Doc# OMA-ARC-SCIDM-2009-0085-CR_Fingerprint_Container_File_Format.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-ARC-SCIDM-2009-0085-CR_Fingerprint_Container_File_Format.doc
Change Request

Change Request

	Title:
	SCIDM TS Fingerprint Container File Format
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC/SCIDM

	Doc to Change:
	OMA-TS-SCIDM-V1_0-20091009-D

	Submission Date:
	11 Oct 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Jian Lu, Vobile, jian@vobileinc.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes a container file format to wrap content fingerprint as an opaque object to facilitate interchange and management of content fingerprint.
2 Impact on Backward Compatibility

N/A

3 Impact on Other Specifications

N/A

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To discuss and agree on the proposed change.
6 Detailed Change Proposal

Change 1: A full proposal is provided herein. Section placement in the TS is to be determined.
1. Introduction
This proposal defines a container file format, called XFP, to contain content fingerprint that is an important element in SCIDM. Because SCIDM covers different types of media (e.g., audio, video, still images) and allows different fingerprint algorithms, it is essential to have a uniform file format to facilitate interchange and management of content fingerprint data of diverse types. The proposed XFP file format is a generic and extensible container that is designed to contain various types of content fingerprint as an opaque binary object. The file format can also contain "instance metadata" that may include attributes of and information about the copy of the content from which the content fingerprint is computed.

The structure of the XFP File Format is similar to that of the ISO Base Media File Format. A XFP file consists a series of objects called "boxes". All boxes use a Key-Length-Value (KLV) data structure, that is, it starts with Key identifying the type of the box, followed by Length specifying the size of the box in bytes, and then followed by Value that is the "payload" or data contained in the box. A box can be nested, which means a box can be the container of another box or be contained in another box. The size specified by Length is the entire size of the box, including the Key and Length fields and the payload data and all contained boxes. The object-based XFP file structure allows any opaque data object to be contained in a XFP file, and the file can be parsed without specific knowledge about the contained data object.

A XFP file is a standalone content fingerprint container. It does not contain the media content from which the content fingerprint is generated. In many SCIDM applications, content fingerprint is exchanged and processed (e.g., registration or query) without the content. For applications where it is appropriate and feasible to store content fingerprint along with the content, a different file format should be used. For example, the ISO Base Media File Format that is designed to contain video and audio media can also contain content fingerprint in a time-based metadata track that references to one of the media tracks. Considerations are taken in designing the XFP File Format such that a video or audio content fingerprint contained in a XFP file can be transcribed to a time-based metadata track that is compliant to the ISO Base Media File Format.
2. Overview of XFP File Structure
At the highest level, a XFP file begins with a XFP Start Code followed by a XFP CRC Box, a XFP Meta Box and a XFP Data Box, as illustrated in Figure 1. The XFP CRC Box contains CRC codes for data integrity check. The XFP Meta Box contains mandatory boxes that describe the structure of content fingerprint data, and optional boxes that describe the attributes of the source file and media data. The XFP Data Box contains data of layered content fingerprint streams. The hierarchy of the boxes that can be contained in the XFP Meta Box and XFP Data Box is shown in Figure 1. Mandatory and optional boxes are labelled by (M) and (O), respectively. These boxes will be specified in detail in the next section.
[image: image1.png]XFP File

\

XFP CRC Box XFP Meta Box XFP Data Box
'xcrc' 'xfpm' 'xfpd'
(M) (M) (M)

XFP Start Code
'++VXFP'

Source File XFP Stream XFP Layer XFP Stream
Attributes Box Information Box Information Box Data Box
'sfat’ 'fpsi' 'fpli' 'stda’
(9)] (M) (M) (M)

XFP Header Box
'fphd'
(M)

XFP Stream Source Video Seq | | Source Audio Seq Source Image XFP Layer XFP Layer Stream
Description Box Attributes Box Attributes Box Attributes Box Description Box Data Box
'fpsd'’ 'svat'’ 'saat’ 'siat’ 'fpld' 'lada’
(M) (©) ©) (©) (M) (M)

Figure 1: XFP File Structure

An important design consideration for the XFP File Format is to support layering of XFP streams. Conceptually, content fingerprint or XFP data may be divided by content units and further grouped by layers. For example, video fingerprint or VFP data may be divided into frame fingerprints such that each frame fingerprint describes a corresponding video frame. A frame fingerprint may be further divided into layers such that each layer contains different types of video signature data (e.g., spatial or temporal).
A XFP stream that contains only a specific layer of the content fingerprint is called a layered XFP substream. Support for layered XFP substreams in the XFP File Format provides flexibility in grouping and packaging XFP streams, and extensibility for including additional fingerprint data in the future. The XFP Layer Information Box and XFP Stream Information Box are designed to describe the vertical (layer) and horizontal (stream) structures of XFP data.
3. XFP Syntax Elements

