	Description

	watcher
	Watcher
[0..unbounded]
	No
	Can contain an array of Watchers subscribing for the Presentity

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

A root element named watcherList of type WatcherList is allowed in response bodies.

5.2.17 Type: Watcher

	Element
	Type
	Optional
	Description

	watcherId
	xsd:anyURI
	No
	The Watcher subscribing for the data

	displayName
	xsd:string
	Yes
	An optional display name of the Watcher.

	subscriptionState
	SubscriptionState
	No
	Describes the state of the Watcher subscription.

	subscribedAttributes
	PresenceResourceList
	Yes
	The attributes that the Watcher subscribed for.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

A root element named watcher of type Watcher is allowed in response bodies.

5.2.18 Type: PresenceResourceList
	Element
	Type
	Optional
	Description

	person
	PersonResourceAttributes

[0..unbounded]
	Yes
	The presence attributes related to person.

	service
	ServiceResourceAttributes

[0..unbounded]
	Yes
	The presence attributes related to services.

	device
	DeviceResourceAttributes
[0..unbounded]
	Yes
	The presence attributes related to devices.

5.2.19 Type: WatchersSubscriptionList
	Element
	Type
	Optional
	Description

	watchersSubscription
	WatchersSubscription
[0..unbounded]
	Yes
	Can contain an array of Watchers subscriptions

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

A root element named watchersSubscriptionList of type WatchersSubscriptionList is allowed in response bodies.

5.2.20 Type: WatchersSubscription

	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	duration
	common:TimeMetric
	Yes
	The duration of the subscription in seconds. When this time has elapsed the subscription will expire unless it has been refreshed.
The server shall always include a value in the response to a GET and PUT. If omitted in a PUT request then default duration will be used defined by local policy.

	filter
	SubscriptionState
[0..unbounded]
	Yes
	Indicates what state the Presentity is interested of.

An empty array means monitoring of all states.

	frequency
	common:TimeMetric
	Yes
	Maximum frequency of notifications (can also be considered minimum time between notifications).

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. Contains the URL for the subscription.

A root element named watcherSubscription of type WatcherSubscription is allowed in request and/or response bodies.

5.2.21 Type: WatchersNotification
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData as passed by the application during the associated subscription

	subscriptionState
	SubscriptionState
	No
	Describes the state for the Watchers subscription.

	watcher
	Watcher
 [0..unbounded]
	Yes
	The presence data structure for the Presentity.

	link
	common:Link
	Yes
	Link to other resources that are in relationship with the resource. In this case it may point to the subscription.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. In this case it should contain the URL pointing to the same resource as in “Retrieval of watchers”.

A root element named watchersNotification of type WatchersNotification is allowed in watcher notification request.

5.2.22 Type: Identities

	Element
	Type
	Optional
	Description

	watcherIdentities
	xsd:anyURI
[0..unbounded]
	Yes
	List of Watcher identities.

	contactListIdentities
	xsd:string
[0..unbounded]
	Yes
	List of contact lists identities.

	domainNames
	xsd:string
[0..unbounded]
	Yes
	List of domain names.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

A root element named identities of type Identities is allowed in response bodies.

5.2.23 Type: DefaultDecision

	Element
	Type
	Optional
	Description

	defaultDecision
	DefaultDecisionValue
	No
	Allows the Presentity to define a default rule that will apply when new Watchers (for whom there are no authorization decision yet) are about to obtain Presence about the Presentity.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. In this case it should contain the URL pointing to the same resource as in “Retrieval of watchers”.

A root element named defaultDecision of type DefaultDecision is allowed in request and/or response bodies.

5.2.24 Type: Activities

	Element
	Type
	Optional
	Description

	activityValue
	ActivityValue [0..unbounded]
	Yes
	The value of the attribute as specified in the URI.

	note
	xsd:string
	Yes
	A textual description of what the user is currently doing.

	other
	xsd:string
	Yes
	Only applicable in case activities=ActivitiesOther

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.25 Type: PlaceType

	Element
	Type
	Optional
	Description

	placeTypeValue
	PlaceTypeValue

[0..unbounded]
	Yes
	The value of the attribute as specified in the URI.

	note
	xsd:string
	Yes
	A textual description of what type of place the person is located in.

	other
	xsd:string
	Yes
	Only applicable when the placeTypeList element is set to PlaceOther.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.26 Type: Privacy

	Element
	Type
	Optional
	Description

	privacyValue
	PrivacyValue
[1..unbounded]
	No
	The value of the attribute as specified in the URI.

	note
	xsd:string
	Yes
	A textual description of the privacy.

5.2.27 Type: Sphere

	Element
	Type
	Optional
	Description

	sphereValue
	SphereValue
	Yes
	The value of the attribute as specified in the URI.

	other
	xsd:string
	Yes
	Only applicable in case sphere=SphereOther

5.2.28 Type: Mood

	Element
	Type
	Optional
	Description

	moodValue
	MoodValue
[1..unbounded]
	No
	The value of the attribute as specified in the URI.

	note
	xsd:string
	Yes
	A textual description of what type of place the person is located in.

	other
	xsd:string
	Yes
	Only applicable in case activities=MoodOther

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.29 Type: PlaceIs

This structure holds properties of the place the Presentity is currently at, such as the levels of light and noise. This information can be used by the watcher to determine the type of communication that is likely to be successful.

	Element
	Type
	Optional
	Description

	placeIsAudio
	PlaceIsAudio
	Yes
	Describes place conditions for audio communication.

	placeIsVideo
	PlaceIsVideo
	Yes
	Describes place conditions for video communication.

	placeIsText
	PlaceIsText
	Yes
	Describes place conditions for real-time and instant-messaging communication.

5.2.30 Type: TimeOffset

This structure describes the number of minutes of offset from UTC that the user is currently at.

	Element
	Type
	Optional
	Description

	timeOffset
	xsd:int
	No
	Number of minutes of offset from UTC that the user is currently at.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.31 Type: StatusIcon

This structure includes a URI pointing to an image that represents the current status of the user.

	Element
	Type
	Optional
	Description

	statusIconAddress
	xsd:anyURI
	No
	The document path to share. E.g. “/oma_status-icon/myImage.png”

	contentType
	xsd:string
	Yes
	The content type related to the uploaded presence content.

	eTag
	xsd:string
	Yes
	The Etag of the uploaded presence content.

	fSize
	xsd:int
	Yes
	The size of the uploaded presence content.

	resolution
	xsd:string
	Yes
	The resolution of the uploaded presence content.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.32 Type: Note
	Element
	Type
	Optional
	Description

	 noteText
	 xsd:string
	Yes
	Contains the tagline of the user.

	lang
	xsd:string
	Yes
	Specifies the language used for the noteText. The value shall be aligned according to the definition of “xml:lang” from [XML1.0].

(Can be defined as an attribute when used in XML format)

5.2.33 Type: Location

This structure allows the user to enter the current location.
	Element
	Type
	Optional
	Description

	 circle
	 CircleData
	Choice
	Only applicable when value=circle

	 civicAddress
	 CivicAddress
	Choice
	Only applicable when value=civicAddress

	retentionExpiry
	xsd:dateTime
	No
	Set the retention expiry value

5.2.34 Type: CircleData

	Element
	Type
	Optional
	Description

	latitude
	xsd:float
	No
	Latitude of center point

	longitude
	xsd:float
	No
	Longitude of center point

	radius
	xsd:float
	No
	Radius of circle around center point in meters

5.2.35 Type: CivicAddress

These element names are inherited from RFC 5139.
	Element
	Type
	Optional
	Description

	Country
	xsd:token
	Yes
	Two-letter according to ISO 3166a2.

	A1
	xsd:string
	Yes
	National subdivisions (state, region, province, prefecture)

	A2
	xsd:string
	Yes
	County, parish, gun (JP), district (IN)

	A3
	xsd:string
	Yes
	City, township, shi (JP)

	A4
	xsd:string
	Yes
	City division, borough, city district, ward, chou (JP)

	A5
	xsd:string
	Yes
	Neighbourhood, block

	A6
	xsd:string
	Yes
	Group of streets below the neighbourhood level

	PRM
	xsd:string
	Yes
	Road pre-modifier

	PRD
	xsd:string
	Yes
	Leading street direction

	RD
	xsd:string
	Yes
	Primary road or street

	STS
	xsd:string
	Yes
	Street suffix

	POD
	xsd:string
	Yes
	Trailing street suffix

	POM
	xsd:string
	Yes
	Road post-modifier

	RDSEC
	xsd:string
	Yes
	Road section

	RDBR
	xsd:string
	Yes
	Road branch

	RDSUBBR
	xsd:string
	Yes
	Road sub-branch

	HNO
	xsd:string
	Yes
	House number, numeric part only.

