OMA-TS-ParlayREST-AddressListManagement-V1_0-20100913D
Page 33 V(102)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful bindings for Parlay X Web Services –
Address List Management

	Draft Version 1.0 –13 Sep 2010

	Open Mobile Alliance

	OMA-TS-ParlayREST-AddressListManagement-V1_0-20100913D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

31.
Scope

2.
References
3
2.1
Normative References
3
2.2
Informative References
3
3.
Terminology and Conventions
3
3.1
Conventions
3
3.2
Definitions
3
3.3
Abbreviations
3
4.
Introduction
3
4.1
Version 1.0
3
5.
Address List Management API definition
3
5.1
Resources Summary
3
5.2
Address List Management ParlayREST API Data Structures
3
5.2.1
Type: ContactListCollection
3
5.2.2
Type: ContactList
3
5.2.3
Type: AttributeList
3
5.2.4
Type: Attribute
3
5.2.5
Type: MemberList
3
5.2.6
Type: Member
3
5.2.7
Type: ContactListReferenceCollection
3
5.2.8
Type: ContactListChangesSubscriptionCollection
3
5.2.9
Type: ContactListChangesSubscription
3
5.2.10
Type: ContactListChangeNotification
3
5.2.11
Values of the Link “rel” attribute
3
5.3
Sequence Diagrams
3
5.3.1
Accessing the contact lists and members
3
5.3.2
Managing shared contact lists and collective contact list
3
5.3.3
Subscribing to contact list changes and receiving notifications
3
5.4
Resource: Retrieval of contact lists
3
5.4.1
Request URI variables
3
5.4.2
Response Codes
3
5.4.2.1
Response Codes
3
5.4.2.2
Exception fault codes
3
5.4.3
GET
3
5.4.3.1
Example: Get all contact lists belonging to a user (Informative)
3
5.4.3.1.1
Request
3
5.4.3.1.2
Response
3
5.4.4
PUT
3
5.4.5
POST
3
5.4.6
DELETE
3
5.5
Resource: Contact list management
3
5.5.1
Request URI variables
3
5.5.2
Response Codes
3
5.5.2.1
Response Codes
3
5.5.2.2
Exception fault codes
3
5.5.3
GET
3
5.5.3.1
Example 1: Retrieve a contact list (Informative)
3
5.5.3.1.1
Request
3
5.5.3.1.2
Response
3
5.5.3.2
Example 2: Retrieve a non existing contact list (Informative)
3
5.5.3.2.1
Request
3
5.5.3.2.2
Response
3
5.5.4
PUT
3
5.5.4.1
Example: Create a contact list (Informative)
3
5.5.4.1.1
Request
3
5.5.4.1.2
Response
3
5.5.5
POST
3
5.5.6
DELETE
3
5.5.6.1
Example: Delete a contact list (Informative)
3
5.5.6.1.1
Request
3
5.5.6.1.2
Response
3
5.6
Resource: Retrieval of contact list attributes
3
5.6.1
Request URI variables
3
5.6.2
Response Codes
3
5.6.2.1
Response Codes
3
5.6.2.2
Exception fault codes
3
5.6.3
GET
3
5.6.3.1
Example: Get all attributes for a contact lists belonging to Bob (Informative)
3
5.6.3.1.1
Request
3
5.6.3.1.2
Response
3
5.6.4
PUT
3
5.6.5
POST
3
5.6.6
DELETE
3
5.7
Resource: Individual attribute for a contact list
3
5.7.1
Request URI variables
3
5.7.2
Response Codes
3
5.7.2.1
Response Codes
3
5.7.2.2
Exception fault codes
3
5.7.3
GET
3
5.7.3.1
Example 1: Retrieve an attribute value (Informative)
3
5.7.3.1.1
Request
3
5.7.3.1.2
Response
3
5.7.3.2
Example 2: Retrieve a non existing attribute (Informative)
3
5.7.3.2.1
Request
3
5.7.3.2.2
Response
3
5.7.4
PUT
3
5.7.4.1
Example: Create an attribute (Informative)
3
5.7.4.1.1
Request
3
5.7.4.1.2
Response
3
5.7.5
POST
3
5.7.6
DELETE
3
5.7.6.1
Example: Delete an attribute (Informative)
3
5.7.6.1.1
Request
3
5.7.6.1.2
Response
3
5.8
Resource: Members in a contact list
3
5.8.1
Request URI variables
3
5.8.2
Response Codes
3
5.8.2.1
Response Codes
3
5.8.2.2
Exception fault codes
3
5.8.3
GET
3
5.8.3.1
Example: Get all members for a contact lists belonging to a user (Informative)
3
5.8.3.1.1
Request
3
5.8.3.1.2
Response
3
5.8.4
PUT
3
5.8.5
POST
3
5.8.6
DELETE
3
5.9
Resource: Individual member on a contact list
3
5.9.1
Request URI variables
3
5.9.2
Response Codes
3
5.9.2.1
Response Codes
3
5.9.2.2
Exception fault codes
3
5.9.3
GET
3
5.9.3.1
Example 1: Retrieve a member (Informative)
3
5.9.3.1.1
Request
3
5.9.3.1.2
Response
3
5.9.3.2
Example 2: Retrieve a non existing member (Informative)
3
5.9.3.2.1
Request
3
5.9.3.2.2
Response
3
5.9.4
PUT
3
5.9.4.1
Example: Create an member (Informative)
3
5.9.4.1.1
Request
3
5.9.4.1.2
Response
3
5.9.5
POST
3
5.9.6
DELETE
3
5.9.6.1
Example: Delete a member (Informative)
3
5.9.6.1.1
Request
3
5.9.6.1.2
Response
3
5.10
Resource: Attributes for a member in a contact list
3
5.10.1
Request URI variables
3
5.10.2
Response Codes
3
5.10.2.1
Response Codes
3
5.10.2.2
Exception fault codes
3
5.10.3
GET
3
5.10.3.1
Example: Get all attributes of a member of a contact lists (Informative)
3
5.10.3.1.1
Request
3
5.10.3.1.2
Response
3
5.10.4
PUT
3
5.10.5
POST
3
5.10.6
DELETE
3
5.11
Resource: Individual attribute for a member in a contact list
3
5.11.1
Request URI variables
3
5.11.2
Response Codes
3
5.11.2.1
Response Codes
3
5.11.2.2
Exception fault codes
3
5.11.3
GET
3
5.11.3.1
Example 1: Retrieve a member (Informative)
3
5.11.3.1.1
Request
3
5.11.3.1.2
Response
3
5.11.3.2
Example 2: Retrieve a non existing attribute (Informative)
3
5.11.3.2.1
Request
3
5.11.3.2.2
Response
3
5.11.4
PUT
3
5.11.4.1
Example: Create an attribute (Informative)
3
5.11.4.1.1
Request
3
5.11.4.1.2
Response
3
5.11.5
POST
3
5.11.6
DELETE
3
5.11.6.1
Example: Delete an member (Informative)
3
5.11.6.1.1
Request
3
5.11.6.1.2
Response
3
5.12
Resource: Contact list references
3
5.12.1
Request URI variables
3
5.12.2
Response Codes
3
5.12.2.1
Response Codes
3
5.12.2.2
Exception fault codes
3
5.12.3
GET
3
5.12.3.1
Example: Get all attributes of a member of a contact lists (Informative)
3
5.12.3.1.1
Request
3
5.12.3.1.2
Response
3
5.12.4
PUT
3
5.12.5
POST
3
5.12.6
DELETE
3
5.13
Resource: Collection of contact lists shared by other user
3
5.13.1
Request URI variables
3
5.13.2
Response Codes
3
5.13.2.1
Response Codes
3
5.13.2.2
Exception fault codes
3
5.13.3
GET
3
5.13.3.1
Example: Get contact lists shared by a user identified by {otherUserId} (Informative)
3
5.13.3.1.1
Request – all list attributes and all member attributes (default)
3
5.13.3.1.2
Response
3
5.13.4
PUT
3
5.13.5
POST
3
5.13.6
DELETE
3
5.14
Resource: Individual shared contact list
3
5.14.1
Request URI variables
3
5.14.2
Response Codes
3
5.14.2.1
Response Codes
3
5.14.2.2
Exception fault codes
3
5.14.3
GET
3
5.14.3.1
Example: get individual contact list shared by a user identified by {otherUserId}, with all contact list attributes and all member attributes (default) (Informative)
3
5.14.3.1.1
Request
3
5.14.3.1.2
Response
3
5.14.4
PUT
3
5.14.5
POST
3
5.14.6
DELETE
3
5.15
Resource: Individual contact information from shared contact list
3
5.15.1
Request URI variables
3
5.15.2
Response Codes
3
5.15.2.1
Response Codes
3
5.15.2.2
Exception fault codes
3
5.15.3
GET
3
5.15.3.1
Example: get individual contact information about user identified as {sharedMemberId} from the list shared by a user identified by {otherUserId} (default) (Informative)
3
5.15.3.1.1
Request
3
5.15.3.1.2
Response
3
5.15.4
PUT
3
5.15.5
POST
3
5.15.6
DELETE
3
5.16
Resource: Merged list of all members owned by the user
3
5.16.1
Request URI variables
3
5.16.2
Response Codes
3
5.16.2.1
Response Codes
3
5.16.2.2
Exception fault codes
3
5.16.3
GET
3
5.16.3.1
Example 1: retrieve all members with all attributes (default) (Informative)
3
5.16.3.1.1
Request
3
5.16.3.1.2
Response
3
5.16.4
PUT
3
5.16.5
POST
3
5.16.6
DELETE
3
5.17
Resource: Individual member in the merged list of all members owned by the user
3
5.17.1
Request URI variables
3
5.17.2
Response Codes
3
5.17.2.1
Response Codes
3
5.17.2.2
Exception fault codes
3
5.17.3
GET
3
5.17.3.1
Example 1: retrieve member with all attributes (default) (Informative)
3
5.17.3.1.1
Request
3
5.17.3.1.2
Response
3
5.17.4
PUT
3
5.17.5
POST
3
5.17.6
DELETE
3
5.18
Resource: Contact list changes subscriptions
3
5.18.1
Request URI variables
3
5.18.2
Response Codes
3
5.18.2.1
Response Codes
3
5.18.2.2
Exception fault codes
3
5.18.3
GET
3
5.18.3.1
Example: get contact list changes subscriptions (Informative)
3
5.18.3.1.1
Request
3
5.18.3.1.2
Response
3
5.18.4
PUT
3
5.18.5
POST
3
5.18.5.1
Example: create new subscription for contact list changes notification
3
5.18.5.1.1
Request
3
5.18.5.1.2
Response
3
5.18.6
DELETE
3
5.19
Resource: Individual contact list changes subscription
3
5.19.1
Request URI variables
3
5.19.2
Response Codes
3
5.19.2.1
Response Codes
3
5.19.2.2
Exception fault codes
3
5.19.3
GET
3
5.19.3.1
Example: get contact list changes subscription (Informative)
3
5.19.3.1.1
Request
3
5.19.3.1.2
Response
3
5.19.4
PUT
3
5.19.5
POST
3
5.19.6
DELETE
3
5.19.6.1
Example: delete a contact list changes subscription (Informative)
3
5.19.6.1.1
Request
3
5.19.6.1.2
Response
3
5.20
Resource: Client resource for contact list changes notifications
3
5.20.1
Request URI variables
3
5.20.2
Response Codes
3
5.20.2.1
Response Codes
3
5.20.2.2
Exception fault codes
3
5.20.3
GET
3
5.20.4
PUT
3
5.20.5
POST
3
5.20.5.1
Example 1: notification for subscription with sendFullContactListContent=true (default) (Informative)
3
5.20.5.1.1
Request
3
5.20.5.1.2
Response
3
5.20.5.2
Example 2: notification for subscription with sendFullContactListContent=false (Informative)
3
5.20.5.2.1
Request
3
5.20.5.2.2
Response
3
5.20.5.3
Example 3: notification for expired subscription (Informative)
3
5.20.5.3.1
Request
3
5.20.5.3.2
Response
3
5.20.6
DELETE
3
Appendix A.
Change History (Informative)
3
A.1
Approved Version History
3
A.2
Draft/Candidate Version 1.0 History
3
Appendix B.
Static Conformance Requirements (Normative)
3
B.1
SCR for ParlayREST.ALM Server
3
B.1.1
SCR for ParlayREST.ALM. ContactLists Server
3
B.1.2
SCR for ParlayREST.ALM.IndividualContactList Server
3
B.1.3
SCR for ParlayREST.ALM.AttributesForAContactList Server
3
B.1.4
SCR for ParlayREST.ALM.IndividualAttributeForAContactList Server
3
B.1.5
SCR for ParlayREST.ALM.MemberInAContactList Server
3
B.1.6
SCR for ParlayREST.ALM.IndividualMemberInAContactList Server
3
B.1.7
SCR for ParlayREST.ALM.AttributesForAMemberInAContactList Server
3
B.1.8
SCR for ParlayREST.ALM.IndividualAttributeForAMemberInAContactList Server
3
B.1.9
SCR for ParlayREST.ALM.ContactListReferences Server
3
B.1.10
SCR for ParlayREST.ALM.Shared.Lists Server
3
B.1.11
SCR for ParlayREST.ALM.Individual.Shared.List Server
3
B.1.12
SCR for ParlayREST.ALM.Member.Shared.List Server
3
B.1.13
SCR for ParlayREST.ALM.Merged.List Server
3
B.1.14
SCR for ParlayREST.ALM.Member.Merged.List Server
3
B.1.15
SCR for ParlayREST.ALM.List.Subscr Server
3
B.1.16
SCR for ParlayREST.ALM.Individual.Subscr Server
3
B.1.17
SCR for ParlayREST.ALM.Notif Server
3
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations
3
C.1
Create a subscription for contact list changes notifications
3
C.1.1
Example (Informative)
3
C.1.1.1
Request
3
C.1.1.2
Response
3
Appendix D.
JSON examples (Informative)
3
D.1
Example: Get all contact lists belonging to a user (section 5.4.3.1)
3
D.2
Example 1: Retrieve a contact list (section 5.5.3.1)
3
D.3
Example 2: Retrieve a non existing contact list (section 5.5.3.2)
3
D.4
Example: Create a contact list (section 5.5.4.1)
3
D.5
Example: Get all attributes for a contact lists belonging to Bob (section 5.6.3.1)
3
D.6
Example 1: Retrieve an attribute value (section 5.7.3.1)
3
D.7
Example 2: Retrieve a non existing attribute (section 5.7.3.2)
3
D.8
Example: Create an attribute (section 5.7.4.1)
3
D.9
Example: Get all members for a contact lists belonging to a user (section 5.8.3.1)
3
D.10
Example 1: Retrieve a member (section 5.9.3.1)
3
D.11
Example 2: Retrieve a non existing member (section 5.9.3.2)
3
D.12
Example: Create an member (section 5.9.4.1)
3
D.13
Example: Get all attributes of a member of a contact lists (section 5.10.3.1)
3
D.14
Example 1: Retrieve a member (section 5.11.3.1)
3
D.15
Example 2: Retrieve a non existing attribute (section 5.11.3.2)
3
D.16
Example: Create an attribute (section 5.11.4.1)
3
D.17
Example: Get all attributes of a member of a contact lists (section 5.12.3.1)
3
Appendix E.
Parlay X operations mapping (Informative)
3