The syntax described in this document assumes little-endian byte order. A class-like pseudo-declaration is used to define the structural elements in each box.
3.1 XFP Start Code

3.1.1 Definition

Key:
‘++VXFP’ (0x2B2B56584650)

Container:
XFP file
Mandatory:
YES
Quantity:
Exactly one
XFP Start Code is a 48-bit magic number that identifies the beginning of a XFP file.

3.2 XFP CRC Box
3.2.1 Definition

Key:
‘xcrc’
Container:
XFP file
Mandatory:
YES
Quantity:
Exactly one

XFP CRC Box is a mandatory box that follows XFP Start Code immediately. It contains CRC codes for the XFP Meta Box and XFP Data Box.

3.2.2 Syntax

aligned(8) class XFP_CRC_Box {

const unsigned int (32) key = ‘xcrc’;

unsigned int (32) size;

unsigned int (32) meta_crc;

unsigned int (32) data_crc;
}

meta_crc is the 32-bit CRC code (using IEEE 802.3 polynomial) for the data contained in the XFP Meta Box. Zero value indicates that meta_crc is not known.

data_crc is the 32-bit CRC code (using IEEE 802.3 polynomial) for the data contained in the XFP Data Box. Zero value indicates that data_crc is not known.
3.3 XFP Meta Container Structure

3.3.1 XFP Meta Box
3.3.1.1 Definition

Key:
‘xfpm’
Container:
XFP file

Mandatory:
YES

Quantity:
Exactly one

XFP Meta Box is the container for all metadata related to the content fingerprint or XFP data and the media data from which the content fingerprint is computed.

3.3.1.2 Syntax

aligned(8) class XFP_Meta_Box {

const unsigned int (32) key = ‘xfpm’;

unsigned int (32) size;

unsigned int (8) contained_box [];

}

The XFP Meta Box is a container box that contains other boxes.

3.3.2 XFP Header Box
3.3.2.1 Definition

Key:
‘fphd’

Container:
XFP Meta Box (‘xfpm’)

Mandatory:
YES

Quantity:
Exactly one

The XFP Header Box contains information about the XFP file.

3.3.2.2 Syntax

aligned(8) class XFP_Header_Box {

const unsigned int (32) key = ‘fphd’;

unsigned int (32) size;

unsigned int (32) version;

unsigned int (32) creator;

unsigned int (32) flag;

unsigned int (32) creation_time;

unsigned int (32) modification_time;

unsigned int (32) stream_count;

const unsigned int (32) reserved = 0;
}

version is an integer specifying the version of XFP Header Box.

creator is a 4-character code identifying the application that created this XFP file. An unknown application is represented by '????'.
flag is a set of bit masks that indicate the properties of the file or its content.

creation_time is an integer that declares the creation time of this XFP file (in seconds since midnight, January 1, 1904, in UTC time).

modification_time is an integer that declares the most recent time when this XFP file was modified (in seconds since midnight, January 1, 1904, in UTC time).

stream_count is an integer that indicates the number of XFP streams that are stored in this XFP file. It should be equal to or greater than 1. When the media that the content fingerprint corresponds to is video or audio, each XFP stream shall correspond to one and only one unique video or audio track in the original media file.
3.3.3 Source File Attributes Box
3.3.3.1 Definition

Key:
‘sfat’

Container:
XFP Meta Box (‘xfpm’)

Mandatory:
NO

Quantity:
Zero or one

The Source File Attributes Box contains information about the source file from which the content fingerprint is generated.