	HNS
	xsd:string
	Yes
	House number suffix

	LMK
	xsd:string
	Yes
	Landmark or vanity address

	LOC
	xsd:string
	Yes
	Additional location information

	FLR
	xsd:string
	Yes
	Floor

	NAM
	xsd:string
	Yes
	Name (residence, business or office occupant)

	PC
	xsd:string
	Yes
	Postal code

	BLD
	xsd:string
	Yes
	Building (structure)

	UNIT
	xsd:string
	Yes
	Unit (apartment, suite)

	ROOM
	xsd:string
	Yes
	Room

	SEAT
	xsd:string
	Yes
	Seat (desk, cubicle, workstation)

	PLC
	xsd:string
	Yes
	Place-type

	PCN
	xsd:string
	Yes
	Postal community name

	POBOX
	xsd:string
	Yes
	Post office box (P.O. box

	ADDCODE
	xsd:string
	Yes
	Additional Code

5.2.36 Type: OverridingWillingness

This structure allows the client to set the overriding willingness.

	Element
	Type
	Optional
	Description

	overridingWillingnessValue
	OpenOrClosed
	No
	The overriding willingness for a person

	until
	xsd:dateTime
	Yes
	Specifies validity for the attribute.

(Can be defined as an attribute when used in XML format)

5.2.37 Type: LinkAttribute

This structure allows the client to set one or more links.

	Element
	Type
	Optional
	Description

	linkAddress
	xsd:anyURI
	No
	The address for the link

	label
	xsd:string
	Yes
	Label for the link

(Can be defined as an attribute when used in XML format)

	priority
	xsd:decimal
	Yes
	Priority for the link.

(Can be defined as an attribute when used in XML format)

5.2.38 Type: Contact

This structure allows the client to set a contact address for the service.

	Element
	Type
	Optional
	Description

	contactAddress
	xsd:anyURI
	No
	A contact address for the service.

	priority
	xsd:decimal
	Yes
	Decimal number between 0 and 1 inclusive with at most 3 digits after the decimal point. Higher values indicate higher priority.
(Can be defined as an attribute when used in XML format)

5.2.39 Type: NetworkAvailability
This structure allows the client to set the network availability for a device.

	Element
	Type
	Optional
	Description

	networkType
	xsd:string
	No
	The network id (e.g. IMS, GSM, GPRS, 802.11x etc)

	status
	ActiveOrTerminated
	No
	Indicates the current status of the connection to the corresponding network.

	networkMode
	HomeOrVisited
	Yes
	Indicates the current mode of the client connection.

5.2.40 Enumeration: SubscriptionState
	Enumeration
	Description

	Authorized
	Indicates that the watcher’s subscription is active and has been approved. (‘active’ state)

	Unauthorized
	Indicates that the watcher’s subscription is awaiting an authorization decision. (‘pending’, ‘waiting’ and ‘giveup’ state)

	TerminatedBlocked
	Indicates that the watcher’s subscription has been terminated. The subscription was blocked. (‘state=terminated, reason=rejected’ state)

	TerminatedTimeout
	Indicates that the watcher’s subscription has been terminated. The subscription was not refreshed in time before it expired. (‘state=terminated, reason=timeout’ state)

	TerminatedNoResource
	Indicates that the watcher’s subscription has been terminated. The intended resource does not exist. (‘state=terminated, reason=noresource’ state)

	TerminatedUnknown
	Indicates that the watcher’s subscription has been terminated of an unknown reason. (‘state=terminated, reason=probation/deactivated’ state)

5.2.41 Enumeration: PersonResourceAttributes
	Element
	Description

	Activities
	The presentity's activity (available, busy, lunch, etc.) [RFC4480]

	PlaceType
	At what kind of place the presentity is (home, office, etc.) [RFC4480]

	Privacy
	The amount of privacy the user wants (public, quiet, etc.) [RFC4480]

	Sphere
	The user's current environment (work, home) [RFC4480]

	Mood
	The user’s mood (angry, confused, happy, etc.) [RFC4480]

	PlaceIs
	Describes the properties of the place the user is currently at. [RFC4480]

	TimeOffset
	Describes the number of minutes of offset from UTC that the user is currently at. [RFC4480]

	StatusIcon
	Contains a link to an icon of the user. [RFC4480]

	Class
	Defines the particular class. [RFC4480]

	Note
	Contains the tagline of the user. [RFC4479]

	Location
	Location of a person or device. (RFC 4119&5139)

	OverridingWillingness
	The overriding willingness for a person. [OMA-PDE-V1.1]

	Link
	Defined a labelled link for a person or Service. [OMA-PDE-V1.1]

	Card
	URI to a business card. [RFC4482]

	DisplayName
	A display name of a person or Service. [RFC4482]

	HomePage
	URI pointing to general information about a person or Service. [RFC4482]

	Icon
	URI pointing to an image/icon of the person or Service. [RFC4482]

	Map
	URI pointing to a map related to the person or Service. [RFC4482]

	Sound
	URI pointing to a sound related to the person or Service. [RFC4482]

5.2.42 Enumeration: ServiceResourceAttributes

	Element
	Description

	StatusIcon
	Contains a link to an icon of the user. [RFC4480]

	Class
	Defines the particular class. [RFC4480]

	DisplayName
	A display name of a person or Service. [RFC4482]

	HomePage
	URI pointing to general information about a person or Service. [RFC4482]

	Icon
	URI pointing to an image/icon of the person or Service. [RFC4482]

	Map
	URI pointing to a map related to the person or Service. [RFC4482]

	Sound
	URI pointing to a sound related to the person or Service. [RFC4482]

	ServiceAvailability
	Service specific availability.([OMA-PDE-V1.1]

	ServiceWillingness
	Service specific willingness. [OMA-PDE-V1.1]

	Contact
	A contact address for a Service. [RFC3863]

	ServiceDescription
	A text describing the Service. [OMA-PDE-V1.1]

	SessionParticipation
	Indicates a participation in a session. [OMA-PDE-V1.1]

	RegistrationState
	The registration state for a Service. [OMA-PDE-V1.1]

	BarringState
	The barring state for a Service. [OMA-PDE-V1.1]

	SessionAnswerMode
	Indicates answer mode for a session. [OMA-PDE-V1.1]

	DeviceId
	Identifies the device which this particular Service is related to. [RFC4479]

5.2.43 Enumeration: DeviceResourceAttributes

	Element
	Description

	Class
	Defines the particular class. [RFC4480]

	Location
	Location of a person or device. (RFC 4119&5139)

	Link

	Defined a labelled link for a person or Service. [OMA-PDE-V1.1]

	NetworkAvailability
	The network availability for a device. [OMA-PDE-V1.1]

5.2.44 Enumeration: DefaultDecisionValue
An enumeration of the default authorization decision.
	Enumeration
	Description

	Allow
	New Watchers are automatically granted to access presence data about the Presentity.

	Block
	New Watchers are automatically blocked from seeing any presence data

	Politely-block
	New Watchers are automatically politely blocked

	Confirm
	New Watchers have to be manually authorized before being able to get access to the presence data.

5.2.45 Enumeration: ActivityValue

The following enumeration values are inherited from [RFC4480].
	Enumeration
	Description

	Appointment
	The user has an appointment.

	Available
	The user is available for communication.

	Busy
	The user is busy and is only available for urgent matters.

	DoNotDisturb
	The user is very busy and does not wish to be disturbed.

	OnThePhone
	The user is on the phone.

	Steering
	The user is driving a car / train / airplane, etc.

	Meeting
	The user is in a meeting.

	Away
	No idea what the user is doing, but he is away.

	Meal
	The user is eating.

	Breakfast
	The user is having breakfast.

	Lunch
	The user is having lunch.

	Dinner
	The user is having dinner.

	PermanentAbsence
	The user is away and will not return for an extended period.

	Vacation
	The user is on vacation.

	Holiday
	A scheduled national or local holiday.

	Performance
	The user is in a theatre / concert.

	InTransit
	The user is in the transit area of an (air)port.

	Travel
	The user is travelling.

	Sleeping
	The user is sleeping.

	LookingForWork
	The user is looking for (paid) work.

	Playing
	The user is occupying him- or herself in amusement, sport, or other recreation.

	Presentation
	The user is giving a presentation, lecture, or participating in a formal round-table discussion.

	Shopping
	The user is visiting stores in search of goods or Services.

	Spectator
	The user is observing an event, such as a sports event.

