[image: image1.jpg]Doc# OMA-SEC-2003-0070R03-CR-obkg-wpki-keygen-enroll
Submitted to SEC
Submission Date: 25 Nov 2003
Doc# OMA-SEC-2003-0070R03-CR-obkg-wpki-keygen-enroll
Submitted to SEC
Submission Date: 25 Nov 2003

Change Request

	Title:
	Addition of ECMAScript key generation and enrolment techniques to WPKI
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA Security Working Group

	Doc to Change:
	WAP-217-WPKI-20010424-A

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Alex Deacon, VeriSign, Inc., alex@verisign.com

	Replaces:
	n/a

1 Reason for Change

This CR adds details on the use of the ECMA Script genEnrollReq and keyGen functions for use during certificate enrollment.

2 Impact on Backward Compatibility

This is new functionality so there are no backwards compatibility issues. The older WAP based enrollment models, based on the WMLScript signText() and Class 3 WTLS exchanges are preserved.

3 Impact on Other Specifications

This change request is one of 5 change requests required to implement the functionality of on board key generation work item. This change request does not impact any other specifications; however it does depend on the ECMAScript change requests.

4 Intellectual Property Rights Considerations

None
5 Recommendation

It is recommended that this change request be added to the WPKI specification.

6 Detailed Change Proposal

Change 1: Section 7.3 - Add use of ECMA Script keyGen and genEnrollReq functions.

Change 3: Update SCR entries.

· Change 1: Replace all of Section 7.3 with the following text.

7.3 Client Registration

This section describes client certificate enrollment mechanisms and details. Two enrollment models are defined in Section 7.3.1 and Section 7.3.2. The first model is based on WAP concepts and technology as defined in WAP 2.0 and is included to ensure backwards compatibility with existing implementations. The second model defines the use of standard Internet enrollment mechanisms based on PKCS#10 [PKCS10] message formats and describes how a PKI portal can request the generation of a key in the field.

The last three sections, Sections 7.3.3-7.3.5, describing PKI Portal discovery, enrollment authentication and enrollment response, contain text that is common to both models.

Clients SHOULD support the WAP enrollment model as described in section 7.3.1 to ensure backwards compatibility and MUST support the Internet enrollment model as described in Section 7.3.2.

7.3.1 WAP Enrolment Model

The WAP enrollment model assumes that one or more key pairs and X.509 certificates have been provisioned on the device before being shipped to the field. These certificates don’t necessarily reflect a user identity but identify the device itself. Typically two keys are provisioned on the device: an authentication key and a non-repudiation key. The authentication key is used during WTLS class 3 or TLS client authentication. The non-repudiation key is used for application layer signatures as provided for by the WMLScript Crypto signText function or the ECMA Script Crypto signText function

PKI portals MUST be able to accept any relevant format (specified in WTLS or signText) that includes the public key. PKI portals MAY use any additional information provided (e.g. a subject name, or the fact that the key being registered has already been certified by some party) in their further processing. This allows clients with a variety of initial configurations to register with a PKI portal.

WAE is used to transfer necessary naming information and passwords. Content of the naming information is up to the authority, but would typically contain information specified in [RFC2511]. Similarly, passwords are also up to the authority. This information is used to authenticate the user during certification. WTLS or TLS encryption is used to protect the passwords.

7.3.2.6 Proof of possession

The WAP enrollment model dictates that the client connects to the PKI portal and then uses either WLTS Class 3 authentication or the WML Script signText() function so that proof-of-possession can be verified using the corresponding public key. In order to be able to provide this proof-of-possession the client MUST be able to produce a form of the relevant public key that conforms to the WTLS and signText specifications. The keys MAY be self-signed or signed by a third party or may even contain a zero length signature. A Client MAY generate such a self-signed format itself.

Note that even though WTLS or signText() is used, the PKI portal only need verify the signature to ensure proof-of-possession which differs from the normal case of class III WTLS authentication or signText verification. Normally a WTLS or signText verification implementation will verify the certificate of the client in order to provide authentication. In order to avoid potential configuration or security problems with mixing authentication and proof-of-possession in the same deployment it is RECOMMENDED that PKI portals be deployed on "special" WAP gateways, which are accessed using the end-to-end security mechanisms specified in [E2E]. This configuration means that it is not necessary to mix "proof-of-possession" mode and "authentication" mode in the same gateway, which diminishes the likelihood of mis configuration resulting in security breaches

7.3.2.7 Certifying Authentication Keys via WTLS

WTLS is used:

to transfer the public key to be certified

for Proof of Possession (POP) of the private key
to authenticate registration service (WTLS server authentication).

The public key is transferred in an existing certificate.

The PKI portal validates POP in this case by the validation of a successful WTLS Class III handshake.

Implementers should note that, depending on policy, it may be advisable for the PKI portal not to indicate a list of trusted CAs (e.g. in a WTLS handshake) so that the client can use whatever form of public key it chooses. If a PKI portal did indicate some set of CAs, then a client who wasn't previously certified by any of them could drop the connection.