Figures

3Figure 1 Resource structure defined by this specification

3Figure 2 Outline of the flows

1. Scope

This specification defines an HTTP protocol binding for an abstract API using the REST architectural style, based on an existing OMA enabler namely the Address List Management, as defined in [3GPP 29.199-13].

2. References

2.1 Normative References

	[3GPP 29.199-13]
	3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part X: Address List Management (Release 8)”, URL:http://www.3gpp.org/

	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_ParlayREST_API_specifications, URL:http://www.openmobilealliance.org/

	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	[N/A]
	[N/A]

3.3
Abbreviations
	ALM
	Address List Management

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	PX
	Parlay X

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	

4. Introduction

The ParlayREST Technical Specification for Address List Management (ALM) contains the HTTP protocol binding for the Parlay X Address List Management Web Services specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).

4.1 Version 1.0

Version 1.0 of Address List Management ParlayREST API specification supports the following operations:

· Manage contacts

· Manage contact lists

· Manage attributes related to a contact list

· Manage members in a contact list

· Manage attributes related to a member in a contact list

· Manage nested contact lists related to a contact list

· Manage subscriptions to contact list changes

· Send notifications about contact list changes
Manage shared contact lists
·
5. Address List Management API definition
This section is organized to support a comprehensive understanding of the Address List Management API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

The remaining subsections in section 5 contain the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).

Finally, Appendix E lists the Parlay X equivalent method for each supported ParlayREST resource and method combination, where applicable.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the Address List Management API.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image3.emf]//{serverRoot}/{apiVersion}

/addresslistmgt

/contactLists

/contactListReferences

/{contactListId}

/{userId}

/attributes

/members

/[resourceRelPath]

/{memberId}

/[resourceRelPath]

/attributes

/contacts

/{contactId}

Heave-weight resource

Relative path for light-weight resource

/sharedBy

/{otherUserId}

/{sharedContactListId}

/members

/{sharedMemberId}

/[resourceRelPath]

/attributes

/trustedIdentity

/subscriptions

/{subscriptionId}

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: To allow client to manage all accessible contacts

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Collection of contacts
	/{userId}/contacts
	ContactCollection
	This operation retrieves information about all user’s contacts
	No
	No
	No

	Individual contact
	/{userId}/contacts/{contactId}
	Contact
	This operation retrieves information about individual contact from the collection of user’s contacts
	No
	This operation creates a new contact or updates information about an existing contact
	This operation removes a contact

	Individual contact trusted user identity
	/{userId}/contacts/{contactId}/trustedIdentity
	TrustedIdentity
	This operation retrieves contact’s trusted user identity data
	No
	This operation creates or updates contact’s trusted user identity data
	This operation deletes contact’s trusted user identity data

	Attributes for a contact
	/{userId}/contacts/{contactId}/attributes

	AttributeList
	This operation returns all attributes for a contact
	No
	This operation updates the entire list of attributes.
	No

	Individual attribute for a contact
	/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
	Attribute
	This operation returns the value of the attribute for a contact
	No
	This operation creates or updates an attribute for contact
	This operation removes an attribute for a contact

Purpose: To allow client to manage its lists of users

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Contact lists
	/{userId}/contactLists
	ContactListCollection
	This operation retrieves all contact lists the user has created.
	No
	No
	No

	Individual contact list

	/{userId}/contactLists/{contactListId}

	ContactList
	This operation retrieves the contact list.
	No
	This operation creates or updates the entire contact list.
	This operation removes the contact list from the system including attributes and members.

	Attributes for a contact list
	/{userId}/contactLists/{contactListId}/attributes
	AttributeList
	This operation returns all attributes for a contact list
	No
	This operation updates the entire list of attributes.
	No

	Individual attribute for a contact list
	/{userId}/contactLists/{contactListId}/attributes/[ResourceRelPath]
	Attribute
	This operation returns the value of the contact list attribute
	No
	This operation creates or updates an attribute
	This operation deletes an attribute

	Members in a contact list

	/{userId}/contactLists/{contactListId}/members
	MemberList
	This operation retrieves the members in the contact list.
	No
	No
	No

	Individual member in a contact list

	/{userId}/contactLists/{contactListId}/members/{memberId}

	Member
	This operation retrieves a user from a contact list.

(Normally only used to verify the existence of the member)
	No
	This operation creates and updates an entry in the contact list.
	This operation removes the member from the contact list.

	Attributes for a member in a contact list
	/{userId}/contactLists/{contactListId}/members/{memberId}/attributes

	AttributeList
	This operation returns all attributes for a member
	No
	This operation updates the entire list of attributes.
	No

	Individual attribute for a member in a contact list
	/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]
	Attribute
	This operation returns the value of the attribute for a member
	No
	This operation creates or updates an attribute for a member
	This operation removes an attribute for a member

	Contact list references
	/{userId}/contactLists/{contactListId}/ contactListReferences
	ContactListReferenceCollection
	This operation returns a list of references to other contact lists.
	No
	No
	No

Purpose: To allow client access to the contact lists shared by another user

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Collection of shared contact lists
	/{userId}/contactLists/sharedBy/{otherUserId}
	ContactListCollection
	This operation retrieves all contact lists shared by user identified by {otherUserId} with the requsting user identified by {userId}
	No
	No
	No

	Individual shared contact list
	/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}
	ContactList
	This operation retrieves information about individual contact list shared by user identified by {otherUserId} with requesting user identified by {userId}
	No
	No
	No

	Individual contact information from shared contact list
	/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/{sharedMemberId}
	Member
	This operation retrieves individual contact information from the shared contact list
	No
	No
	No

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Purpose: To allow client to manage subscriptions to contact list changes
	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Contact list changes subscriptions
	/{userId}/contactLists/subscriptions
	ContactListChangesSubscriptionCollection
	This operation retrieves all active subscriptions for contact list changes
	Creates new subscription for contact list changes
	No
	No

	Individual contact list changes subscription
	/{userId}/contactLists/subscriptions/{subscriptionId}
	ContactListChangesSubscription
	This operation retrieves information about individual subscription
	No
	No
	Delete and terminates subscription

Purpose: To allow client to receive notifications about contact list changes

	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Client resource for contact list changes notifications
	<specified by client in the subscription>
	ContactListChangeNotification
	No
	Notification about contact list change
	No
	No

5.2 Address List Management ParlayREST API Data Structures

The namespace for the Address List Management data types is:

urn:oma:xml:rest:addresslistmgt:1

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.
5.2.1 Type: ContactCollection
	Element
	Type
	Optional
	Description

	contact
	Contact
[0..unbounded]
	Yes
	Contains a list of user’s contacts

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactCollection of type ContactCollection is allowed in response bodies.
5.2.2 Type: Contact
	Element
	Type
	Optional
	Description

	contactId
	xsd:anyURI
	Yes
	Contains an identifier of a single contact (e.g. tel URI).