	TV
	The user is watching television.

	Working
	The user is engaged in, typically paid; labour, as part of a profession or job.

	Worship
	The user is participating in religious rites.

	ActivitiesOther
	The user is doing something not in this list.

5.2.46 Enumeration: PlaceTypeValue
The following enumeration values are inherited from [RFC4480].
	Enumeration
	Description

	Arena
	The user is at an enclosed area used for sports events.

	Home
	The user is at home.

	Office
	The user is in an office.

	PublicTransport
	The user is on public transport.

	Street
	Walking on the street.

	Outdoors
	Generally outdoors.

	PublicPlace
	The user is in a public place.

	Hotel
	The user is in a hotel.

	Theatre
	The user is in a theatre or concert.

	Restaurant
	The user is in a restaurant, coffee shop or, other public dining establishment.

	School
	The user is at school.

	Industrial
	The user is in an industrial building.

	Quiet
	The user is in a quiet area.

	Noisy
	The user is in a noisy area.

	Aircraft
	The user is on an aircraft.

	Watercraft
	The user is on a vessel for travel on water such as a boat or ship.

	Automobile
	The user is in a car.

	Bus
	The user is in a bus.

	BusStation
	The user is in a bus- station.

	TrainStation
	The user is in a train-station.

	ShoppingArea
	The user is in a shopping mall or shopping area.

	Airport
	The user is in an airport.

	Train
	The user is in a train.

	Bank
	The user is in a bank.

	Bar
	The user is in a bar.

	Bicycle
	The user is on a bicycle.

	Café
	The user is in a café; usually a small and informal establishment that serves various refreshments (such as coffee); coffee shop.

	Classroom
	The user is in an academic classroom or lecture hall.

	Club
	The user is in a dance club, nightclub, or discotheque.

	Construction
	The user is at a construction site.

	ConventionCenter
	The user is in a convention center or exhibition hall.

	Government
	The user is in a government building, such as those used by the legislative, executive, or judicial branches of governments, including court houses, police stations, and military installations.

	Hospital
	The user is in a hospital, hospice, medical clinic, mental institution, or doctor's office.

	Library
	The user is in a library.

	Motorcycle
	The user is on a motorcycle.

	Outdoors
	The user outside a building, in or into the open air, such as a park or city streets.

	Parking
	The user is in a parking lot or parking garage.

	PlaceOfWorship
	The user is at a religious site where congregations gather for religious observances, such as a church, chapel, meetinghouse, mosque, shrine, synagogue, or temple.

	Prison
	The user is in a prison, penitentiary, jail or a brig.

	Residence
	The user is in a private or residential setting.

	Stadium
	The user is in a stadium.

	Store
	The user is in a shop or store.

	Truck
	The user is in a truck.

	Underway
	The user is in a land-, water-, or aircraft that is underway (in motion).

	Warehouse
	The user is in a warehouse.

	Water
	The user is in, on, or above bodies of water, such as an ocean, lake, river, canal, or other waterway.

	PlaceOther
	The user is in a kind of place not listed here.

5.2.47 Enumeration: PrivacyValue

The following enumeration values are inherited from [RFC4480].
	Enumeration
	Description

	PrivacyPublic
	The user is surrounded by other people and cannot discuss openly.

	PrivacyPrivate
	The user is alone and able to talk openly.

	PrivacyQuiet
	The user is in a quiet environment and cannot talk at all.

	PrivacyOther
	None of the other values applies.

	PrivacyAudio
	Inappropriate individuals are not likely to overhear audio communications.

	PrivacyText
	Inappropriate individuals are not likely to see text communications.

	PrivacyVideo
	Inappropriate individuals are not likely to see video communications.

5.2.48 Enumeration: SphereValue

The following enumeration values are inherited from [RFC4480].
	Enumeration
	Description

	SphereWork
	The user is acting within his work sphere, i.e. as a member of his company

	SphereHome
	The user is acting within his home sphere, i.e. as a private person.

	SphereOther
	The user is acting neither within his work nor within his home sphere.

5.2.49 Enumeration: MoodValue

The following enumeration values are inherited from [RFC4480].
	Enumeration
	Description

	Afraid
	The user is afraid.

	Amazed
	The user is amazed.

	Angry
	The user is angry.

	Annoyed
	The user is annoyed.

	Anxious
	The user is anxious.

	Ashamed
	The user is ashamed.

	Bored
	The user is bored.

	Brave
	The user is brave.

	Calm
	The user is calm.

	Cold
	The user is cold.

	Confused
	The user is confused.

	Contented
	The user is contented.

	Cranky
	The user is cranky.

	Curious
	The user is curious.

	Depressed
	The user is depressed.

	Disappointed
	The user is disappointed.

	Disgusted
	The user is disgusted.

	Distracted
	The user is distracted.

	Embarrassed
	The user is embarrassed.

	Excited
	The user is excited.

	Flirtatious
	The user is flirtatious.

	Frustrated
	The user is frustrated.

	Grumpy
	The user is grumpy.

	Guilty
	The user is guilty.

	Happy
	The user is happy.

	Hot
	The user is hot.

	Humbled
	The user is humbled.

	Humiliated
	The user is humiliated.

	Hungry
	The user is hungry.

	Hurt
	The user is hurt.

	Impressed
	The user is impressed.

	InAwe
	The user is in awe.

	InLove
	The user is in love.

	Indignant
	The user is indignant.

	Interested
	The user is interested.

	Invincible
	The user is invincible.

	Jealous
	The user is jealous.

	Lonely
	The user is lonely.

	Mean
	The user is mean.

	MoodNone
	The user’s mood is unknown.

	Moody
	The user is moody.

	Nervous
	The user is nervous.

	Neutral
	The user is neutral.

	Offended
	The user is offended.

	Playful
	The user is playful.

	Proud
	The user is proud.

	Relieved
	The user is relieved.

	Remorseful
	The user is remorseful.

	Restless
	The user is restless.

	Sad
	The user is sad.

	Sarcastic
	The user is sarcastic.

	Serious
	The user is serious.

	Shocked
	The user is shocked.

	Shy
	The user is shy.

	Sick
	The user is sick.

	Sleepy
	The user is sleepy.

	Stressed
	The user is stressed.

	Surprised
	The user is surprised.

	Thirsty
	The user is thirsty.

	Worried
	The user is worried.

	MoodOther
	The user’s current mood is not listed here.

5.2.50 Enumeration: PlaceIsAudio

This enumeration is inherited from [RFC4480] and shows the properties of the place the Presentity is currently at with respect to audio communication.
	Enumeration
	Description

	Noisy
	The user is in a place with a level of background noise that makes audio communications difficult.

	Ok
	The environmental conditions are suitable.

	Quiet
	The user is in a place such as a library, restaurant, place of worship, or theatre that discourages noise, conversation, and other distractions.

	Unknown
	The place attributes are not known.

5.2.51 Enumeration: PlaceIsVideo

This enumeration is inherited from [RFC4480] and shows the properties of the place the Presentity is currently at with respect to video communication.
	Enumeration
	Description

	TooBright
	The place is too bright for video communication.

	Ok
	The environmental conditions for video communication are acceptable.

	Dark
	The place is too dark for video communication.

	Unknown
	The environmental conditions for video communication are not known.

5.2.52 Enumeration: PlaceIsText

This enumeration is inherited from [RFC4480] and shows the properties of the place the Presentity is currently at with respect to real-time text and instant messaging.
	Enumeration
	Description

	Uncomfortable
	The place is uncomfortable for typing or other text entry.

	Inappropriate
	The place is inappropriate for typing or other text entry.

	Ok
	The environmental conditions are suitable for typing or other text entry.

	Unknown
	The place attributes for text communication is not known.

5.2.53 Enumeration: OpenOrClosed

This enumeration is inherited from [OMA-PRS-V1.1].

	Element
	Description

	Open
	Indicates an ‘open’ state.

	Closed
	Indicates a ‘closed’ state.

5.2.54 Enumeration: ActiveOrTerminated

This enumeration is inherited from [OMA-PRS-V1.1].
	Element
	Description

	Active
	Indicates an ‘active’ state.

	Terminated
	Indicates a ‘terminated’ state.

5.2.55 Enumeration: AutomaticOrManual

This enumeration is inherited from [OMA-PRS-V1.1].
	Element
	Description

	Automatic
	Indicates an ‘automatic’ state.

	Manual
	Indicates a ‘manual’ state.

5.2.56 Enumeration: HomeOrVisited
This enumeration is inherited from [OMA-PRS-V1.1].
	Element
	Description

	Home
	Indicates an ‘home’ state.