3.3.3.2 Syntax

aligned(8) class Source_File_Attributes_Box {

const unsigned int (32) key = ‘sfat’;

unsigned int (32) size;

unsigned int (32) creation_time;

unsigned int (32) modification_time;

unsigned int (64) file_size;
unsigned int (32) file_format;

unsigned int (8) hash_code[64];

unsigned int (8) hash_type;
}

creation_time is an integer that stores the creation time of the source file (in seconds since midnight, January 1, 1904, in UTC time).

modification_time is an integer that stores the most recent time when the source file was modified (in seconds since midnight, January 1, 1904, in UTC time).

file_size is the size of the source file in bytes.

file_format identifies the format of the source file, e.g., ‘.avi ‘.

hash_code contains the binary hash value of source file. The hash function used to generate the hash_code is indicated by hash_type.

hash_type indicates the hash function that is used to generate the hash_code. Currently defined hash functions are: 1 (MD5), and 2 (SHA-1).
3.3.4 XFP Stream Information Box

3.3.4.1 Definition

Key:
‘fpsi’

Container:
XFP Meta Box (‘xfpm’)

Mandatory:
YES

Quantity:
One or more

The XFP Stream Information Box contains information about a XFP stream. There shall be at least one such box contained in the XFP Meta Box.

3.3.4.2 Syntax

aligned(8) class XFP_Stream_Information_Box {

const unsigned int (32) key = ‘fpsi’;

unsigned int (32) size;

unsigned int (8) contained_box [];

}

The XFP Stream Information Box is a container box that contains other boxes.

3.3.5 XFP Stream Description Box

3.3.5.1 Definition

Key:
‘fpsd’

Container:
XFP Stream Information Box (‘fpsi’)

Mandatory:
YES

Quantity:
Exactly one
The XFP Stream Description Box describes a XFP stream. This box is contained in the XFP Stream Information Box.

3.3.5.2 Syntax

aligned(8) class XFP_Stream_Description_Box {

const unsigned int (32) key = ‘fpsd’;

unsigned int (32) size;

unsigned int (32) version;

unsigned int (32) stream_id;

unsigned int (32) stream_type;

unsigned int (32) XFP_type;

unsigned int (32) offset;

unsigned int (32) time_scale;

unsigned int (32) duration;

unsigned int (32) layer_count;
}
version is an integer specifying the version of XFP Stream Description for the corresponding type of stream.
stream_id is an integer that identifies the XFP stream.

stream_type is an integer that indicates the type of the stream. Currently defined types are: 1 (VFP - video fingerprint), 2 (AFP - audio fingerprint), 3 (IFP - image fingerprint).
XFP_type is a 4-character code identifying the type of XFP data corresponding to a specific content fingerprinting algorithm.

offset is an integer that defines the offset in bytes from the beginning of the file to the start of this stream in the XFP file.

time_scale is an integer that specifies the time-scale for this XFP stream; this is the number of time units that pass in one second. For example, a time coordinate system that measures time in sixtieths of a second has a time scale of 60. For XFP streams of non-time-based type such as IFP, this value should be set to 0.
duration is an integer that declares the duration of this XFP stream (in the scale of timescale). If a XFP stream consists of multiple layered XFP streams, the duration is the duration of the longest layered stream. For XFP streams of non-time-based type such as IFP, this value should be set to 0.
layer_count is an integer that indicates the number of layers that appear in this XFP stream. It should be equal to or greater than 1.

3.3.6 Source Video Sequence Attributes Box

3.3.6.1 Definition

Key:
‘svat’

Container:
XFP Stream Information Box (‘fpsi’)

Mandatory:
NO

Quantity:
Zero or one
The Source Video Sequence Attributes Box contains information about a video track in the source file from which the VFP is generated.

3.3.6.2 Syntax

aligned(8) class Source_Video_Sequence_Attributes_Box {

const unsigned int (32) key = ‘svat’;

unsigned int (32) size;

unsigned int (32) video_frame_rate;

unsigned int (32) video_frame_width;

unsigned int (32) video_frame_height;

unsigned int (32) video_codec;

unsigned int (32) video_bitrate;

unsigned int (32) video_duration;
}

video_frame_rate is an integer that represents the frame rate of the video track. It is in 16.16 fixed-point representation, i.e., (x) << 16.

video_frame_width is an integer that represents the width of the video frame in pixels.

video_frame_height is an integer that represents the height of the video frame in pixels.

video_codec is a 4-character code identifying the codec that is used to encode the video track, e.g., ‘h264’.

video_bitrate is an integer that represents the average bitrate in bits/second of the video track.

video_duration is an integer that represents the duration in seconds of this video track.
3.3.7 Source Audio Sequence Attributes Box

3.3.7.1 Definition

Key:
‘saat’

Container:
XFP Stream Information Box (‘fpsi’)

Mandatory:
NO

Quantity:
Zero or one

The Source Audio Sequence Attributes Box contains information about an audio track in the source file from which the AFP is generated.