The element is mandatory when used inside ‘ContactCollection’ type

	trustedIdentity
	TrustedIdentity
	Yes
	Contains user identity information verifiable by service provider. Element SHALL be present if user want to share contact list information with this contact by creating ContactListRule. If not present – service provider CAN use contactId instead if appropriate policies are applied.

	attributeList
	AttributeList
	Yes
	Contains a list of attributes (e.g. display name) related to a member.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	link
	common:Link
[0..unbounded]
	Yes
	References to the contact lists and other resources

A root element named contact of type Contact is allowed in request and/or response bodies.
5.2.3 Type: TrustedIdentity
	Element
	Type
	Optional
	Description

	userId
	xsd:anyURI
	No
	Contains an identifier of a single user (e.g. tel URI, SPI URI, email address, etc) verifiable by service provider directly or indirectly using implementation specific identification mechanism (out of scope for this API specification).

	trustData
	xsd:base64
	Yes
	Contains implementation specific data allowing service provider to verify identity of the user. For example secret token shared with user in advance (when access to the contact list was decided – out-of-scope for this API specification)

An element named trustedIdentity of type TrustedIdentity is allowed in request and/or response bodies.
5.2.4 Type: ContactListCollection
	Element
	Type
	Optional
	Description

	contactList
	ContactList
[0..unbounded]
	Yes
	Contains a list of contact list identities.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactListCollection of type ContactListCollection is allowed in response bodies.

5.2.5 Type: ContactList
	Element
	Type
	Optional
	Description

	contactListId
	xsd:string
	Yes
	Contains the contact list identity.

The element is mandatory when used inside the ‘ContactListCollection’ type.

	memberList
	MemberList
	Yes
	Members in the contact list

	contactListReferenceCollection
	ContactListReferenceCollection
	Yes
	Contains references to other contact lists.

	attributeList
	AttributeList
	Yes
	Contains a list of attributes (e.g. display name) related to a contacts list.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactList of type ContactList is allowed in request and/or response bodies.

5.2.6 Type: AttributeList
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	attribute
	Attribute
[0..unbounded]
	Yes
	{name}
	Contains a list of attributes related to a contacts list or contacts.

The sub-element “name” of the type Attribute SHALL NOT be altered when this element is accessed as a light-weight resource.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named attributeList of type AttributeList is allowed in request and/or response bodies.

Column [ResourceRelPath] includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure. A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath]..
5.2.7 Type: Attribute
	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Name of the attribute

	value
	xsd:string
	No
	Value of the attribute

A root element named attribute of type Attribute is allowed in request and/or response bodies.

5.2.8 Type: MemberList
	Element
	Type
	Optional
	Description

	member
	Member
[0..unbounded]
	Yes
	Contains a list of members related to a contacts list.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named memberList of type MemberList is allowed in response bodies.

5.2.9 Type: Member
	Element
	Type
	Optional
	Description

	memberId
	xsd:anyURI
	Yes
	Contains an identifier of a single member (e.g. tel URI).

The element is mandatory when used inside ‘MemberList’ type

	attributeList
	AttributeList
	Yes
	Contains a list of attributes (e.g. display name) related to a member.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	link
	common:Link
[0..unbounded]
	Yes
	Contains a reference to a Contact

A root element named member of type Member is allowed in request and/or response bodies.

5.2.10 Type: ContactListReferenceCollection
	Element
	Type
	Optional
	Description

	link
	common:Link
[0..unbounded]
	Yes
	Contains references to other contact lists.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactListReferenceCollection of type ContactListReferenceCollection is allowed in request and/or response bodies.

5.2.11 Type: ContactListChangesSubscriptionCollection
	Element
	Type
	Optional
	Description

	contactListChangesSubscription
	ContactListChangesSubscription [0..unbounded]
	Yes
	Contains a list of subscriptions to contact list changes.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactListChangesSubscriptionCollection of type ContactListChangesSubscriptionCollection is allowed in response bodies.

5.2.12 Type: ContactListChangesSubscription

	Element
	Type
	Optional
	Description

	link
	common:Link
[0..unbounded]
	Yes
	Contains references to contact list which is being monitored

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	contactListResourceURL
	xsd:anyURI
	No
	Reference to the contact list that the application is subscribing

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	sendFullContactListContent
	xsd:boolean
	Yes
	Default value is ‘true’. Full content of the changed contact list would be sent in the REST callback notification. If value is ‘false’ – a resourceURLs pointing to the modified contact list would be delivered in the notification. In this case, client would have to read content of the modified list using separate request.

	createdAt
	xsd:datetime
	Yes
	Subscription creation timestamp. Populated by server.

	duration
	xsd:int
	Yes
	Subscription duration in seconds. Server would expire subscription after specified number of seconds after subscription creation. If not specified – default value assigned by the server.

A root element named contactListChangesSubscription of type ContactListChangesSubscription is allowed in request and response bodies.

5.2.13 Type: ContactListChangeNotification
	Element
	Type
	Optional
	Description

	link
	common:Link
[0..unbounded]
	Yes
	Contains references to subscription

	contactList
	ContactList
	Yes
	Contains changed contact list data

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

	createdAt
	xsd:dateTime
	Yes
	Subscription creation timestamp

	expiredAt
	xsd:dateTime
	Yes
	If present – indicates expiration of the subscription

	duration
	xsd:int
	Yes
	Subscription duration in seconds. Server would expire subscription after specified number of seconds after subscription creation.

A root element named contactListChangeNotification of type ContactListChangeNotification is used by server in the POST request to the client informing it about change in the contact list that client is monitoring (using one of the subscriptions).

5.2.14 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

· ContactListCollection

· ContactList

· AttributeList

· Attribute

· MemberList

· Member

· ContactListReferenceCollection

· ContactListChangesSubscription

· ContactListChangesSubscriptionCollection
· Contact
These values indicate the kind of resource that the link points to.

5.3 Sequence Diagrams

5.3.1 Managing contacts in a flat list
The figure below shows various ways to retrieve and manage contacts in a flat list. There is one application acting on behalf of {userId}. The application retrieves all contacts of {userId}, creates/updates a new contact for {userId} or deletes a contact for {userId} in the flat list of contacts..

The resources:

1. To retrieve all the user’s contacts the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts
2. To retrieve, add, update or delete one contact in the flat list of contacts the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactListId}
3. To retrieve, add, update or delete a trusted identity to a contact in the flat list of contacts the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactListId}/trustedIdentity
4. To retrieve all attributes of a specific contact the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes
5. To retrieve, create, update or delete a single attribute of a specific contact the following resource is used: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]

[image: image4.emf]Application Server

1.

GET to retrieve collection of contacts

Response with contacts in a flat list

2.

GET to retrieve a contact from the flat list

Response with individual contact

3.

PUT to create or update a contact in the flat list

Response with updated contact

4.

DELETE to remove a contact from the flat list

Response OK

5.

GET to retrieve all attributes of a contact

Response with contact’s attributes

6.

GET to retrieve a contact’s single attribute

Response with contact’s attribute

7.

PUT to create or update a contact’s single attribute

Response OK

8.

DELETE to remove a contact’s single attribute

Response OK

Response with contact’s trusted identity

6.

PUT to create or update a contact’s trusted identity

Response with contact’s trusted identity

7.

DELETE to delete a contact’s trusted identity

Response OK

5.

GET to retrieve a contact’s trusted identity

Figure 2 Managing contacts
.

1. The application retrieves all contacts for presentity, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts

The result contains all the contacts for {userId}.
2. The application retrieves one contact for presentity, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result contains the information for one selected contact.
3. The application adds/updates a new contact by performing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result was successful.
4. The application deletes one contact from flat list of all contacts by performing a DELETE on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result was successful.
5. The application retrieves the trusted identity of a contact from flat list of contacts by performing GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity
The result contains the information for the trusted identity of the contact.
6. The application creates or updates the trusted identity of a contact from flat list of contacts by performing PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity
The result contains the information for the updated trusted identity of the contact.
7. The application deletes the trusted identity of a contact from flat list of contacts by performing DELETE on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity
The result was successful.
8. The application retrieves all attributes of a specific contact by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes
9. The application retrieves a single attribute of a specific contact by performing GET on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
10. The application creates or updates a single attribute of a specific contact by performing PUT on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
11. The application deletes a single attribute of a specific contact by performing DELETE on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
5.3.2 Accessing the contact lists and members

The figure below shows various ways to retrieve and manipulate data in contact lists. There is one application acting on behalf of Alice. The application is interested in one specific contact list, the list with id 'myFriends'. In that list there is one specific buddy, called Bob that is used in this example.

The resources:

6. To fetch all the contact lists the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists

7. To add of a contact list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}

8. To fetch all the buddies of a list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members

9. To add a specific buddy to a contact list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
10. To fetch all attributes for a contact list this resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes
11. To fetch all attributes of a specific buddy the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes
12. To fetch a single attribute of a specific buddy the following resource is used: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]

[image: image5.emf]Application

1.

GET

get all contact lists for Alice

Response – list of all contact lists

Server

2.

PUT

add a new contact list

Response

3.

GET

get all members in the myFriends list

Response – list of all members

4.

PUT

add Bob to the myFriends list

Response

5.

GET

get all attributes of the myFriends list

Response – the list of attributes

6.

GET

get all attributes of bob in the myFriends list

Response – the list of attributes

7.

GET

a single attribute from bob in the myFriends list

Response – the attribute

Figure 2 Outline of the flows

.

1. The application fetches all the lists for the presentity Alice by doing a GET on the following resource.
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists

The result contains all the contact lists for Alice.

2. The application adds a new contact list called 'myFriends' by doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends

The result was successful.
3. The application fetches all the members of the 'myFriends' list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members

The response will contain all the members of the myFriends list from Alice, but will not contain the attributes of the list.

4. The application adds a new buddy called Bob to the MyFriends list doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/{bobUserId}

The result was successful.
5. The application fetches all attributes for the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt /{aliceUserId}/contactLists/myFriends/attributes

The response will contain all attributes of the myFriends list.

6. The application fetches all attributes of Bob in the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/ {bobUserId}/attributes

The result contains all the attributes of bob in this list.
7. The application fetches the display name attribute of Bob in the myFriends list by doing a GET on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/ {bobUserId}/attributes/display-name

The result contains Bob’s display name attribute.
5.3.3 Managing shared contact lists
The figure below shows how to manage shared contact lists.

The resources:

1. To retrieve all contact lists shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}

2. To retrieve an individual contact list shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}

3. To retrieve a member’s information from a contact list shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/{sharedMemberId}

4.
5.

[image: image6.emf]Application Server

1.

GET to retrieve contact lists shared by other users

Response with list of shared contact lists

2.

GET to retrieve a given shared list

Response with shared contact list members

3.

GET to retrieve shared member info in a shared list

Response with shared member information

Figure 3 Flow for managing shared contact lists and merged contact list

1. The application retrieves a list of all contacts lists shared by the user identified by {otherUserId} with the presentity identified by {userId}, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}

The result contains all the contact lists that {otherUserId} shares with {userId}.

2. The application retrieves an individual contact list shared by the user identified by {otherUserId} with the presentity identified by {userId}, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactList}

The result contains all the members in the shared contact list.

3. The application retrieves member’s information from a contact list shared by the user identified by {otherUserId} with the presentity identified by {userId}, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactList}/members/{sharedMemberId}

The result contains the selected member’s information.

4.
5.
5.3.4 Subscribing to contact list changes and receiving notifications

The figure below shows how a client can subscribe for notifications about contact list changes and receive notifications.

The resources:

1. To retrieve all the subscriptions to contact lists changes, and to create a new subscription the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions

2. To retrieve or delete an individual subscription, the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{subscriptionId}

[image: image7.emf]Application Server

1.

GET all subscriptions for contact lists changes

Response with list of subscriptions

2.

GET subscription to myFriends contact list changes

Response with myFriends list subscription details

3.

POST to create new subscription

Response with reference including subscriptionId

4.

PUT to add a new member to myFriends contact list

Response OK

5.

POST to notify user about changes to contact list

Response OK

6.