	Visited
	Indicates a ‘visited’ state.

5.2.1 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

<< Include a bullet list with possible “rel” string values >>
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams

The following sections show three parts of a possible scenario for the usage of the presence API. There are two applications. Both applications have different roles.

· Application 1 acts on behalf of Alice and has the presentity role.

· Application 2 acts on behalf of Bob and has a watcher role.

The sequences also try to show the interaction between these different roles.

5.3.1 Application start-up; publish presence, fetch watcher information, subscribe to watcher info

This figure below shows a scenario for starting or restarting an application instance of Application 1 on terminal 1 of Alice. Application 1 is a multi-terminal application and can publish different presence status from each of the terminals the application is running on. The sequence shows the following steps.

- Publishing information by application 1 on terminal 1 on behalf of Alice (step 1 - 2)

- Retrieving information about the watchers of Alice (step 3 - 4)

- Subscribing to watcher information for Alice, including the corresponding notification (step 5 - 7)
The resources:

1. To fetch the list of presenceSources the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource

2. To create a new presenceSource the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource

3. To fetch the current watchers this resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers
4. To fetch the list of subscriptions the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions
5. To subscribe to changes in the watcher information the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions

6. The notification of the watcher info is done on the callback URL provided by the application.

[image: image3]
Outline of the flows:

The idea is that the application 1 is stateless. i.e., it does not store any data between restarts. So in fact it does not know if the current situation is a start or a restart. The applicationTag is created by the client, and in this case they are created based on the application id and the terminal id (here: app1_term1), to create a unique identifier per terminal per application. The (optional) applicationTag is used to retrieve resources that were created before the restart and can be reused after the restart.

1. To fetch the list of presenceSources does a GET on the resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/presenceSource

The response returns a list of presenceSources. Each presenceSource will have a clientCorrelator and an applicationTag. The applications try to find the resource that matches its applicationTag. This way it can find out the resourceURL of that resource.
We are assuming in this scenario that the resource was not found and the next step is to create a new resource. However, if the resource would have been found, the next step could be to do a GET on the resource, in order to synchronise the client with the server view of the resource (i.e., get the e-tag of the resource and get the current content). After that the client would be in a position to update the resource by using PUT (see later sequences on updating an existing presenceSourceId resource).

2. To create publication data (presenceSourceId) by application 1 on terminal 1 (2) the application does a POST on the following resource to create a new presenceSourceId resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/presenceSource
In the POST app1_term1 is provided as the applicationTag. The POST also includes a clientCorrelator that is generated to be unique.

In the response a 201 result is returned with the location of the resource (we assume here: http://{serverRoot}/{apiVersion}/presence/{userAlice}/presenceSource/{presenceSource1}).

3. Application 1 fetches the current watchers by doing a GET on the following resource
http://{serverRoot}/{apiVersion}/presence/{userAlice}/watchers

A list of watchers is returned. The result contains most data about the watchers, except for some detailed information with is obtained in the following step.

4. Application 1 gets the list of watcher info subscriptions. This is because in case of a restart it wants to reuse (and probably refresh) the same subscription that was used before the restart. In order to get the list of the subscriptions a GET is performed on:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions

The response is a list of subscriptions which the application uses to find if there is a subscription matching its specific applicationTag (app1_term1). In this case (after a start) the resource is not found.

5. Application 1 subscribes to changes in the watcher information by doing a POST on the following resource. The application uses the same applicationTag as used in step 1 and 3 and a unique clientCorrelator.
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions

The response contains a 201 with a location header pointing to the created resource. We assume that http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions/{subscription1} is returned as the resource.

6. The subscription in step 6 will result in a notification of the application with the current status of the watcher info. The application provided callback URL is used in the notification.

This makes step 3 superfluous, but it was included as an alternative way to fetch the same information by polling.

5.3.2 Adding a watcher; subscribe for presence and updating of presence information.

This is a continuation of the sequence started in the previous section. More specifically the following preconditions apply:

· There is an active subscription for watcher info by application 1 for the presentity Alice.

This figure below shows the following scenario

- Application 2 (a stateful application) subscribes to Alice’s presence on behalf of Bob (and corresponding notify) (step 1 - 2)

- Watcher info notification since Bob becomes a pending watcher (step 3)

- Adding Bob to the allowed list (step 4)

- Presence notification to Bob's application since Bob is now allowed to see the status of Alice (step 5)

- Watcher info notification to Alice's application since the status of the watcher Bob changed to active

The resources:

1. To create a subscription for presence notifications for a single entity the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/presenceContact/{presentityId}/subscriptions

2. The notification of the presence information is done on the callback URL provided by the application.

3. The notification of the watcher info is done on the callback URL provided by the application.

4. To add a watcher to the allowed list the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/authorization/allowList/watchers/{watcherId}

5. The notification of the presence information is done on the callback URL provided by the application.

6. The notification of the watcher info is done on the callback URL provided by the application.

[image: image4]
Outline of the flows:

Application 2 is a stateful application, i.e., it stored information between restarts. Therefore, it will remember and resource that where used in the previous incarnation, and does not have to fetch any resources from the server to find if there is any resource that match its applicationTag.
1. Application 2 creates a subscription to the presence information of Alice. Application 2 acts on behalf of Bob (the watcher). The subscription is created by doing a POST on a resource with a client generated unique correlator. No applicationTag is included. The resource used for the POST is
http://{serverRoot}/{apiVersion}/presence/{userBob}/presenceContact/{userAlice}/subscriptions

As a result a 201 created is returned. The location header pointing to the created resource (here: http://{serverRoot}/{apiVersion}/presence/{userBob}/presenceContact/{userAlice}/subscriptions/{subscription1}

2. The service notifies application 2 about the current status of the subscription. In this case the subscription status is notified as being pending, since Bob is not yet authorized by Alice to view the presence status of Alice.

3. The service notifies application 1 about a new watcher called Bob, whose status is unauthorized.

4. Application 2 prompts Alice to request authorisation of Bob. Alice allows Bob, so application 2 adds Bob to the allowed list of Alice, meaning that Bob is authorized to view the status of Alice. This is done by performing a PUT on the resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/authorization/allowList/watchers/{userBob}

In this case Bob was not yet authorized, so the result is 201 created.
5. The service notifies application 2 about the current status of the subscription. In this case the subscription status is notified as being active, since Bob is now authorized by Alice to view the presence status of Alice.
The notification will also contain the all of the current presence data of Alice that Bob is allowed to see according to the rules.

6. The service notifies application 1 about a new watcher called Bob, whose status is now changed to active.

5.3.3 Update of presence status

This is a continuation of the sequence started in the previous sections. More specifically the following preconditions apply:

· There is an active subscription for watcher info by application 1 for the presentity Alice.

· There is an active subscription for the presence of presentity Alice by application 2 on behalf of watcher Bob

· There is an active publication resource for presentity Alice creates by application 1.

This figure below shows the following scenario

- Application 1 uploads a new status-icon for Alice (step 1)

- Application 1 updates the presence data of Alice to with a link to the uploaded status-icon

- Application 2 is notified about the changed presence data

- Application 2 retrieves the content status-icon

The resources:

1. To put the content of the status icon the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/content/{contentId}

2. To modify the published presence status the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}/{presenceResource}

3. The notification of the presence information is done on the callback URL provided by the application.

4. To get the content of the status-icon the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/content/{presentityId}/{contentId}

[image: image5]
Outline of the flows:

1. Application 1 uploads a new status-icon for the Alice. It includes the content of the icon as the body in a PUT on the following resource. This assumes the id of the icon is smiley.
http://{serverRoot}/{apiVersion}/presence/{userAlice}/content/smiley

The result depends on whether the content with that ID already exists. In this case it is assumed that it did not yet exist, so a 201 created is returned.

2. Application 1 updates the status of the Alice, by only updating the status-icon part. It does a PUT on the following resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/presenceSource/{presenceSource1}/person/statusIcon

The result depends on whether the old presence data already contained a status icon.

3. The service notifies Application 2 with the watcher Bob about the status change of the presentity Alice. The provided presence information contains the status-icon with a link to the location of the icon

4. Application 2 fetches the content of the status-icon by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/presence/{userBob}/content/{userAlice}/smiley

The response contains the status icon content in the body.

5.3.4 Shutdown; remove resources

This is a continuation of the sequence started in the previous sections. More specifically the following preconditions apply:

· There is an active subscription for watcher info by application 1 for the presentity Alice.

· There is an active subscription for the presence of presentity Alice by application 2 on behalf of watcher Bob

· There is an active publication resource for presentity Alice creates by application 1.