3.3.7.2 Syntax

aligned(8) class Source_Audio_Sequence_Attributes_Box {

const unsigned int (32) key = ‘saat’;

unsigned int (32) size;

unsigned int (32) audio_channels;

unsigned int (32) audio_sample_rate;

unsigned int (32) audio_sample_size;

unsigned int (32) audio_sample_format;

unsigned int (32) audio_codec;

unsigned int (32) audio_bitrate;

unsigned int (32) audio_duration;

unsigned int (8) audio_language[3];
}

audio_channels is an integer that indicates the number of channels in the audio track.

audio_sample_rate is an integer that represents the sample rate of the audio track. It is in 16.16 fixed-point representation, i.e., (x) << 16.

audio_sample_size is an integer that represents the number of the audio samples in an audio frame.

audio_sample_format is an integer that indicates the format of audio samples.

audio_codec is a 4-character code identifying the codec that is used to encode the audio track, e.g., ‘faac’.

audio_bitrate is an integer that represents the average bitrate in bits/second of the audio track.

audio_duration is an integer that represents the duration in seconds of this audio track.

audio_language is a 3-byte code indicating the language of the audio track. The encoding of audio_language shall be compliant to ISO 639-1 and ISO 639-2, with ISO 639-1 preferred. This means the 2-letter language code in ISO 639-1 is preferred unless the language to be represented is not available in ISO 639-1; in that case, the 3-letter language code in ISO 639-2 shall be used.
3.3.8 Source Image Attributes Box

3.3.8.1 Definition

Key:
‘siat’

Container:
XFP Stream Information Box (‘fpsi’)

Mandatory:
NO

Quantity:
Zero or one
The Source Image Attributes Box contains information about the image from which the IFP is generated.

3.3.8.2 Syntax

aligned(8) class Source_Image_Attributes_Box {

const unsigned int (32) key = ‘siat’;

unsigned int (32) size;

unsigned int (32) image_width;

unsigned int (32) image_height;

unsigned int (32) image_codec;

unsigned int (32) image_color_component;

unsigned int (32) image_pixel_bitrate;
}

image_width is an integer that represents the width of the image in pixels.

image_height is an integer that represents the height of the image in pixels.

image_codec is a 4-character code identifying the codec that is used to encode the image, e.g., ‘jpeg’.

image_color_component is an integer that represents the number of color components in the image.
image_pixel_bitrate is an integer that represents the average bitrate in bits/pixel of the image.
3.3.9 XFP Layer Information Box

3.3.9.1 Definition

Key:
‘fpli’

Container:
XFP Meta Box (‘xfpm’)

Mandatory:
YES

Quantity:
One or more

The XFP Layer Information Box contains information about a XFP layer. Layer is a vertical structure of XFP data. A XFP stream can be layered such that each layered XFP substream contains XFP data that belongs to the same, unique, non-overlapping layer. There shall be at least one such box contained in the XFP Meta Box.

3.3.9.2 Syntax

aligned(8) class XFP_Layer_Information_Box {

const unsigned int (32) key = ‘fpli’;

unsigned int (32) size;

unsigned int (8) contained_box [];

}

The XFP Layer Information Box is a container box that contains other boxes.

3.3.10 XFP Layer Description Box

3.3.10.1 Definition

Key:
‘fpld’

Container:
XFP Layer Information Box (‘fpli’)

Mandatory:
YES

Quantity:
Exactly one

The XFP Layer Description Box describes a layer of XFP data. This box is contained in the XFP Layer Information Box.

3.3.10.2 Syntax

aligned(8) class XFP_Layer_Description_Box {

const unsigned int (32) key = ‘fpld’;

unsigned int (32) size;

unsigned int (32) version;

unsigned int (32) XFP_type;

unsigned int (32) layer_id;

unsigned int (32) layer_type;

int (32) layer_size;
}
version is an integer specifying the version of XFP Layer Description. Note that when content fingerprint data is subdivided into multiple layers, each layer will be defined using an instance of XFP Layer Description Box with different layer_id and layer_type, but the version number and XFP_type value should be identical for all these layers.
XFP_type is a 4-character code identifying the type of XFP data corresponding to a specific content fingerprinting algorithm.
layer_id is an integer that identifies the XFP layer.

layer_type is a 4-character code that identifies the layer. The layer_type may be registered along with XFP_type or defined privately. A layer_type = 'DFLT' is reserved for each content fingerprint that is represented by an XFP_type to denote a default layer partition that is a single layer.
layer_size is an integer that indicates the size of a layer in bytes. A negative value indicates the layer has a variable size.
3.4 XFP Data Container Structure

3.4.1 XFP Data Box

3.4.1.1 Definition

Key:
‘xfpd’

Container:
XFP file

Mandatory:
YES

Quantity:
Exactly one

The XFP Data Box is a mandatory box that follows XFP Meta Box. It contains the data of one or more XFP streams.