DELETE to remove a subscription

Response OK

Figure 3 Subscription to notifications about contact list changes

1. The application retrieves retrieves list of all subscriptions for contact list changes for the presentity by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/subscriptions

The result contains all the subscriptions created by Alice.

2. The application retrieves an individual subscription identified by {subscriptionId} by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/subscriptions/{subscriptionId}

The result was successful.
3. The application creates a new subscription for contact list changes notification by performing a POST on the following resource, including in the request body a client application supplied notifyURL:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/subscriptions

If successful (as shown), the response will contain the complete representation of the newly created resource for subscription, including a self reference to the created resource, or alternatively only a self reference to the created resource.

4. The application adds a new buddy called Bob to the MyFriends list doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/{bobUserId}

The result was successful.
5. The server notifies the application about the changes in his myFriends contact list, by performing a POST on the client application supplied notifyURL in the newly created {subscriptionId}:
http://{client-supplied notifyURL}

The result was successful.
6. The application deletes the subscription identified by {subscriptionId} by performing a DELETE on the resource:
http://{serverRoot}/{apiVersion}/addresslistmgt /{aliceUserId}/contactLists/subscription/{subscriptionId}

The result was successful.

5.4 Resource: Collection of contacts
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve a flat list all contacts owned by a given user.

5.4.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

5.4.2 Response Codes

5.4.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.4.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.4.3 GET

This resource is used to retrieve a flat list of contacts and their information..
Note: if a member with the same memberId appears in multiple contact lists with different attributes, then it is left to the implementation whether it will be represented by different contacts in the ContactCollection, or by the same Contact (in case the implementation can aggregate multiple Members into one Contact).. If the same Member appears in multiple contact lists with the same attributes, then it will be represented by the same contact in the ContactCollection.
5.4.3.1 Example 1: retrieve all contacts with all attributes (default)
(Informative)

5.4.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contacts HTTP/1.1
Accept: application/xml

Host: example.com:80

5.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactCollection xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contact>

 <contactId>mailto:alice@example.com</contactId>

 <attributeList>

 <attribute>

 <name>name</name>

 <value>alice</value>

 </attribute>

 <attribute>

 <name>cellphone</name>

 <value>+1-415-5551234</value>

 </attribute>

 <attribute>

 <name>state</name>

 <value>California</value>

 </attribute>
 </attributeList>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}contacts/mailto:alice@example.com</resourceURL>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>

 </contact>

 <contact>

 <contactId>mailto:sam@example.com</contactId>

 <attributeList>

 <attribute>

 <name>name</name>

 <value>sam</value>

 </attribute>

 <attribute>

 <name>cellphone</name>

 <value>+1-732-6661234</value>

 <attribute>

 <name>state</name>

 <value>New Jersey</value>

 </attribute>

 </attribute>

 </attributeList>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/mailto:sam@example.com</resourceURL>

 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>

 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId2}”/>
 </contact>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts</resourceURL>
</alm:contactCollection>

5.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.5 Resource: Individual contact
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}
The userId and contactId must be percent-encoded according to [RFC3986].

This resource is used to retrieve, create, update or delete individual contact from the collection of contacts of a given user.

5.5.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	User identifier. Example: tel:+1555887766

	contactId
	contact identifier. Example: mailto:alice@example.com

5.5.2 Response Codes

5.5.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.5.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.5.3 GET

This resource is used to retrieve individual member data from unique list of members from all contact lists of a given user.

5.5.3.1 Example 1: retrieve contact with all attributes (default)
(Informative)

5.5.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contacts/{contactId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm: contact xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactId>mailto:alice@example.com</contactId>

 <attributeList>

 <attribute>

 <name>name</name>

 <value>alice</value>

 </attribute>

 <attribute>

 <name>cellphone</name>

 <value>+1-415-5551234</value>

 </attribute>

 </attributeList>

 <attribute>

 <name>state</name>

 <value>California</value>

 </attribute>

 </attributeList>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}</resourceURL>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>
 </contact>

</alm:contact>

5.5.4 PUT

This operation is used for creation or update of a member on a contact list. The Server SHALL update/create the contact in the ContactCollection, and MUST add Contact as a member to the contact list(s) specified by the link attributes.in the request body. Also, any updated contact list MUST also be modified to include a link to the Contact (see Example 2). This is to ensure a one-to-many relationship between Contact and Members in different contact lists, and a one-to-one relationship between a given Member in a contact list and a Contact.
5.5.4.1 Example 1: Create a new contact without links to existing contact lists
(Informative)
5.5.4.2 In this case a Contact is created, but no contact list is updated, since there is no association of the contact with specific contact lists. There could be a case where the member that matches the contact already was created in some contact list prior to creating the Contact. That is not a problem if the ContactCollection and Contact features are not supported or not used. However, if they are supported and client wants to use them, client should create a Contact, and pass links to the previously created contact list (see next example).
5.5.4.2.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId} HTTP/1.1
Accept: application/xml

Content-Type: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contact xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactId>tel:+4799887766</contactId>

 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 </attributeList>

</alm:contact>

5.5.4.2.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contacts/{contactId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contact xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactId>tel:+4799887766</contactId>

<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

</attributeList>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}</resourceURL>
</alm:contact>

5.5.4.3 Example 2: Update an existing contact or create a new contact with with links to existing contact lists
(Informative)
5.5.4.4 The PUT example is followed by a GET example on a memberList that was updated as a result of adding a new Contact.
5.5.4.4.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId} HTTP/1.1
Accept: application/xml

Content-Type: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contact xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactId>tel:+4799887766</contactId>

 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 </attributeList>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId2}”/>
</alm:contact>

5.5.4.4.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contacts/{contactId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contact xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactId>tel:+4799887766</contactId>

<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

</attributeList>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}</resourceURL>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>
 <link rel=“ContactList”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId1}”/>
</alm:contact>

5.5.4.4.3 Request
	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{contactId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.4.4.4 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:member xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <memberId>tel:+4799887766</contactId>

<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

</attributeList>
<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactList/{contactListId1}/members/{contactId}</resourceURL>

 <link rel=“Contact”

 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}”/>

</alm:contact>

5.5.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.5.6 DELETE

This operation deletes a contact in a contact list. It SHALL also automatically delete any members in specific contact lists referred to by the links in the Contact resource (i.e. if this feature is implemented, it controls the behavior of the specific contact lists).
5.5.6.1 Example: Delete a contact
(Informative)

5.5.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.6 Resource: Individual contact trusted user identity
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity
The userId and contactId must be percent-encoded according to [RFC3986].

This resource is used to manage contact’s trusted identity data.

5.6.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	contactId
	contact identifier . Example: tel:+1555889977

5.6.2 Response Codes

5.6.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.6.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.6.3 GET

This operation is used for retrieval of member’s trusted identity.

5.6.3.1 Example 1: Retrieve contact’s trusted identity – id only, no trust data
(Informative)
5.6.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:trustedIdentity xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<userId>tel:+1555887766</userId>
</alm:trustedIdentity>

5.6.3.2 Example 2: Retrieve a non existing trusted identity
(Informative)
5.6.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <serviceException>

 <messageId>SVC0002</messageId>

 <text> Invalid input value for message part %1</text>

 <variables>trustedIdentity</variables>

 </serviceException>

</common:requestError>

5.6.4 PUT

This operation is used for creation or update a member’s trusted identity.
5.6.4.1 Example: add trusted identity to existing contact
(Informative)
5.6.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:trustedIdentity xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<userId>tel:+1555887766</userId>
</alm:trustedIdentity>

5.6.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:trustedIdentity xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>
<userId>tel:+1555887766</userId>
</alm:trustedIdentity>

5.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.6.6 DELETE
This operation deletes contact’s trusted identity

5.6.6.1 Example: Delete contact’s trusted identity
(Informative)
5.6.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/trustedIdentity HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.7 Resource: Attributes for a contact
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes
The userId and contactId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all attributes for a contact.

5.7.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	contactId
	contact identifier. Example: mailto:alice@example.com

5.7.2 Response Codes

5.7.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.7.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.7.3 GET

This operation is used for retrieval of all attributes of a contact for a given user identity.

5.7.3.1 Example: Get all attributes of a contact
(Informative)

Retrieve all attributes of a contact belonging to user, and return result in XML format.

5.7.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes HTTP/1.1
Accept: application/xml

Host: example.com:80

5.7.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 19 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attributeList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 <attribute>

 <name>Pet</name>

 <value>cat</value>

 </attribute>

<resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}/attributes</resourceURL>

</alm:attributeList>

5.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.7.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.8 Resource: Individual attribute for a contact
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
The userId, contactId and ResourceRelPath must be percent-encoded according to [RFC3986].

This light-weight resource is used to manage attributes for a contact, which include creation, retrieval, update and delete operations.

5.8.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactId
	contact identifier. Example: mailto:alice@example.com

	[ResourceRelPath]
	Light-weight relative resource path. The allowed string for this light-weight resource is {name}, as defined in the [ResourceRelPath] column in table 5.2.3. {name} indicates the name of the attribute. Example: Married

5.8.2 Response Codes

5.8.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.8.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.8.3 GET

This operation is used for retrieval of attribute values of a contact of a user.

5.8.3.1 Example 1: Retrieve a contact’s attribute
(Informative)

5.8.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.8.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 29 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.8.3.2 Example 2: Retrieve a non existing attribute
(Informative)

5.8.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/Divorced HTTP/1.1
Accept: application/xml

Host: example.com:80

5.8.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 29 Jun 2010 12:55:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid Invalid input value for message part %1</text>

 <variables>Divorced</variables>

 </serviceException>

</common:requestError>

5.8.4 PUT

This operation is used for creation or update of an attribute of a contact. If successful, this SHALL also create or update the attribute for the members in contact lists that are associated with the contact.
5.8.4.1 Example: Create a contact’s attribute
(Informative)

5.8.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/Married HTTP/1.1
Content-Type: application/xml
Accept: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.8.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contacts/{contactId}/attributes/Married
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.8.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.8.6 DELETE

This operation deletes an attribute of a contact. If successful, this SHALL also delete the attribute from the members’ attributes in contact lists associated with the contact.
5.8.6.1 Example: Delete a contact’s attribute
(Informative)

5.8.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.8.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.9 Resource: Retrieval of contact lists

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all contact lists belonging to a user.

5.9.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	User identity. Example: tel:+1555887766

5.9.2 Response Codes

5.9.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.9.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.9.3 GET

This operation is used for retrieval of all address list for a given user identity.

5.9.3.1 Example: Get all contact lists belonging to a user
(Informative)

Retrieve all contact lists belonging to a user, and return result in XML format.

5.9.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists HTTP/1.1
Accept: application/xml

Host: example.com:80

5.9.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListCollection xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<contactList>

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/mailto:alice@example.com </resourceURL>
 </member>

 </memberList>

</contactList>

<contactList>

 <contactListId>Bob private</contactListId>

 <memberList>

 <member>

 <memberId>mailto:wife@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/mailto:wife@example.com </resourceURL>
 <attributeList>

 <attribute>

 <name>married</name>

 <value>true</value>

 </attribute>

 </attributeList>

 </member>

 </memberList>

</contactList>
<resourceURL>http://example.com/1/addresslistmgt/mailto:bob@example.com/contactLists</resourceURL>

</alm:contactListCollection>

5.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.9.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.10 Resource: Contact list management
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to manage an individual contact list, which include creation, update, retrieval, and delete operations for a particular contact list.