This figure below shows the following scenario

- All the created subscriptions and the publications are terminated (but not the status-icon content)

The resources:

1. To delete the presence subscription the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/presenceContact/{presentityId}/subscriptions/{subscriptionId}

2. To delete the watcher info subscription the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions/{subscriptionId}

3. To delete the publication of presence data the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}

[image: image6]
Outline of the flows:

1. Application 2 deletes the subscription resource for presence information by doing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/presence/{userBob}/presenceContact/{userAlice}/subscriptions/{subscription1}

Note that a DELETE on a subscription resource will NOT trigger any notifications!
2. Application 1 deletes the watcher info subscription by doing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/watchers/subscriptions/{subscription1}

3. Application 2 deletes the publication of presence data by doing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/presence/{userAlice}/presenceSource/{presenceSource1}
5.4 Resource: Management of presence source
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource
This resource is used to create a presence source with a time-to-live. The presence source will expire if it is not refreshed in time. The resource is also used to retrieve all presence sources including the Persistent Presence document.

5.4.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the presence source is created for.
Example: sip:alice@example.com

5.4.2 Response Codes

5.4.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.4.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.4.3 GET
This operation is used to retrieve all presence sources for the specified user.
5.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

5.4.5 POST
5.4.6 This operation is used for creating a presence source with a specified time-to-live. The server might modify the client requested duration to a lower value. If a too high value was requested an error code will be returned.
Note: ParlayX SOAP equivalent is Publish.
5.4.6.1 Example
5.4.6.1.1 Request

	POST http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource HTTP/1.1
Host: example.com:80
Content-Type: application/xml; charset=UTF-8
Content-Length: 12345
<?xml version="1.0" encoding="UTF-8"?>

<pr:presenceSource xmlns:pr="urn:oma:xml:rest:presence:1">

 <clientCorrelator>123</clientCorrelator>

 <applicationTag>myApp</applicationTag>

 <duration>7200</duration>

 <presence>

 <person>

 <mood>

 <moodvalue><happy/></moodValue>

 </mood>

 </person>

 <servcice>

 <serviceId>org.openmobilealliance:IM-Session</serviceId>

 <version>1.0</version>

 <serviceaVailability>open</serviceaVailability>
 <deviceIdentityList>
 <deviceId>mac:321</deviceId>
 </deviceIdentityList>

 </servcice>

 <device>

 <deviceId>mac:321</deviceId>
 <networkavailability>

 <networkType>GPRS</networkType>

 <connectionStatus>active</connectionStatus>

 </networkavailability>

 </device>

 </presence>

 <resourceURL>http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}</resourceURL>

</pr:presenceSource>

5.4.6.1.2 Response

	HTTP/1.1 201 Created

Location: http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}
Date: Thu, 04 Jun 2009 02:51:59 GMT

5.4.7 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

5.5 Resource: Management of presence information
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}
This resource is used for managing of an existing presence source. A Presentity can use it retrieve a previously created presence source and to update an existing presence source as well as removing it.

5.5.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the presence source is created for.
Example: sip:alice@example.com

	presenceSourceId
	identifier of the presence source.

5.5.2 Response Codes

5.5.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.5.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.5.3 GET
This operation is used to retrieve a particular presence source for the specified user.
5.5.3.1 Example

5.5.3.1.1 Request

	GET http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId} HTTP/1.1
Host: example.com:80
Accept: application/xml

5.5.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<pr:presenceSource xmlns:pr="urn:oma:xml:rest:presence:1">

 <clientCorrelator>123</clientCorrelator>

 <applicationTag>myApp</applicationTag>

 <duration>7200</duration>

 <presence>

 <person>

 <mood>

 <moodvalue><happy/></moodValue>

 </mood>

 </person>

 <servcice>

 <serviceId>org.openmobilealliance:IM-Session</serviceId>

 <version>1.0</version>

 <serviceaVailability>open</serviceaVailability>
 <deviceIdentityList>
 <deviceId>mac:321</deviceId>
 </deviceIdentityList>

 </servcice>

 <device>

 <deviceId>mac:321</deviceId>
 <networkavailability>

 <networkType>GPRS</networkType>

 <connectionStatus>active</connectionStatus>

 </networkavailability>

 </device>

 </presence>

 <resourceURL>http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}</resourceURL>

</pr:presenceSource>

5.5.4 PUT

This operation is used for updating a presence source. The Presentity includes the entire presence document.
Note: ParlayX SOAP equivalent is Publish.
5.5.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT, POST, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.5.6 DELETE

This operation is used for removing a presence source. The Presentity includes the entire presence document.
5.6 Resource: Management of individual presence attribute
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}/[ResourceRelPath]
This resource is used to update a particular presence attribute as well as extending the duration of the presence source.
This resource type can be used to access and manage parts of presence attributes. The resource URL consists of heavy-weight resource path, http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}, and an extenion of the resource URL path, which we can call “light-weight resource URL extension” and it is represented by [ResourceRelPath].
5.6.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the presence source is created for.
Example: sip:alice@example.com

	presenceSourceId
	identifier of the presence source.

	[ResourceRelPath]
	Light-weight resource consisting of a relative path down to an element in the data structure. Please refer to the table below for information about the applicable values of the light-weight resource path.

The following table describes the light-weight resources and the applicable methods.
	Light-weight resource type
	Method supported
	Description

	Presence attribute groups

	GET, PUT, DELETE
	Enables access to presence attributes related to Person, Service or Device.
See data structure 5.2.3 for possible values of the light-weight resource path.

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.4 for possible values of the light-weight resource path.

	Service attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a service.

See data structure 5.2.5 for possible values of the light-weight resource path.

	Device attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a device.

See data structure 5.2.6 for possible values of the light-weight resource path.

	Duration of presence source
	GET, PUT
	Used to update the duration or retrieve the remaining life time of the presence source.

See data structure 5.2.2 for the light-weight resource path.

5.6.2 Response Codes

5.6.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.6.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.6.3 GET
This operation is used to retrieve a particular presence attribute in the specified presence source. It may also be used to retrieve the remaining duration of the life time. If the presence source is not refreshed in time it will expire.
5.6.3.1 Example

5.6.3.1.1 Request

	GET http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}/person/mood HTTP/1.1
Host: example.com:80
Accept: application/xml

5.6.3.1.2 Response

	HTTP/1.1 20O OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<mood>

 <moodvalue><happy/></moodValue>

</mood>

5.6.4 PUT

This operation is used to update (or create if it does not exist already) an individual presence attribute in the specified presence source. It may also be used to extend the duration of a presence source.
Note: ParlayX SOAP equivalent is Publish.
5.6.4.1 Example

5.6.4.1.1 Request

	PUT http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}/person/mood HTTP/1.1
Host: example.com:80
Content-Type: application/xml; charset=UTF-8
Content-Length: 12345
<?xml version="1.0" encoding="UTF-8"?>

<mood>

 <moodvalue><happy/></moodValue>

</mood>

5.6.4.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

5.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.6.6 DELETE
5.6.7 This operation is used to remove a particular presence attribute from a presence source.
5.6.7.1 Example

5.6.7.1.1 Request

	DELETE http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/{presenceSourceId}/person/mood HTTP/1.1
Host: example.com:80

5.6.7.1.2 Response

	HTTP/1.1 20O OK

Date: Thu, 04 Jun 2009 02:51:59 GMT

5.7 Resource: Management of persistent presence data
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/persistent
This resource is used by the Presentity to manage persistent presence data. Persistent presence data is normally used for more static kind of presence data and does not have a time-to-live and hence will never expires. There is only one instance of the persistent presence source in the system.

5.7.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the persistent presence source is created for.
Example: sip:alice@example.com

5.7.2 Response Codes

5.7.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.7.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.7.3 GET
This operation is used to retrieve the persistent presence source for the specified user.
5.7.4 PUT

This operation is used to update (or create if it does not exist already) the persistent presence source for the specified user.
5.7.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.7.6 DELETE

This operation is used to remove the persistent presence source.
5.8 Resource: Management of individual persistent presence attributes
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/persistent/[ResourceRelPath]
This resource is used to manage individual persistent presence attributes. Persistent presence data is normally used for more static kind of data and does not have a time-to-live and hence will never expires.
This resource type can be used to access and manage parts of presence attributes. The resource URL consists of heavy-weight resource path, http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/persistent, and an extenion of the resource URL path, which we can call “light-weight resource URL extension” and it is represented by [ResourceRelPath].

5.8.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the persistent presence attributes is managed for.
Example: sip:alice@example.com

	[ResourceRelPath]
	Light-weight resource consisting of a relative path down to an element in the data structure. Please refer to the table below for information about the applicable values of the light-weight resource path.