3.4.1.2 Syntax

aligned(8) class XFP_Data_Box {

const unsigned int (32) key = ‘xfpd’;

unsigned int (32) size;

unsigned int (8) contained_box [];

}

The XFP Data Box is the container box that contains other boxes.

3.4.2 XFP Stream Data Box
3.4.2.1 Definition

Key:
‘stda’

Container:
XFP Data Box (‘xfpd’)

Mandatory:
YES

Quantity:
One or more

The XFP Stream Data Box contains data of one or more layered XFP substreams.
3.4.2.2 Syntax

aligned(8) class XFP_Stream_Data_Box {

const unsigned int (32) key = ‘stda’;

unsigned int (32) size;

unsigned int (8) contained_box [];

}

The XFP Stream Data Box is a container box that contains other boxes.

3.4.3 XFP Layer Stream Data Box
3.4.3.1 Definition

Key:
‘lada’

Container:
XFP Stream Data Box (‘stda’)

Mandatory:
YES

Quantity:
One or more

The XFP Layer Stream Data Box contains data of a layered XFP substream that corresponds to one VFP or AFP layer.

3.4.3.2 Syntax

aligned(8) class XFP_Layer_Stream_Data_Box {

const unsigned int (32) key = ‘lada’;

unsigned int (32) size;

unsigned int (32) stream_id;

unsigned int (32) layer_id;

unsigned int (8) stream_data [];

}

stream_id is an integer that identifies the XFP stream. It must be valid stream_id that is defined in a XFP Stream Information Box.
layer_id is an integer that identifies the XFP layer. It must be a valid layer_id that is defined in a XFP Layer Information Box.

stream_data[] is a block of binary data.
3.5 Miscellaneous Syntax Elements

3.5.1 Padding Data Box

3.5.1.1 Definition

Key:
‘padd’

Container:
XFP file or any XFP container box

Mandatory:
NO

Quantity:
Zero, one or more
The Padding Data Box contains a block of binary data that is used solely for padding a container to certain size, usually for the purpose of alignment. It can be contained in a XFP file inside or outside a XFP container box.

3.5.1.2 Syntax

aligned(8) class Padding_Data_Box {

const unsigned int (32) key = ‘padd’;

unsigned int (32) size;

unsigned int (8) padding_data [];

}

padding_data [] is a block of binary data that is not to be used. Although not required, it is recommended to use zero-valued padding data.
4. Appendix: XFP File Containing MPEG-7 Image Fingerprint

The ISO has recently published an amendment of MPEG-7 to specify the algorithm and data format for image fingerprint. An example is given below to show how to wrap the MPEG-7 image fingerprint data in XFP.

4.1 MPEG-7 Image Signature

The MPEG-7 image fingerprint, known as Image Signature, uses the following binary representation syntax[1]:

	ImageSignature {
	Number of bits
	Mnemonics

	GlobalSignatureA
	512
	bslbf

	GlobalSignatureB
	512
	bslbf

	FeaturePointCount
	8
	uimsbf

	
for(k=0; k<NumberOfPoints; k++) {
	
	

	

Xcoord
	8
	uimsbf

	

Ycoord
	8
	uimsbf

	

Direction
	4
	uimsbf

	

LocalSignature
	60
	bslbf

	
}
	
	

	}
	
	

where NumberOfPoints = FeaturePointCount + 32; the value of FeaturePointCount is restricted to the range 0-48.

For the purpose of wrapping MPEG-7 Image Signature in XFP, it is worth noting that the MPEG-7 Image Signature consists of two types of signatures: Global Signature and Local Signature. The Global Signature data is fixed in size, totalling 1024 bits for two Global Signature data blocks, while the Local Signature data has a variable size, depending on the number of feature points.

4.2 Wrapping MPEG-7 Image Signature in XFP File

A XFP file containing MPEG-7 image fingerprint data has a simple structure because the image fingerprint is not time-based and therefore the stream data structure in XFP reduces to a simpler form. Most mandatory boxes in the XFP file can be filled straightforwardly.