5.10.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

5.10.2 Response Codes

5.10.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.10.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.10.3 GET

This operation is used for retrieval of a given contact list. (This operation is normally only used to verify the existence of the contact list).

5.10.3.1 Example 1: Retrieve a contact list
(Informative)

5.10.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.10.3.2 Example 2: Retrieve a non existing contact list
(Informative)

5.10.3.2.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.10.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <link rel=“ContactList”
 href=“http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}” />

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>Boblist</variables>

 </serviceException>

</common:requestError>

5.10.4 PUT

This operation is used for creation or update of a contact list.

5.10.4.1 Example: Create a contact list
(Informative)

5.10.4.1.1 Request

	PUT ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.10.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.10.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.10.6 DELETE

This operation deletes a contact list.

5.10.6.1 Example: Delete a contact list
(Informative)

5.10.6.1.1 Request

	DELETE ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.10.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.11 Resource: Retrieval of contact list attributes

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all contact lists belonging to a user.

5.11.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+4799887766

5.11.2 Response Codes

5.11.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.11.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.11.3 GET

This operation is used for retrieval of all address list for a given user identity.

5.11.3.1 Example: Get all attributes for a contact list belonging to Bob
(Informative)

Retrieve all attributes for a contact lists belonging to Bob, and return result in XML format.

5.11.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes HTTP/1.1
Accept: application/xml

Host: example.com:80

5.11.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attributeList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 <attribute>

 <name>Pet</name>

 <value>dog</value>

 </attribute>

</alm:attributeList>

5.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.11.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.12 Resource: Individual attribute for a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/[ResourceRelPath]
The userId, contactListId and ResourceRelPath must be percent-encoded according to [RFC3986].

This resource is used to manage attributes on individual contact list, which include creation, update, retrieval, and delete operations for the attributes

5.12.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+4799887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

	ResourceRelPath
	Name of the attribute. Example: Married

5.12.2 Response Codes

5.12.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.12.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.12.3 GET

This operation is used for retrieval of the value a given attribute on a contact list.

5.12.3.1 Example 1: Retrieve an attribute
(Informative)

5.12.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.12.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.12.3.2 Example 2: Retrieve a non existing attribute
(Informative)

5.12.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Alien HTTP/1.1
Accept: application/xml

Host: example.com:80

5.12.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>Alien</variables>

 </serviceException>

</common:requestError>

5.12.4 PUT

This operation is used for creation or update of a contact list.

5.12.4.1 Example: Create an attribute
(Informative)

5.12.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Content-Type: application/xml
Accept: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.12.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.12.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.12.6 DELETE

This operation deletes a contact list.

5.12.6.1 Example: Delete an attribute
(Informative)

5.12.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.12.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.13 Resource: Members in a contact list

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all members of a contact list belonging to a user.

5.13.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+4799887766

	contactListId
	contact list identifier. Example: myList

5.13.2 Response Codes

5.13.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.13.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.13.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

5.13.3.1 Example: Get all members for a contact list belonging to a user
(Informative)

Retrieve all members of a contact lists belonging to user, and return result in XML format.

5.13.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members HTTP/1.1
Accept: application/xml

Host: example.com:80

5.13.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:memberList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<member>

<memberId>mailto:alice@example.com</memberId>

 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 </attributeList>
</member>

<member>

 <memberId>tel:+1555887766</memberId>

</member>

<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members</resourceURL>

</alm:memberList>

5.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.13.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.14 Resource: Individual member on a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
The userId, contactListId and memberId must be percent-encoded according to [RFC3986].

This resource is used to manage members on individual contact list, which include creation, update, retrieval, and delete operations for the members

5.14.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

	memberId
	member identifier. Example: tel:+1555889977

5.14.2 Response Codes

5.14.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.14.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.14.3 GET

This operation is used for retrieval of user from a contact list.

5.14.3.1 Example 1: Retrieve a member
(Informative)

5.14.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.14.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:member xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<memberId>tel:+1555887766</memberId>
<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/tel:+1555887766</resourceURL>
 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

</attributeList>
</alm:member>

5.14.3.2 Example 2: Retrieve a non existing member
(Informative)

5.14.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.14.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <serviceException>

 <messageId>SVC0002</messageId>

 <text> Invalid input value for message part %1</text>

 <variables>Married</variables>

 </serviceException>

</common:requestError>

5.14.4 PUT

This operation is used for creation or update of a member on a contact list.

5.14.4.1 Example: Create a member without a link to the Contact
(Informative)
5.14.4.2 This case assumes that the ContactCollection and Contact features are either not supported, or that the client chose to first create a member in a specific contact list.
5.14.4.2.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Content-Type: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:member xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <memberId>tel:+4799887766</memberId>

 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 </attributeList>

</alm:member>

5.14.4.2.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:member xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <memberId>tel:+4799887766</memberId>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}</resourceURL>
<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

</attributeList>
<link rel=”Contact” href=”<resourceURL>http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}/>
</alm:member>

5.14.4.3 Example: add existing contact as a member to a contact list
(Informative)
5.14.4.3.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Content-Type: application/xml

Host: example.com:80
<?xml version="1.0" encoding="UTF-8"?>

<alm:member xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <link rel=”Contact” href=”http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}”/>
</alm:member>

5.14.4.3.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

 <?xml version="1.0" encoding="UTF-8"?>

 <alm:member xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

<memberId>tel:+4799887766</memberId>
 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}</resourceURL>
 <link rel=”Contact” href=”http://example.com/1/addresslistmgt/{userId}/contacts/{contactId}”/>
<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>
 </attribute>
 </attributeList>

</alm:member>

5.14.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.14.6 DELETE

This operation deletes a member in a contact list.

5.14.6.1 Example: Delete a member
(Informative)

5.14.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.14.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.15 Resource: Attributes for a member in a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes
The userId, contactListId and memberId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all attributes for a member of a contact list,.

5.15.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: myList.

	memberId
	member identifier. Example: +1555998877

5.15.2 Response Codes

5.15.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.15.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.15.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

5.15.3.1 Example: Get all attributes of a member of a contact list
(Informative)

Retrieve all attributes of a member of a contact lists belonging to user, and return result in XML format.

5.15.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes HTTP/1.1
Accept: application/xml

Host: example.com:80

5.15.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 19 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attributeList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 <attribute>

 <name>Pet</name>

 <value>cat</value>

 </attribute>

<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes</resourceURL>

</alm:attributeList>

5.15.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.15.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.15.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.16 Resource: Individual attribute for a member in a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]
The userId, contactListId, memberId, and ResourceRelPath must be percent-encoded according to [RFC3986].

This light-weight resource is used to manage attributes for a member in a contact list, which include creation, update, retrieval, and delete operations.

5.16.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: myFriends

	memberId
	member identifier. Example: tel:+1555887777

	[ResourceRelPath]
	Light-weight relative resource path. The allowed string for this light-weight resource is {name}, as defined in the [ResourceRelPath] column in table 5.2.3. {name} indicates the name of the attribute. Example: Married

5.16.2 Response Codes

5.16.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.16.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.16.3 GET

This operation is used for retrieval of attribute values of a member of a user from a contact list.

5.16.3.1 Example 1: Retrieve an attribute
(Informative)

5.16.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.16.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 29 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.16.3.2 Example 2: Retrieve a non existing attribute
(Informative)

5.16.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Divorced HTTP/1.1
Accept: application/xml

Host: example.com:80

5.16.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 29 Jun 2010 12:55:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<common:requestError xmlns:common=“urn:oma:xml:rest:common:1”>

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid Invalid input value for message part %1</text>

 <variables>Divorced</variables>

 </serviceException>

</common:requestError>

5.16.4 PUT

This operation is used for creation or update of an attribute of a member on a contact list.

5.16.4.1 Example: Create an attribute
(Informative)

5.16.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Content-Type: application/xml
Accept: application/xml

Host: example.com:80
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.16.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberName}/attributes/Married
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:attribute xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <name>Married</name>

 <value>true</value>

</alm:attribute>

5.16.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.16.6 DELETE

This operation deletes a member in a contact list.

5.16.6.1 Example: Delete an attribute
(Informative)

5.16.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.16.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.17 Resource: Contact list references
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve list of references for all nested contact lists.

5.17.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: myList

5.17.2 Response Codes

5.17.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.17.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.17.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

5.17.3.1 Example: Get all attributes of a member of a contact list
(Informative)

Retrieve all attributes of a member of a contact lists belonging to user, and return result in XML format.

5.17.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences HTTP/1.1
Accept: application/xml

Host: example.com:80

5.17.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 19 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListReferenceCollection xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1” >

 <link rel=“ContactList” href=“http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId1}”/>

 <link rel=“ContactList” href=“http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId2}“/>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences</resourceURL>

</alm:contactListReferenceCollection>

5.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.17.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.18 Resource: Collection of contact lists shared by other user

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy
The userId and otherUserId must be percent-encoded according to [RFC3986].

This resource is used to retrieve contact lists shared by user identified as otherUserId.

5.18.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	requesting user identifier. Example: tel:+1555887766

	otherUserId
	sharing user identifier. Example: tel+14152053103

5.18.2 Response Codes

5.18.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.18.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.18.3 GET

This operation is used for retrieval of all address lists shared by user identified by otherUserId.

5.18.3.1 Example: Get contact lists shared by a user identified by {otherUserId}
(Informative)

5.18.3.1.1 Request – all list attributes and all member attributes (default)

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.18.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListCollection xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}</resourceURL>

 <contactList>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{contactListId1}</resourceURL>

<contactListId>5678</contactListId>

<attributeList>

 <attribute>

 <name>label</name>

 <value>Bob and Jim shared friends</value>

</attributeList>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{memberId}/{contactListId1}/members/ mailto:alice@example.com</resourceURL>

 <attributeList>

 <attribute name=“aaa.1” value=“bbb1”/>

 <attribute name=“aaa.2” value=“bbb2”/>

 <attribute name=“aaa.3” value=“bbb3”/>

 </attributeList>

 </member>

 <member>

 <memberId>mailto:cat@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{memberId}/{contactListId1}/members/ mailto:cat@example.com</resourceURL>

 <attributeList>

 <attribute name=“ccc.1” value=“ddd1”/>

 <attribute name=“ccc.2” value=“ddd2”/>

 <attribute name=“ccc.3” value=“ddd3”/>

 </attributeList>

 </member>

 </memberList>

</contactList>

 <contactList><resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{contactListId2}</resourceURL>

<contactListId>1234</contactListId>

<attributeList>

 <attribute>

 <name>label</name>

 <value>Bob and Jim shared list#2</value>

</attributeList>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{memberId}/{contactListId2}/members/ mailto:alice@example.com</resourceURL>

 <attributeList>

 <attribute name=“mmm.1” value=“nnn1”/>

 <attribute name=“mmm.2” value=“nnn2”/>

 <attribute name=“mmm.3” value=“nnn3”/>

 </attributeList>

 </member>

 <member>

 <memberId>mailto:cat@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{memberId}/{contactListId2}/members/ mailto:cat@example.com</resourceURL>

 <attributeList>

 <attribute name=“ooo.1” value=“ppp1”/>

 <attribute name=“ooo.2” value=“ppp2”/>

 <attribute name=“ooo.3” value=“ppp3”/>

 </attributeList>

 </member>

 </memberList>

</contactList>

</alm:contactListCollection>

5.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.18.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.19 Resource: Individual shared contact list

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve individual contact list with contactListId shared by user identified as {otherUserId} with user identified as {userId}.