The following table describes the light-weight resources and the applicable methods.

	Light-weight resource type
	Method supported
	Description

	Presence attribute groups

	GET, PUT, DELETE
	Enables access to presence attributes related to Person, Service or Device.
See data structure 5.2.3 for possible values of the light-weight resource path.

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.4 for possible values of the light-weight resource path.

	Service attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a service.

See data structure 5.2.5 for possible values of the light-weight resource path.

	Device attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a device.

See data structure 5.2.6 for possible values of the light-weight resource path.

5.8.2 Response Codes

5.8.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.8.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.8.3 GET
This operation is used to retrieve a particular persistent presence attribute for the specified user.
5.8.4 PUT

This operation is used to update (or create if it does not exist already) a particular persistent presence attribute for the specified user.
5.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.8.6 DELETE

This operation is used to remove a particular persistent presence attribute.
5.9 Resource: Retrieval of subset of presence sources data
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceSource/index
This resource is used to retrieve an index list of the available presence sources. The response contains a subset of the presence sources including a link to each presence source created by the Presentity (it excludes the presence data in order to limit the size of the responses).

5.9.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the index is retrieved for.
Example: sip:alice@example.com

5.9.2 Response Codes

5.9.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.9.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.9.3 GET
This operation is used to retrieve a list of available presence sources for the specified user.
5.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.9.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.10 Resource: Retrieval of content by Presentity
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/content
This resource is used to retrieve a list of content stored on the server. The result contains a list of URLs for each uploaded content file. The file may consist of an icon/picture etc.

5.10.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the content is retrieved for.
Example: sip:alice@example.com

5.10.2 Response Codes

5.10.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.10.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.10.3 GET
This operation is used to retrieve a list of content for the specified user.
5.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.10.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.11 Resource: Management of individual content by Presentity
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/content/{contentId}
This resource is used to manage individual content, such as an icon.
5.11.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the content is managed for.
Example: sip:alice@example.com

	contentId
	contains a identifier of the content. The identifier may be structured as a relative path consisting of a directory and filename. Example: oma_status-icon/myPicturejpg

5.11.2 Response Codes

5.11.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.11.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.11.3 GET
This operation is used by the Presentity to retrieve the content as specified in the URL.
5.11.4 PUT

This operation is used to upload new of modify existing content on the server.
5.11.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.11.6 DELETE

This operation is used to remove the content as specified by in the URL.
5.12 Resource: Retrieval of Watcher list
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/watchers
This resource is used by the Presentity to retrieve the list of Watchers that are interested in the Presentity’s Presence data including the current subscription status.
A typical usage is to retrieve unauthorized users in order to decide whether to allow, block or politely block them.

5.12.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the Watcher list is retrieved for.
Example: sip:alice@example.com

5.12.2 Response Codes

5.12.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.12.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.12.3 GET
This operation is used to retrieve a list of Watchers (including corresponding subscription status) interested in the Presentity’s presence information.
	Name
	Type/value
	Optional
	Description

	filter
	xsd:anyURI[0..unbounded]
	Yes
	Allows the Presentity to indicate the Watcher resource state it is interested of in the response according to the values specified in section 5.2.11.
Example: “?filter=pending”

Note: ParlayX SOAP equivalent is getMyWatchers
5.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.13 Resource: Retrieval of individual Watcher
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/watchers/{watcherUserId}
This resource is used to retrieve subscription status about bout an individual Watcher.

5.13.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the Watcher is retrieved for.
Example: sip:alice@example.com

	watcherUserId
	identity of the Watcher to retrieve information about.
Example: sip:bob@example.com

5.13.2 Response Codes

5.13.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.13.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.13.3 GET
This operation is used by a Presentity to retrieve subscription status about an individual Watcher.
Note: ParlayX SOAP equivalent is getSubscribedAttributes
5.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.13.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.14 Resource: Management of authorization rules
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/authorization/rules
This resource is used by a Presentity to create and retrieve authorization rules. The authorization rules controls who will have access to a Presentity’s presence information. A Watcher may be authorized to all or a subset of the available presence attributes.

5.14.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the authorization rules are managed for.
Example: sip:alice@example.com

5.14.2 Response Codes

5.14.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.14.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.14.3 GET
This operation is used by a Presentity to retrieve all authorization rules.
5.14.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.14.5 POST
This operation is used by a Presentity to create a new authorization rule.
Note: ParlayX SOAP equivalent is updateAuthorizationRule
5.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.15 Resource: Management of individual authorization rule
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/authorization/rules/{ruleId}
This resource is used by a Presentity to manage an individual authorization rule.

5.15.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the individual authorization rule are managed for.
Example: sip:alice@example.com

	ruleId
	identity of the rule generated by the system

5.15.2 Response Codes

5.15.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.15.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.15.3 GET
This operation is used by a Presentity to retrieve an authorization rule.
5.15.4 PUT
This operation is used by a Presentity to update an authorization rule.
Note: ParlayX SOAP equivalent is updateAuthorizationRule
5.15.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.15.6 DELETE

This operation is used by a Presentity to remove an authorization rule.
Note: ParlayX SOAP equivalent is deleteAuthorizationRule
5.16 Resource: Management of individual authorization rule data
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/authorization/rules/{ruleId}/[resourceRelPath]
This resource is used by a Presentity to update an authorization rule by specifying the identity to authorize in the URL. Users, contact lists or domains may be authorized using this operation.

5.16.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity that the authorization rule data is managed for.
Example: sip:alice@example.com

	ruleId
	identifier of the rule generated by the system

	[ResourceRelPath]
	Light-weight resource consisting of a relative path down to an element in the data structure. Please refer to the table below for information about the applicable values of the light-weight resource path.

The following table describes the light-weight resources and the applicable methods.

	Light-weight resource type
	Method supported
	Description

	Watcher identities

	GET, PUT, DELETE
	Enables access to authorization data related to an specific authorization rule.
See data structure 5.2.27 for possible values of the light-weight resource path.

5.16.2 Response Codes

5.16.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.16.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.16.3 GET
This operation is used by a Presentity to retrieve a user, contact list or domain from an authorization rule.
5.16.4 PUT
This operation is used by a Presentity to authorize a user, contact list or domain by including its identity in the request.
5.16.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.16.6 DELETE

This operation is used by a Presentity to remove a user, contact list or domain from an authorization rule.
5.17 Resource: Retrieval of presence information by Watcher from a single Presentity
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceContact/{presentityUserId}
This resource is used by a Watcher to retrieve presence information about a single Presentity.

5.17.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the presence data from the Presentity.
Example: sip:bob@example.com

	presentityUserId
	identity of the Presentity owning the presence data
Example: sip:alice@example.com

5.17.2 Response Codes

5.17.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.17.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.17.3 GET
This operation is used by a Watcher to retrieve presence information about a Presentity.
Request URL parameters are:
	Name
	Type/value
	Optional
	Description

	filter
	xsd:anyURI[0..unbounded]
	Yes
	Allows the Watcher to indicate what presence data it is interested of. The desired attributes are indicated with relative paths according to the [ResourceRelPath] in section Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found..
Example: “filter=person/mood&filter=service/chat/1.0/icon”

Note: ParlayX SOAP equivalent is getUserPresence
5.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.17.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.18 Resource: Retrieval of individual presence attribute by Watcher for a single Presentity
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceContact/{presentityUserId}/[ResourceRelPath]
This resource is used by a Watcher to retrieve an individual presence attribute from a single Presentity.

5.18.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the presence data from the Presentity.
Example: sip:bob@example.com

	presentityUserId
	identity of the Presentity owning the presence data
Example: sip:alice@example.com

	[ResourceRelPath]
	Light-weight resource consisting of a relative path down to an element in the data structure. Please refer to the table below for information about the applicable values of the light-weight resource path.

The following table describes the light-weight resources and the applicable methods.

	Light-weight resource type
	Method supported
	Description

	Presence attribute groups

	GET, PUT, DELETE
	Enables access to presence attributes related to Person, Service or Device.
See data structure 5.2.3 for possible values of the light-weight resource path.

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.4 for possible values of the light-weight resource path.

	Service attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a service.

See data structure 5.2.5 for possible values of the light-weight resource path.

	Device attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a device.

See data structure 5.2.6 for possible values of the light-weight resource path.

5.18.2 Response Codes

5.18.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.18.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.18.3 GET
This operation is used by a Watcher to retrieve presence information about a Presentity.