4.2.1 MPEG-7 Image Signature in Single Layer

Following the XFP Start Code, the XFP CRC Box ('xcrc') contains the CRC codes of the XFP Meta Box and XFP Data Box, respectively. Both CRC codes can be computed after the corresponding boxes are filled or left null to indicate that the CRC codes are unknown.

The XFP Meta Box ('xfpm') that follows the XFP CRC Box contains a number of mandatory and optional boxes. In the XFP Header Box ('fphd'), version is 1 or otherwise defined by the SCIDM specification; creator is '????' if not known; flag should be left 0 unless it's defined by the SCIDM specification; stream_count is normally 1 for an image unless the image fingerprints correspond to a compound image composed of multiple sub-images.

It is optional to include a Source File Attributes Box ('sfat'). Because it is not possible to reconstruct the original content from its content fingerprint, it can be very helpful to save some information about the file from which the content fingerprint is computed. The attributes including file_size, file_format, and hash_code can be derived directly from the file.

In the XFP Stream Description Box ('fpsd') that is contained in the XFP Stream Information Box ('fpsi'), version is 1 or otherwise defined by the SCIDM specification; stream_id is 1 and can be sequentially incremented if the XFP file contains more than one stream; stream_type is 3 for IFP or image fingerprint; XFP_type is a 4CC defined by SCIDM for MPEG-7 Image Signature; offset is the offset in bytes from the beginning of the file to the start of the stream data, and can be filled after stream data is laid out; time_scale and duration should be set to 0 for image fingerprint; layer_count is 1 if no partitions of MPEG-7 Image Signature are defined. The option of partitioning MPEG-7 Image Signature into two layers is discussed in the next section.

It is optional to include a Source Image Attributes Box ('siat'). Because it is generally not possible to derive image attributes from an image fingerprint, it can be very helpful to save some important image attributes along with the image fingerprint data. The attributes including image_width, image_height, image_codec, image_color_component, and image_pixel_bitrate can be derived from the image data directly.

In the XFP Layer Description Box ('fpld') that is contained in the XFP Layer Information Box ('fpli'), version is 1 or otherwise defined by the SCIDM specification; XFP_type is a 4CC defined by SCIDM for MPEG-7 Image Signature; layer_id is 1 and can be sequentially incremented if the XFP stream contains more than one layer; layer_type is 'DFLT' for a single layer that contains entire MPEG-7 Image Signature. layer_size is -1 that indicates the layer has a variable size. The option of partitioning the MPEG-7 Image Signature into two layers is discussed in the next section.

The XFP Data Box ('xfpd') that follows the XFP Meta Box contains a single XFP Stream Data Box ('stda') that further contains a XFP Layer Stream Data Box ('lada'). Because there is only one IFP stream that has only one layer, stream_id is 1 and layer_id is 1, corresponding to the settings in the XFP Stream Description Box and XFP Layer Description Box, respectively. The stream_data[] is the MPEG-7 Image Signature data in its native binary representation.

4.2.2 MPEG-7 Image Signature in Two Layers

As is noted in Section 4.1, the MPEG-7 Image Signature consists of fixed-sized Global Signature and variable-sized Local Signature. It can be useful to partition the MPEG-7 Image Signature into two layers containing Global Signature and Local Signature, respectively. In the following the required changes are described for constructing a XFP file that contains the MPEG-7 Image Signature in two layers.

In the XFP Stream Information Box ('fpsi'), there is still only one XFP Stream Description Box ('fpsd'), but layer_count should be set to 2.

In the XFP Layer Information Box ('fpli'), there are two instances of the XFP Layer Description Box ('fpld') to describe the Global Signature layer and Local Signature layer, respectively. XFP_type in both instances is the 4CC defined by SCIDM for the MPEG-7 Image Signature. layer_id is 1 or 2 for Global Signature or Local Signature layer, respectively. layer_type in each instance is a 4CC defined by SCIDM or privately for the MPEG-7 Global Signature or Local Signature, respectively. layer_size is 128 for the Global Signature layer and -1 (variable) for the Local Signature layer.

In the XFP Data Box ('xfpd'), there is still only one XFP Stream Data Box ('stda'), but the latter contains two instances of XFP Layer Stream Data Box ('lada'). stream_id is 1 in both instances; layer_id is 1 or 2 followed by the stream_data[] for Global Signature or Local Signature, respectively.

4.3 References

[1] ISO/IEC 15938-3:2002/Amd.3:2009, "Information Technology - Multimedia Content Description Interface - Part 3: Visual, Amendment 3: Image Signature Tools," April 2009.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