5.19.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	requesting user identifier. Example: tel:+1555887766

	otherUserId
	sharing user identifier. Example: tel+14152053103

	sharedContactListId
	shared contact list identifier. Example: myList

5.19.2 Response Codes

5.19.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.19.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.19.3 GET

This operation is used for retrieval of all single contact list information for a given user identity.

5.19.3.1 Example: get individual contact list shared by a user identified by {otherUserId}, with all contact list attributes and all member attributes (default)
(Informative)

5.19.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.19.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactList xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}</resourceURL>

<contactListId>5678</contactListId>

<attributeList>

 <attribute>

 <name>label</name>

 <value>Bob and Jim shared friends</value>

</attributeList>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/ mailto:alice@example.com</resourceURL>

 <attributeList>

 <attribute name=“aaa.1” value=“bbb1”/>

 <attribute name=“aaa.2” value=“bbb2”/>

 <attribute name=“aaa.3” value=“bbb3”/>

 </attributeList>

 </member>

 <member>

 <memberId>mailto:cat@example.com</memberId>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/ mailto:cat@example.com</resourceURL>

 <attributeList>

 <attribute name=“ccc.1” value=“ddd1”/>

 <attribute name=“ccc.2” value=“ddd2”/>

 <attribute name=“ccc.3” value=“ddd3”/>

 </attributeList>

 </member>

 </memberList>

</alm:contactList>

5.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.19.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.20 Resource: Individual contact information from shared contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/{sharedMemberId}
The userId, otherUserId and sharedMemberId must be percent-encoded according to [RFC3986].

This resource is used to retrieve individual contact information from the list shared by user identified as otherUserId

5.20.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	requesting user identifier. Example: tel:+1555887766

	otherUserId
	other user identifier. Example: tel+14152053103

	sharedContactListId
	shared contact list identifier. Example: myList

	sharedMemberId
	contact list member identifier. Example: mailto:alice@example.com

5.20.2 Response Codes

5.20.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.20.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.20.3 GET

This operation is used for retrieval of all information about a member in a shared list.

5.20.3.1 Example: get individual contact information about user identified as {sharedMemberId} from the list shared by a user identified by {otherUserId} (default)
(Informative)

5.20.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/{sharedMemberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.20.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:member xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

<memberId>mailto:alice@example.com</memberId> <resourceURL>http://example.com/1/{userId}/contactLists/sharedBy/{otherUserId}/{sharedContactListId}/members/{sharedMemberId}</resourceURL>

 <attributeList>

 <attribute name=“aaa.1” value=“bbb1”/>

 <attribute name=“aaa.2” value=“bbb2”/>

 <attribute name=“aaa.3” value=“bbb3”/>

 </attributeList>

</member>

</alm:member>

5.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.20.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.21

5.21.1

	
	

	
	

	
	

	
	

5.21.2
5.21.2.1

5.21.2.2

5.21.3

5.21.3.1
5.21.3.1.1
	

5.21.3.1.2
	

5.21.4

5.21.5

5.21.6

5.22

5.22.1

	
	

	
	

	
	

	
	

	
	

5.22.2
5.22.2.1

5.22.2.2

5.22.3

5.22.3.1
5.22.3.1.1
	

5.22.3.1.2
	

5.22.4

5.22.5

5.22.6

5.23 Resource: Contact list changes subscriptions

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve contact list changes subscriptions, as well as for the creation of new subscriptions

5.23.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

5.23.2 Response Codes

5.23.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.23.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.23.3 GET

This operation is used for retrieval of all contact list change subscriptions for a contact list.

5.23.3.1 Example: get contact list changes subscriptions
(Informative)

5.23.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions HTTP/1.1
Accept: application/xml

Host: example.com:80

5.23.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListChangesSubscriptionCollection xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <contactListChangesSubscription>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/987654321</resourceURL>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL>http://client.example.com/notifications/contactLists</notifiyURL>

 </callbackReference>

 <duration>3600</duration>

 </contactListChangesSubscription>

 <contactListChangesSubscription>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/987654222</resourceURL>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL>http://client-backup.example.com/notifications/contactLists</notifiyURL>

 </callbackReference>

 <duration>3600</duration>

 <sendFullContactListContent>true</<sendFullContactListContent>
 </contactListChangesSubscription>

</alm:contactListChangesSubscriptionCollection>

5.23.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

5.23.5 POST

This operation is used for creation of the new subscription.

5.23.5.1 Example: create new subscription for contact list changes notification

5.23.5.1.1 Request

	POST ../{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions HTTP/1.1
Accept: application/xml

Host: example.com:80

<?xml version=“1.0” encoding=“UTF-8”?>

<contactListChangesSubscription>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL> http://client.example.com/notifications/contactLists</notifiyURL>

 <callbackData>12345</callbackData>

 </callbackReference>

 <duration>3600</duration>

 <sendFullContactListContent>true</<sendFullContactListContent>
</contactListChangesSubscription>

5.23.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

Location: http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListChangesSubscription xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/subscriptions/{subscriptionId}</resourceURL>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL>http://client.example.com/notifications/contactLists</notifiyURL>

 </callbackReference>

 <createdAt>

 <duration>3600</duration>
<alm:contactListChangesSubscription>

5.23.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

5.24 Resource: Individual contact list changes subscription

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve or remove an individual contact list changes subscription.

5.24.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	user identifier. Example: tel:+1555887766

	subscriptionId
	identifier associated with this specific subscription

5.24.2 Response Codes

5.24.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.24.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].

5.24.3 GET

This operation is used for retrieval of a specific contact list changes subscription.

5.24.3.1 Example: get contact list changes subscription
(Informative)

Retrieve a specific contact list changes subscription.

5.24.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId} HTTP/1.1

Accept: application/xml

Host: example.com:80

5.24.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListChangesSubscription>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}</resourceURL>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL>http://client.example.com/notifications/contactLists</notifiyURL>

 </callbackReference>
</alm:contactListChangesSubscription>

5.24.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.24.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.24.6 DELETE

This operation deletes a subscription to contact list changes.

5.24.6.1 Example: delete a contact list changes subscription
(Informative)

5.24.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId} HTTP/1.1

Accept: application/xml

Host: example.com:80

5.24.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.25 Resource: Client resource for contact list changes notifications

This resource is a client provided callback URL for client notification about outbound message delivery status. ParlayREST does not make any assumption about the structure of this URL.

5.25.1 Request URI variables

Client provided.

5.25.2 Response Codes

5.25.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.25.2.2 Exception fault codes

5.25.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

5.25.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

5.25.5 POST

This operation is used to send notification about contact list change to the client.

5.25.5.1 Example 1: notification for subscription with sendFullContactListContent=true (default)
(Informative)

5.25.5.1.1 Request
	POST /client.example.com/notifications/contactLists HTTP/1.1

Accept: application/xml

Host: example.com:80

<?xml version=“1.0” encoding=“UTF-8”?>

<contactListChangeNotification>

 <link rel=“ContactListChangesSubscription” href=http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}/>

 <callbackData>12345</callbackReferenceData>

 <contactList>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}</resourceURL>

 <contactListId>Bob private</contactListId>

 <memberList>

 <member>

 <memberId>mailto:wife@example.com</memberId>

 <attributeList>

 <attribute>

 <name>married</name>

 <value>true</value>

 </attribute>

 </attributeList>

 </member>

 </memberList>

 <contactList>
</contactListChangeNotification>

5.25.5.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 09 Jun 2010 12:51:59 GMT

5.25.5.2 Example 2: notification for subscription with sendFullContactListContent=false
(Informative)

5.25.5.2.1 Request

	POST /client.example.com/notifications/contactLists HTTP/1.1

Accept: application/xml

Host: example.com:80

<?xml version=“1.0” encoding=“UTF-8”?>

<contactListChangeNotification>

 <link rel=“ContactListChangesSubscription” href=http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}/>

 <callbackData>12345</callbackData>

 <contactList>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}</resourceURL>

 <contactList>
</contactListChangeNotification>

5.25.5.2.2 Response

	HTTP/1.1 200 OK

Date: Thu, 09 Jun 2010 12:51:59 GMT

5.25.5.3 Example 3: notification for expired subscription
(Informative)
5.25.5.3.1 Request
	POST /client.example.com/notifications/contactLists HTTP/1.1

Accept: application/xml

Host: example.com:80

<?xml version=“1.0” encoding=“UTF-8”?>

<contactListChangeNotification>

 <link rel=“ContactListChangesSubscription” href=http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}/>

 <callbackData>{client correlator}</callbackData>

<expiredAt>12/10/2010 23:00</expiredAt>

 <createdAt>12/10/2010 12:00</createdAt>

</contactListChangeNotification>

5.25.5.3.2 Response

	HTTP/1.1 200 OK

Date: Thu, 09 Jun 2010 12:51:59 GMT

5.25.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-ParlayREST-AddressListManagement-V1_0
	15 Apr 2010
	Many
	TS skeleton prepared

	
	19 May 2010
	5.1
	OMA-ARC-REST-2010-0228R03-CR_Address_List_Management_resources_summary

	
	19 May 2010
	5.2
	OMA-ARC-REST-2010-0229R02-CR_Address_List_Management_data_structures

	
	19 May 2010
	5.3
	OMA-ARC-REST-2010-0230R02-CR_Address_List_Management_sequence_diagrams

	
	29 Jun 2010
	5.1, 5.2
	OMA-ARC-REST-2010-0278R04-CR_Add_list_reference_management.doc

	
	29 Jun 2010
	2.1, 4.1
	OMA-ARC-REST-2010-0291R01-CR_ALM_TS_updates_sections_2to5.doc

	
	29 Jun 2010
	2.1, 5.4
	OMA-ARC-REST-2010-0274R01-CR_ALM_example_1.doc

	
	29 Jun 2010
	5.5
	OMA-ARC-REST-2010-0275R01-CR_ALM_example_2.doc

	
	29 Jun 2010
	5.6
	OMA-ARC-REST-2010-0318R01-CR_ALM_example_3.doc

	
	7 Jul 2010
	5.1
	OMA-ARC-REST-2010-0278R04-CR_Add_list_reference_management.zip

	
	7 Jul 2010
	5.3.1
	OMA-ARC-REST-2010-0305R02-CR_ALM_TS_sequence_diagrams_updates.zip

	
	7 Jul 2010
	Add 5.7
	OMA-ARC-REST-2010-0319R02-CR_ALM_example_4.doc

	
	7 Jul 2010
	Add 5.8
	OMA-ARC-REST-2010-0320R04-CR_ALM_example_5.doc

	
	7 Jul 2010
	Add 5.9
	OMA-ARC-REST-2010-0321R03-CR_ALM_example_6.doc

	
	7 Jul 2010
	Add 5.10
	OMA-ARC-REST-2010-0323R02-CR_ALM_example_7.doc

	
	7 Jul 2010
	Add 5.11
	OMA-ARC-REST-2010-0326R03-CR_ALM_example_8.doc

	
	7 Jul 2010
	Add 5.12
	OMA-ARC-REST-2010-0327R02-CR_ALM_example_9.zip

	
	7 Jul 2010
	Add B1.x
	OMA-ARC-REST-2010-0335R01-CR_ALM_SCR_update.doc

	
	14 Jul 2010
	5.4+
	OMA-ARC-REST-2010-0355-CR_ALM_Validation_errors.doc

	
	28 Aug 2010
	Add app. D
	OMA-ARC-REST-2010-0401-CR_JSON_examples_for_ALM.doc

	
	28 Aug 2010
	Update app. B
	OMA-ARC-REST-2010-0402-CR_SCR_updates_for_ALM.doc

	
	28 Aug 2010
	Replace app. C
	OMA-ARC-REST-2010-0432R01-CR_empty_appendix_C_form_urlencoding_in_ALM.doc

	
	28 Aug 2010
	5.3.1
	OMA-ARC-REST-2010-0437-CR_ALM_TS_sequence_diagrams_more_updates.doc

	
	28 Aug 2010
	D
	OMA-ARC-REST-2010-0394-INP_Fixing_JSON_references.doc

	
	28 Aug 2010
	5.2.x
	OMA-ARC-REST-2010-0445-CR_DevCap_resourceURL_description.doc

	
	13 Sep 2010
	
	OMA-ARC-REST-2010-0491R01-CR_ALM_implement_AI_from_431R02

	
	13 Sep 2010
	
	OMA-ARC-REST-2010-0483R01-CR_ALM_adding_subscription_and_notification.