Request URL parameters are:
	Name
	Type/value
	Optional
	Description

	filter
	xsd:anyURI[0..unbounded]
	Yes
	Allows the Watcher to indicate what presence data it is interested of. The desired attributes are indicated with relative paths according to the [ResourceRelPath] in section Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found..
Example: “filter=person/mood&filter=service/chat/1.0/icon”

Note: ParlayX SOAP equivalent is getUserPresence
5.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.18.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.19 Resource: Retrieval of presence data by Watcher for a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/presenceContacList/{contactListId}
This resource is used by a Watcher to retrieve presence information about Presentities in a contact list.

5.19.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the presence data from the contact list.
Example: sip:bob@example.com

	contactListId
	identity of the contact list
Example: myFriends

5.19.2 Response Codes

5.19.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.19.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.19.3 GET
This operation is used by a Watcher to retrieve presence information about Presentities in a contact list.

Request URL parameters are:
	Name
	Type/value
	Optional
	Description

	filter
	xsd:anyURI[0..unbounded]
	Yes
	Allows the Watcher to indicate what presence data it is interested of. The desired attributes are indicated with relative paths according to the [ResourceRelPath] in section Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found..
Example: “filter=person/mood&filter=service/chat/1.0/icon”

Note: ParlayX SOAP equivalent is getUserPresence
5.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.19.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.20 Resource: Retrieval of content by Watcher
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/PresenceContactContent/{presentityUserId}/{contentId}
This resource is used by a Watcher to retrieve content from a Presentity.
The Watcher is only allowed to retrieve it if has been authorized by the Presentity.

5.20.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the content data from the Presentity.
Example: sip:bob@example.com

	presentityUserId
	identity of the Presentity owning the content data
Example: sip:alice@example.com

5.20.2 Response Codes

5.20.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.20.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.20.3 GET
This operation is used by a Watcher to retrieve content, such as an picture/icon from a Presentity.
5.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.20.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.21 Resource: Retrieval of all subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions
This resource is used to retrieve all subscriptions that the user has created. It includes all active Presence-, Presence list- and Watchers subscriptions.

5.21.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user retrieving the subscriptions.
Example: sip:carol@example.com

5.21.2 Response Codes

5.21.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.21.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.21.3 GET
This operation is used by a user to retrieve all active subscriptions.
5.21.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.21.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.21.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.22 Resource: Retrieval of all presence subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceSubscriptions
This resource is used to retrieve all active Presence subscriptions for all Presentities.

5.22.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the subscriptions.
Example: sip:bob@example.com

5.22.2 Response Codes

5.22.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.22.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.22.3 GET
This operation is used by a Watcher to retrieve all active Presence subscriptions for all Presentities.
5.22.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.22.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.22.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.23 Resource: Management of presence subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}
This resource is used by a Watcher to manage Presence subscriptions.

5.23.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher managing the subscriptions.
Example: sip:bob@example.com

	presentityUserId
	identity of the Presentity owning the presence information
Example: sip:alice@example.com

5.23.2 Response Codes

5.23.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.23.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.23.3 GET
This operation is used by a Watcher to retrieve all active Presence subscriptions for the specified Presentity.
5.23.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.23.5 POST
This operation is used by a Watcher to create a new Presence subscription towards the specified Presentity.
Note: ParlayX SOAP equivalent is startPresenceNotification
5.23.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.24 Resource: Management of individual presence subscription
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}/{subscriptionId}
This resource is used by a Watcher to manage an individual Presence subscription.

5.24.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher managing the subscription.
Example: sip:bob@example.com

	presentityUserId
	identity of the Presentity owning the presence information
Example: sip:alice@example.com

	subscriptionId
	identifier of the subscription generated by the system

5.24.2 Response Codes

5.24.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.24.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.24.3 GET
This operation is used by a Watcher to retrieve an individual Presence subscription.
5.24.4 PUT

This operation is used by a Watcher to update and/or to extend the duration of an ongoing Presence subscription.
Note: ParlayX SOAP equivalent is startPresenceNotification
5.24.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.24.6 DELETE

This operation is used by a Watcher to terminate an active Presence subscription.
Note: ParlayX SOAP equivalent is endPresenceNotification
5.25 Resource: Presence notification
The resource used is:
The resource URL is provided by the Watcher client when the subscription was created.
A notification is generated by the system in the following occasions:
	Type of notification
	Generated in the following occasions:

	Initial notification
	The subscription was successfully created (authorization decision evaluated to ‘Allow’, ‘Politely-block’ or ‘Confirm’).

	Subsequent notification
	A change in the presence information by the Presentity.

Please note that a request to extend the duration of a subscription does not generate a new notification.

	Final notification
	An ‘Active’ or ‘Pending’ subscription that was blocked by the Presentity
An ‘Active’ or ‘Pending’ subscription where the Presentity was removed from the system.

An ‘Active’ or ‘Pending’ subscription that was terminated for an unknown reason.

5.25.1 Request URI variables
5.25.2 Provided by the Watcher client
5.25.3 Response Codes

5.25.3.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.25.3.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.25.4 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.25.5 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.25.6 POST
This operation is used by the system when a new notification is generated.
Note: ParlayX SOAP equivalent is statusNotified, statusEnd and subscriptionEnded.
5.25.7 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.26 Resource: Retrieval of all presence list subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceListSubscriptions
This resource is used to retrieve all active Presence list subscriptions towards all contact lists.

5.26.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the subscriptions.
Example: sip:bob@example.com

5.26.2 Response Codes

5.26.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.26.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.26.3 GET
This operation is used by a Watcher to retrieve all active Presence list subscriptions towards all contact lists.
5.26.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.26.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.26.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.27 Resource: Management of presence list subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceListSubscriptions/{contactListId}
This resource is used by a Watcher to manage Presence list subscriptions.

5.27.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher managing the subscriptions.
Example: sip:bob@example.com

	contactListId
	identity of the contact list
Example: myFriends

5.27.2 Response Codes

5.27.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.27.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.27.3 GET
This operation is used by a Watcher to retrieve all active Presence list subscriptions for the specified contact list.
5.27.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.27.5 POST
This operation is used by a Watcher to create a new Presence list subscription towards the specified contact list.
Note: ParlayX SOAP equivalent is startPresenceNotification.
5.27.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.28 Resource: Management of individual presence list subscription
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/presenceSubscriptions/{contactListId}/{subscriptionId}
This resource is used by a Watcher to manage an individual Presence list subscription.

5.28.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher managing the subscription.
Example: sip:bob@example.com

	contactListId
	identity of the contact list
Example: myFriends

	subscriptionId
	identifier of the subscription generated by the system

5.28.2 Response Codes

5.28.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.28.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.28.3 GET

This operation is used by a Watcher to retrieve an individual Presence list subscription.
5.28.4 PUT

This operation is used by a Watcher to update and/or to extend the duration of an ongoing Presence list subscription.
Note: ParlayX SOAP equivalent is startPresenceNotification
5.28.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.28.6 DELETE

This operation is used by a Watcher to terminate an active Presence list subscription.
Note: ParlayX SOAP equivalent is endPresenceNotification.
5.29 Resource: Presence list notification
The resource used is:
The resource URL is provided by the Watcher client when the subscription was created.

A notification is generated by the system in the following occasions:

	Type of notification
	Generated in the following occasions:

	Initial notification
	The subscription was successfully created.

	Subsequent notification
	A change in the presence information by the Presentity.

Please note that a request to extend the duration of a subscription does not generate a new notification.

	Final notification
	An ‘Active’ subscription where the Presentity was removed from the system.

An ‘Active’ subscription that was terminated for an unknown reason.

5.29.1 Request URI variables
Provided by the Watcher client
5.29.2 Response Codes

5.29.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.29.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.29.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.29.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.29.5 POST
This operation is used by the system when a new notification is generated.
Note: ParlayX SOAP equivalent is statusNotified, statusEnd and subscriptionEnded.
5.29.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.30 Resource: Management of watchers subscriptions
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/watchersSubscriptions
This resource is used by a Presentity to manage Watchers subscriptions, i.e. subscriptions for changes in the Watchers list. The list contains Watchers that are subscribing for presence information about the Presentity.
For instance, a notification will be generated when there is a new Watcher for a Presentity and the authorization decision evaluates to ‘Confirm’.

5.30.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Watcher retrieving the subscriptions.
Example: sip:alice@example.com

5.30.2 Response Codes

5.30.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.30.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.30.3 GET
This operation is used by a Presentity to retrieve all its active Watchers subscriptions.
5.30.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.30.5 POST
This operation is used by a Presentity to create a new Watchers subscription.
Note: ParlayX SOAP equivalent is startMyWatchersNotification.
5.30.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.31 Resource: Management of individual watchers subscription
The resource used is:

http://{serverRoot}/{apiVersion}/presence/{userId}/subscriptions/watchersSubscriptions/{subscriptionId}
This resource is used by a Watcher to manage an individual Watchers subscription.