	
	13 Sep 2010
	
	OMA-ARC-REST-2010-0484R01-CR_ALM_adding_shared_lists

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for ParlayREST.ALM Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-SUPPORT-S-001-M
	Support for the ALM REST Enabler
	5
	

	PARLAYREST-ALM-SUPPORT-S-002-M
	Support for the XML request & response format
	5
	

	PARLAYREST-ALM-SUPPORT-S-003-M
	Support for the JSON request & response format
	5
	

	
	
	
	

B.1.1 SCR for ParlayREST.ALM. ContactLists Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM- CON-LS-S-001-M
	Support for retrieving all contact lists belonging to a user.
	5.4
	

	PARLAYREST-ALM- CON-LS-S-002-M
	This operation retrieves all contact lists the user has created - GET

	5.4.3
	

B.1.2 SCR for ParlayREST.ALM.IndividualContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-CON-LS-001-M
	Support for management (create, update, retrieve and delete) of an individual contact list.
	5.5
	

	PARLAYREST-ALM-IND-CON-LS-002-M
	This operation retrieves the contact list - GET

	5.5.3
	

	PARLAYREST-ALM-IND-CON-LS-003-M
	This operation creates or updates the entire contact list - PUT

	5.5.4
	

	PARLAYREST-ALM-IND-CON-LS-004-M
	This operation removes the contact list from the system including attributes and members - DELETE

	5.5.6
	

B.1.3 SCR for ParlayREST.ALM.AttributesForAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-ATTRIB-CON-LS-S-001-O
	Support for retrieving all attributes for a given contact list belonging to a user.
	5.6
	PARLAYREST-ALM-ATTRIB-CON-LS-S-002-O

PARLAYREST-ALM-ATTRIB-CON-LS-S-003-O

	PARLAYREST-ALM-ATTRIB-CON-LS-S-002-O
	This operation returns all attributes for a contact list - GET

	5.6.3
	

	
	
	
	

B.1.4 SCR for ParlayREST.ALM.IndividualAttributeForAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-001-O
	Support for management (create, update, retrieve and delete) of individual attributes for a contact list.
	5.7
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-002-O
	This operation returns the value of the contact list attribute -GET

	5.7.3
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-003-O
	This operation creates or updates an attribute - PUT

	5.7.4
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-004-O
	This operation deletes an attribute - DELETE

	5.7.6
	

B.1.5 SCR for ParlayREST.ALM.MemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-MBR-CON-LS-S-001-O

	Supports retrieval of all members of a contact list belonging to a user
	5.8
	PARLAYREST-ALM-MBR-CON-LS-S-002-O

	PARLAYREST-ALM-MBR-CON-LS-S-002-O

	This operation retrieves the members in the contact list - GET

	5.8.3
	

B.1.6 SCR for ParlayREST.ALM.IndividualMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-MBR-CON-LS-S-001-O

	Support for management (create, update, retrieve and delete) of members on individual contact list.
	5.9
	PARLAYREST-ALM-IND-MBR-CON-LS-S-002-O

PARLAYREST-ALM-IND-MBR-CON-LS-S-003-O

PARLAYREST-ALM-IND-MBR-CON-LS-S-004-O

	PARLAYREST-ALM-IND-MBR-CON-LS-S-002-O

	This operation retrieves a user from a contact list - GET

	5.9.3
	

	PARLAYREST-ALM-IND-MBR-CON-LS-S-003-O

	This operation creates and updates an entry in the contact list - PUT

	5.9.4
	

	PARLAYREST-ALM-IND-MBR-CON-LS-S-004-O

	This operation removes the member from the contact list - DELETE

	5.9.6
	

B.1.7 SCR for ParlayREST.ALM.AttributesForAMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-001-O

	Supports retrieval of all attributes of a member of a contact list belonging to a user
	5.10
	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-002-O

PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-003-O

	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-002-O

	This operation returns all attributes for a member – GET

	5.10.3
	

	
	
	
	

B.1.8 SCR for ParlayREST.ALM.IndividualAttributeForAMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-001-O

	Support for management (create, update, retrieve and delete) of member attributes on individual contact list.
	5.11
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-002-O

	This operation returns the value of the attribute for a member – GET

	5.11.3
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-003-O

	This operation creates or updates an attribute for a member – PUT
	5.11.4
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-004-O

	This operation removes an attribute for a member - DELETE

	5.11.6
	

B.1.9 SCR for ParlayREST.ALM.ContactListReferences Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-CON-LS-REF-S-001-O

	Supports retrieval of a list of references for all nested contact lists.

	5.12
	PARLAYREST-ALM-CON-LS-REF-S-002-O

	PARLAYREST-ALM-CON-LS-REF-S-002-O

	This operation returns a list of references to other contact lists. –GET

	5.12.3
	

	PARLAYREST-ALM-CON-LS-REF-S-002-O

	This operation returns a list of references to other contact lists. –GET

	5.12.3
	

B.1.10 SCR for ParlayREST.ALM.Shared.Lists Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-SHAREDLISTS-S-001-O
	Support shared contact lists
	5.x
	PARLAYREST-ALM-SHAREDLISTS-S-002-O

	PARLAYREST-ALM-SHAREDLISTS-S-002-O
	Retrieve list of all shared contact lists by one user with another user - GET
	5.x.3
	

B.1.11 SCR for ParlayREST.ALM.Individual.Shared.List Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-SHAREDLIST-S-001-O
	Support individual shared contact list
	5.x
	PARLAYREST-ALM-IND-SHAREDLIST-S-002-O

	PARLAYREST-ALM-IND-SHAREDLIST-S-002-O
	Retrieve members of a shared contact list - GET
	5.x.3
	

B.1.12 SCR for ParlayREST.ALM.Member.Shared.List Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-MEMBER-SHAREDLIST-S-001-O
	Support individual member in shared contact list
	5.x
	PARLAYREST-ALM-MEMBER-SHAREDLIST-S-002-O

	PARLAYREST-ALM-MEMBER-SHAREDLIST-S-002-O
	Retrieve information of member in a shared contact list - GET
	5.x.3
	

B.1.13 SCR for ParlayREST.ALM.Contact.Collection Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-CONTACT-COL-S-001-O
	Support flat list with all of user’s contacts
	5.x
	PARLAYREST-ALM-CONTACT-COL-S-002-O

	PARLAYREST-ALM-CONTACT-COL-S-002-O
	Retrieve flat list of all user’s contacts - GET
	5.x.3
	

B.1.14 SCR for ParlayREST.ALM.Individual.Contact Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-CONTACT-IND--S-001-O
	Support individual contact from flat list with all of user’s contacts
	5.x
	PARLAYREST-ALM-CONTACT-IND-S-002-O AND PARLAYREST-ALM-CONTACT-IND-S-003-O AND PARLAYREST-ALM-CONTACT-IND-S-003-O ND

	PARLAYREST-ALM-CONTACT-IND-S-002-O
	Retrieve information of a contact from the flat list of all user’s contacts - GET
	5.x.3
	

	PARLAYREST-ALM-CONTACT-IND-S-003-O
	Add or update a contact from the flat list of all user;s contacts
	5.x.4
	

	PARLAYREST-ALM-CONTACT-IND-S-004-O
	Delete a contact from the flat list of all user’s contacts
	5.x.6
	

B.1.15 SCR for ParlayREST.ALM.IndividualContactTrustedId Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-CON-TRUSTID-S-001-O

	Support for management (create, update, retrieve and delete) of a trusted identity to an individual contact of the flat collection of contacts
	5.x
	PARLAYREST-ALM-IND-CON-TRUSTID-S-002-O

PARLAYREST-ALM-IND-CON-TRUSTID-S-003-O

PARLAYREST-ALM-IND-CON-TRUSTID-S-004-O

	PARLAYREST-ALM-IND-CON-TRUSTID-S-002-O

	This operation retrieves a contact’s trusted identity - GET

	5.x.3
	

	PARLAYREST-ALM-IND-CON-TRUSTID-S-003-O

	This operation creates and/or updates a contact’s trusted identity - PUT

	5.x.4
	

	PARLAYREST-ALM-IND-CON-TRUSTID-S-004-O

	This operation removes a contact’s trusted identity from - DELETE

	5.x.6
	

B.1.16 SCR for ParlayREST.ALM.AttributesForAContact Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-ATTRIB-CONTACT-S-001-O

	Supports retrieval of all attributes of a contact
	5.x
	PARLAYREST-ALM-ATTRIB-CONTAC-S-002-O

PARLAYREST-ALM-ATTRIB-CONTACT-S-003-O

	PARLAYREST-ALM-CONTACT-S-002-O

	This operation returns all attributes for a member – GET

	5.x.3
	

B.1.17 SCR for ParlayREST.ALM.IndividualAttributeForAContactInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-001-O

	Support for management (create, update, retrieve and delete) of contact’s single attributes.
	5.x
	PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-002-O AND PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-003-O AND PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-004-O

	PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-002-O

	This operation returns the value of the attribute for a member – GET

	5.x.3
	

	PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-003-O

	This operation creates or updates an attribute for a member – PUT
	5.x.4
	

	PARLAYREST-ALM-IND-ATTRIB-CONTACT-S-004-O

	This operation removes an attribute for a member - DELETE

	5.x.6
	

B.1.18 SCR for ParlayREST.ALM.List.Subscr Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-SUBSCR-S-001-O
	Support subscriptions for contact list changes notifications
	5.13
	PARLAYREST-ALM-SUBSCR-S-002-O AND PARLAYREST-ALM-SUBSCR-S-003-O

	PARLAYREST-ALM-SUBSCR-S-002-O
	Read list of subscriptions - GET
	5.13.3
	

	PARLAYREST-ALM-SUBSCR-S-003-O
	Create subscription for capability change notifications - POST
	5.13.5

C.1
	

B.1.19 SCR for ParlayREST.ALM.Individual.Subscr Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-SUBSCR-S-001-O
	Support for control and read access to individual subscription for capability change notifications
	5.14
	PARLAYREST-DEVCAP-IND-SUBSCR-S-002-O AND PARLAYREST-ALM-IND-SUBSCR-S-003-O

	PARLAYREST-ALM-IND-SUBSCR-S-002-O
	Read individual subscription for capability change notifications - GET
	5.14.3
	

	PARLAYREST-ALM-IND-SUBSCR-S-003-O
	Delete individual subscription for capability change notifications - DELETE
	5.14.6
	

B.1.20 SCR for ParlayREST.ALM.Notif Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-NOTIF-S-001-O
	Support for notifying application about device capability changes
	5.15
	PARLAYREST-ALM-NOTIF-S-002-O

	PARLAYREST-ALM-NOTIF-S-002-O
	Notify application about device capability changes - POST
	5.15.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations

This section defines a format for AddressListManagement REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

The encoding is defined below for all AddressListManagement REST operations which are based on POST requests.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server.