5.31.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the Presentity managing the subscription.
Example: sip:alice@example.com

	subscriptionId
	identifier of the subscription generated by the system

5.31.2 Response Codes

5.31.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.31.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.31.3 GET

This operation is used by a Presentity to retrieve an individual Watchers subscription.
5.31.4 PUT

This operation is used by a Presentity to update and/or to extend the duration of an ongoing Watchers subscription.
Note: ParlayX SOAP equivalent is startMyWatchersNotification and endMyWatcherNotification.
5.31.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.31.6 DELETE

This operation is used by a Presentity to terminate an active Watchers subscription.
5.32 Resource: Watchers notification
The resource used is:
The resource URL is provided by the Watcher client when the subscription was created.

A notification is generated by the system in the following occasions:

	Type of notification
	Generated in the following occasions:

	Initial notification
	The subscription was successfully created

	Subsequent notification
	A change in the Watchers list.
Please note that a request to extend the duration of a subscription does not generate a new notification.

	Final notification
	An ‘Active’ subscription where the Presentity was removed from the system.

An ‘Active’ subscription that was terminated for an unknown reason.

5.32.1 Request URI variables
Provided by the Watcher client
5.32.2 Response Codes

5.32.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.32.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Presence, see [3GPP 29.199-14].
5.32.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.32.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.32.5 POST
This operation is used by the system when a new notification is generated.
Note: ParlayX SOAP equivalent is notifyMyWatchers, notifyMyWatchersEnd and NotifyError.
5.32.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.33

5.33.1

	
	

	
	

	
	

	

5.33.2
5.33.2.1

5.33.2.2

5.33.3

	
	
	
	

	
	
	
	

	

5.33.3.1

5.33.3.1.1
	

5.33.3.1.2
	

5.33.3.2

5.33.3.2.1
	

5.33.3.2.2
	

5.33.4

5.33.5

5.33.5.1

5.33.5.1.1
	

5.33.5.1.2
	

5.33.5.2

5.33.5.2.1
	

5.33.5.2.2
	

5.33.6

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-ParlayREST-Presence-V1_0
	15 Apr 2010
	Many
	TS skeleton prepared

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for ParlayREST.Presence Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-PRESENCE-SUPPORT-S-001-M
	Support for the Presence REST Enabler
	5
	

	PARLAYREST-PRESENCE-SUPPORT-S-002-M
	Support for the XML request & response format
	5
	

	PARLAYREST-PRESENCE-SUPPORT-S-003-M
	Support for the JSON request & response format
	5
	

	PARLAYREST-PRESENCE-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	Appendix C
	

B.1.1 SCR for ParlayREST.Presence.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

Appendix C. Application/x-www-form-urlencoded Request Format for Selected REST Operations

This section defines a format for SMS REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server.

The following Presence REST operations are defined in this section:

<< List the operations for which url-encoded is supported.

NOTE: For ParlayREST v1 these were the OneAPI Profile operations. For ParlayREST v2, there may not be such equivalents >>

C.1 [Operation]
This operation is used to create an outgoing message request.

Note: ParlayX SOAP equivalent is [PX equivalent].

The request parameters are as follows:

	Parameter
	Optional
	Description

	[Parameter name]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[url-encoded request]

<< For form-urlencoded examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

C.1.1.2 Response

	[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for Parlay REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request or response for various operations using a JSON binding. The examples follow the XML to JSON serialization guidelines in [REST_WP]. A JSON response may be obtained by following the content negotiation guidelines section of [REST_WP].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

D.2 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

<< For JSON examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

Request:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Editor’s note: Figure 1 does not include resources defined below in the tables for uploading and retrieving of content. This function is not within Parlay X requirements and it is up to the group to decide whether to include it the TS. Content uploading/retrieving is part of OMA Presence SIMPLE 2.0, and this function is necessary in order to align Presence with RCS.

Editor’s note: The design including the heavy-weight resources (e.g. presenceSource, to retrieve the whole presence document) is agreeable by the group. We would need to see further proposals for the “light-weight resources” (e.g. {presenceResource}, to retrieve part of the presence documents), with Las Vegas being the deadline.

Editor’s note: Use design pattern for subscriptions like for Call Notification

Editor’s note: In the figure, WatcherId and PresentityId should be folded into one resource, e.g. UserId. Or, if you want to model the roles, use UserId/Presentity and UserId/Watcher.

Ed. note: How is the client correlator handled FFS.

Editor’s note: How to handle mime+pidf is FFS.

Ed. note: ‘{presenceResource}’ represents the path down to the attribute to update, e.g:�‘/person/mood/’ or�‘services/{serviceId}/{serviceVersion}/serviceAvailability’

Ed. note: ‘{presenceResource}’ represents the path down to the attribute to retrieve, e.g:�‘/person/mood/’ or�‘services/{serviceId}/{serviceVersion}/serviceAvailability’

Ed. note: ‘{presenceResource}’ represents the path down to the attribute to retrieve, e.g:�‘/person/mood/’ or�‘services/{serviceId}/{serviceVersion}/serviceAvailability’

Editor’s Note: These operations belong to a new function in OMA Presence SIMPLE 2.0 and hence not included in the Presence Parlay-X Web Services specification. It is not possible to use the Parlay-X Content Management (3GPP TS 29.199-21) due to the fact that it doesn’t allow content to be uploaded, only management of content meta-data.

Below are two alternative approaches for how to manage content:

Define new operations in ParlayREST for management of content. See proposed operations below.

Use XCAP as defined today in OMA PRS and possibly including the additional headers for authorization and authentication of 3rd party applications. This proposal is not described any further in this document.

A recommended implementation of management of content would be to map it to the concept introduced in Presence Content XDMS in OMA PRS 2.0. This means that when Presentity uploads content it will actually be stored in the Presence Content XDMS together with the meta information (mime-type, size and encoding etc). The {contentId} should be mapped to the directory+filename used in the Presence Content XDMS.

The uploaded content is related to the Presentity by typically use the ‘/person/status-icon’ attribute where the link to the content is stored.

Ed.note: The same comments for the operation above apply here as well.

Ed. Note: It allows the Presentity to retrieve the current status of Watcher subscriptions towards the Presentity. The desired state is provided in a query parameter (e.g. state=unauthorized or state=active). The terminated state is not considered to be needed. ‘Unauthorized’ maps to both pending and waiting state in RFC 3857

Ed. Note: The idea is to provide three simple-to-use authorization lists which are managed through the following resources: ‘’allowlist’, ‘blocklist’ or ‘politeblocklist’. For instance, if a Watcher is stored in the ‘allowlist’ it will have access to all presence attributes of the Presentity.

It is also possible to either authorize is a single ‘watcher’, ‘list’ or a ‘domain’ corresponding to a ‘watcherId’, ‘contactListId’ or ‘domainName’ respectively.

The default access resource is used to specify a policy that applies if there are no rules applicable for a Watcher.

It is suggested that confirm is used as default value.

Ed. note: How is the client correlator handled FFS.

1. GET check for the presence of a previous presence source for Alice

Response – list of presenceSourceId resources

2. POST create presence data on behalf of the Alice

Response created

5. POST create a watchers subscription for Alice

Response created

3. GET pending watchers for Alice

Response – list of watcher ids

Response

6. POST inform about watcher

Application1

Create resource

Create resource

Server

Create resource

Create resource

Create resource

Create resource

Create resource

Optional!

Create resource

Create resource

4. GET check for presence of previous watcher subscription

Response – list of watcher info subscriptions

1. POST Create a presence subscription for Alice on behalf of Bob

Response – created

Response

3. POST inform about watcher

4. PUT add Bob to allowed list

Response created

Response

2. POST inform watcher about presence status

Response

5. POST inform watcher about presence status

Response

6. POST inform about watcher

Application1

Server

Application2

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Alice authorize Bob

1. PUT new status-icon

Response created

2. PUT change status-icon element

Response

4. GET status-icon content

Response – status-icon content

Response

3. POST inform watcher about presence status

Application1

Server

Application2

Create resource

Create resource

Create resource

Create resource

1. DELETE subscription for presence updates

Response

2. DELETE subscription for watchers

Response

3. DELETE presence data for application 1

Response

Application1

Server

Application2

Create resource

Remove resource

Create resource

Remove resource

Create resource

Remove resource

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