The following AddressListManagement REST operations are defined in this section:

· Create a subscription for contact list changes notification

C.1 Create a subscription for contact list changes notifications

This operation is used to create a new subscription for contact list changes notifications.

This REST operation is used by the application to start the contact list changes notifications. It MUST use the HTTP POST operation. If the operation was successful, it returns an HTTP Status of “201 Created”.

The following parameters are defined:

	Name

	Type/Values
	Optional
	Description

	sendFullContactListContent
	xsd:boolean
	Yes
	Default value is ‘true’. Full content of the changed contact list would be sent in the REST callback notification. If value is ‘false’ – a collection of the resourceURLs pointing to the modified contacts list would be delivered in the notification. In this case, client would have to read content of the modified lists using separate requests.

	createdAt
	xsd:datetime
	Yes
	Subscription creation timestamp

	duration
	xsd:int
	Yes
	Subscription duration in seconds. Server would expire subscription after specified number of seconds after subscription creation. If not specified – default value assigned by the server.

	notifyURL
	xsd:anyURI
	No
	Notification endpoint definition

	callbackData
	xsd: string
	Yes
	Data the application can register with the server when subscribing to notifications, and that are passed back unchanged in each of the related notifications.

	notificationFormat
	xsd: string
	Yes
	Default: XML

Application can specify format of the resource representation in notifications that are related to this subscription. The choice is between {XML, JSON}

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This field SHOULD be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids re-sending the message in such situations.

In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

C.1.1 Example

(Informative)

C.1.1.1 Request

	POST ../{apiVersion}/addresslistmgt/{userId}/contactLists/subscriptions HTTP/1.1
Host: example.com:80

Content-Type: application/x-www-form-urlencoded

Accept: application/xml

sendFullContactListContent=true&

duration=3600&
notifyURL=http://client.example.com/notifications/contactLists&

callbackData=12345&

notificationFormat=XML

C.1.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

Location: http://example.com/1/addresslistmgt/{userId}/contactLists/subscriptions/{subscriptionId}
<?xml version=“1.0” encoding=“UTF-8”?>

<alm:contactListChangesSubscription xmlns:alm=“urn:oma:xml:rest:addresslistmgt:1”>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/subscriptions/{subscriptionId}</resourceURL>

 <contactListResourceURL>

 http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}

 </contactListResourceURL>
 <callbackReference>

 <notifyURL>http://client.example.com/notifications/contactLists</notifiyURL>
 </callbackReference>
 <createdAt>

 <duration>3600</duration>
<alm:contactListChangesSubscription>

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for Parlay REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using a JSON binding. The examples follow the XML to JSON serialization rules in [REST_TS_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_TS_Common].

For full details on the operations themselves please refer to the section number indicated.

Example: Get all contact lists belonging to a user (section 5.4.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“contactListCollection”: {

 “contactList”: [

 {

 “contactListId”: “Bob public”,

 “memberList”: {“member”: {“memberId”: “mailto:alice@example.com”}}

 },

 {

 “contactListId”: “Bob private”,

 “memberList”: {“member”: {

 “attributeList”: {“attribute”: {

 “name”: “married”,

 “value”: “true”
 }},

 “memberId”: “mailto:wife@example.com”
 }}

 }

],

 “resourceURL”: “http://example.com/1/addresslistmgt/mailto:bob@example.com/contactLists “
}}

Example 1: Retrieve a contact list (section 5.5.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“contactList”: {

 “contactListId”: “Bob public”,

 “memberList”: {“member”: {“memberId”: “mailto:alice@example.com”}}

}}

Example 2: Retrieve a non existing contact list (section 5.5.3.2)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“requestError”: {

 “link”: {

 “href”: “http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}”,

 “rel”: “contactList”
 },

 “serviceException”: {

 “messageId”: “SVC0002”,

 “text”: “Invalid input value for message part %1”,

 “variables”: “Boblist”
 }

}}

Example: Create a contact list (section 5.5.4.1)

Request:

	PUT ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80
{“contactList”: {

 “contactListId”: “Bob public”,

 “memberList”: {“member”: {“memberId”: “mailto:alice@example.com”}}

}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
Date: Thu, 09 Aug 2010 12:51:59 GMT

{“contactList”: {

 “contactListId”: “Bob public”,

 “memberList”: {“member”: {“memberId”: “mailto:alice@example.com”}}

}}

Example: Get all attributes for a contact lists belonging to Bob (section 5.6.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“attributeList”: {“attribute”: [

 {

 “name”: “Married”,

 “value”: “true”
 },

 {

 “name”: “Pet”,

 “value”: “dog”
 }

]}}

Example 1: Retrieve an attribute value (section 5.7.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Example 2: Retrieve a non existing attribute (section 5.7.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Alien HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“requestError”: {“serviceException”: {

 “messageId”: “SVC0002”,

 “text”: “Invalid input value for message part %1”,

 “variables”: “Alien”
}}}

Example: Create an attribute (section 5.7.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Content-Type: application/json

Accept: application/json

Host: example.com:80
{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married
Date: Thu, 09 Aug 2010 12:51:59 GMT
[{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Example: Get all members for a contact lists belonging to a user (section 5.8.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“memberList”: {

 “member”: [

 {

 “attributeList”: {“attribute”: {

 “name”: “Married”,

 “value”: “true”
 }},

 “memberId”: “mailto:alice@example.com”
 },

 {“memberId”: “tel:+1555887766”}

],

 “resourceURL”: “http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members”
}}

Example 1: Retrieve a member (section 5.9.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“member”: {

 “attributeList”: {“attribute”: {

 “name”: “Married”,

 “value”: “true”
 }},

 “memberId”: “tel:+1555887766”
}}

Example 2: Retrieve a non existing member (section 5.9.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{“requestError”: {“serviceException”: {

 “messageId”: “SVC0002”,

 “text”: “ Invalid input value for message part %1”,

 “variables”: “Married”
}}}

Example: Create an member (section 5.9.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: example.com:80
{“member”: {

 “attributeList”: {“attribute”: {

 “name”: “Married”,

 “value”: “true”
 }},

 “memberId”: “tel:+4799887766”
}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
Date: Thu, 09 Aug 2010 12:51:59 GMT
{“member”: {

 “attributeList”: {“attribute”: {

 “name”: “Married”,

 “value”: “true”
 }},

 “memberId”: “tel:+4799887766”
}}

Example: Get all attributes of a member of a contact lists (section 5.10.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 19 Aug 2010 12:51:59 GMT

{“attributeList”: {

 “attribute”: [

 {

 “name”: “Married”,

 “value”: “true”
 },

 {

 “name”: “Pet”,

 “value”: “cat”
 }

],

 “resourceURL”: “http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes”
}}

Example 1: Retrieve a member (section 5.11.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 29 Aug 2010 12:51:59 GMT

{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Example 2: Retrieve a non existing attribute (section 5.11.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Divorced HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 29 Aug 2010 12:55:59 GMT

{“requestError”: {“serviceException”: {

 “messageId”: “SVC0002”,

 “text”: “Invalid Invalid input value for message part %1”,

 “variables”: “Divorced”
}}}

Example: Create an attribute (section 5.11.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Content-Type: application/json
Accept: application/json

Host: example.com:80
{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberName}/attributes/Married
Date: Thu, 09 Aug 2010 12:51:59 GMT
{“attribute”: {

 “name”: “Married”,

 “value”: “true”
}}

Example: Get all attributes of a member of a contact lists (section 5.12.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 19 Aug 2010 12:51:59 GMT

{“contactListReferenceCollection”: {

 “link”: [

 {

 “href”: “http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId1}”,

 “rel”: “ContactList”
 },

 {

 “href”: “http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId2}”,

 “rel”: “ContactList”
 }

],

 “resourceURL”: “http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences”
}}

Appendix E. Parlay X operations mapping
(Informative)

The table below illustrates the mapping between REST resources/methods and Parlay X equivalent operations.
	ParlayREST Resource
	ParlayREST Method
	ParlayREST Section reference
	Parlay X equivalent operation

	ContactLists
	GET
	5.6.3
	getOwnersGroups

	Individual contact list
	DELETE
	5.7.6
	deleteGroup

	Attributes for a contact list
	GET
	5.8.3
	queryGroupAttributes

	Individual attribute for a contact list
	DELETE
	5.9.6
	deleteGroupAttribute

	Members in a contact list
	GET
	5.10.3
	queryMembers

	Individual member in a contact list
	DELETE
	5.11.6
	deleteMember

	Attributes for a member in a contact list
	GET
	5.12.3
	queryGroupMemberAttributes

	Individual attribute for a member in a contact list
	DELETE
	5.13.6
	deleteGroupMemberAttribute

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1346404470.ppt

//{serverRoot}/{apiVersion}

/addresslistmgt

/{userId}

/attributes

Heave-weight resource

/contactLists

/contactListReferences

/{contactListId}

/members

/[resourceRelPath]

/{memberId}

/[resourceRelPath]

/attributes

/contacts

/{contactId}

Relative path for light-weight resource

/sharedBy

/{otherUserId}

/{sharedContactListId}

/members

/{sharedMemberId}

/[resourceRelPath]

/attributes

/trustedIdentity

/subscriptions

/{subscriptionId}

_1346417062.ppt

Application

Server

1. GET to retrieve collection of contacts

Response with contacts in a flat list

2. GET to retrieve a contact from the flat list

Response with individual contact

3. PUT to create or update a contact in the flat list

Response with updated contact

4. DELETE to remove a contact from the flat list

Response OK

5. GET to retrieve all attributes of a contact

Response with contact’s attributes

6. GET to retrieve a contact’s single attribute

Response with contact’s attribute

7. PUT to create or update a contact’s single attribute

Response OK

8. DELETE to remove a contact’s single attribute

Response OK

Response with contact’s trusted identity

6. PUT to create or update a contact’s trusted identity

Response with contact’s trusted identity

7. DELETE to delete a contact’s trusted identity

Response OK

5. GET to retrieve a contact’s trusted identity

_1346017448.ppt

Application

Server

1. GET to retrieve contact lists shared by other users

Response with list of shared contact lists

2. GET to retrieve a given shared list

Response with shared contact list members

3. GET to retrieve shared member info in a shared list

Response with shared member information

_1346017673.ppt

//{serverRoot}/{apiVersion}

/addresslistmgt

/{userId}

/attributes

Heave-weight resource

/contactLists

/contactListReferences

/{contactListId}

/members

/[resourceRelPath]

/{memberId}

/[resourceRelPath]

/attributes

/contacts

/{contactId}

Relative path for light-weight resource

/sharedBy

/{otherUserId}

/{sharedContactListId}

/members

/{sharedMemberId}

_1345370865.ppt

Application

Server

1. GET all subscriptions for contact lists changes

Response with list of subscriptions

2. GET subscription to myFriends contact list changes

Response with myFriends list subscription details

3. POST to create new subscription

Response with reference including subscriptionId

4. PUT to add a new member to myFriends contact list

Response OK

5. POST to notify user about changes to contact list

Response OK

6. DELETE to remove a subscription

Response OK