7.3.2.8 Certifying Signing Keys via signText

signText() is used:

to transfer the public key to be certified

for Proof of Possession (POP) of the private key

The communication between User and PKI portal is based on WSP. Information that the PKI portal requires is passed to the client as WAE content. At least part of the information (possibly containing a challenge from the PKI portal) is signed by the client using the signText() function. The PKI portal validates POP in this case by the validation of the result of the signText() function.

An original signing certificate (or self-signed certificate) may be passed in the signText() result. Note that signText() implicitly includes a timestamp.

For some applications, a signing certificate may not be required.

7.3.2.9 Certifying Two Keys

If both authentication and signing certificates are required, it may be useful to combine both requests, so that the user would have to enter minimal data. In this case the client and PKI portal MAY interact multiple times.

7.3.2.10 Sample WML Certification Request Information

In order to improve consistency across different PKIs the following piece of WMLScript illustrates gathering registration information from clients. There is no assumption that the PKI portal will honor this information, e.g. the portal MAY replace naming or other information (except the public key).

The public key to be certified is transferred to the portal using either WTLS (as described in Section 7.3.1) or SignText (as described in Section 7.3.2). This sample script allows users to request certification of either authentication or signing keys. In either situation, the session SHOULD be protected by WTLS. This script prompts the user for the name to appear in the certificate, a unique identifier provided by the CA, a password to authenticate the user to the CA and the type of certificate requested. This information is then concatenated with fields separated by a colon (:). If certification of a signing key is requested, a random challenge (nonce) provided by the portal is included and the string is signed to provide proof-of-possession.

extern function ProduceRequest() {
 var bbnull = " ";
 Dialogs.alert("Certificate Registration");
 Dialogs.alert("Please leave fields blank if you do not have the
 requested values.");

 var Name = Dialogs.prompt("Name:", bbnull);
 var ID = Dialogs.prompt("Unique ID:", bbnull);
 var Password = Dialogs.prompt("Password:", bbnull);

 var Type = Dialogs.confirm("Which type of certificate are you
 requesting?", "Authentication", "Signing");
 var Request;

 if (Type)
 Request = Name + ID + Password;
 else {
 var nonce = "XX";
 /* PKI Portal should replace above value with a random value
 that is unique for each transaction. */
 // Comment this out if you don't have a Crypto implementation

 Request = Crypto.signText(nonce + ":" + Name + ":" + ID + ":"
 +Password, 5, 0);
 // Request = nonce + ":" + Name + ":" + ID + ":" + Password, 5,0;
 }
 return Request;
}
7.3.2 Internet Enrollment Model

This section describes enrollment functionality based on PKI concepts currently supported by the majority of Internet based browsers. Specifically this includes the ability to request that a client generate a key pair and the use of PKCS#10 certificate request messages for certificate enrollment. Unlike the WAP model, which depends on the use of either the WML Script signText() function or modified WTLS server, this model takes advantage of the ECMA Script Crypto functions keyGen and genEnrollReq over xHTML.

This model differs from the WAP model in the following ways:

The mechanism to enroll for any key, be it an authentication or non-repudiation key, is the same.

There is no assumption as to the existence of a key pair or certificate for use during the enrollment.

A PKI portal can request that the client generate a key.

In addition this model can be used to enroll for key’s that have been provisioned in the device as described in the WAP model.
Section 7.3.2.1describes how a PKI portal can request that a new key be generated. Section 7.3.2.2 describes the mechanisms used to enroll any key pair into a particular PKI.

7.3.2.11 Key Generation

In some scenarios the PKI Portal requires the ability to indicate that a key pair be generated in the field. This functionality is achieved by the use of the keyGen ECMA script function as defined in [ECMACR].

Clients MUST have the ability to parse and properly respond to key generation request received via the keyGen script.

7.3.2.12 Certificate Enrollment

In this model the enrollment mechanisms are the same no matter what kind of key is being enrolled into a PKI. Keys used for authentication and keys used for non-repudiation purposes use the same mechanism. This functionality is achieved by the use of the genEnrollReq ECMA script function as defined in [ECMACR].

Clients MUST have the ability to parse and properly respond to the enrollment request received via the genEnrollReq script.

PKI portals MUST have the ability to validate and properly respond to PKCS#10 message received in response to an genEnrollReq function.

PKI portals SHOULD have the ability to validate a keyGenAssertion, as defined in the genEnrollReq ECMA script function in [ECMACR], attribute that may be contained within the PKCS#10 message.

Proof-of-Possession is implicit in the PKCS#10 message as the structure, which contains the public key to be certified, is signed with the corresponding private key. The PKI portal MUST validate the signature of the PKCS#10 message.

7.3.2.13 Examples

7.3.2.13.1 Key Generation Example

<html>

<script type="text/ecmascript">

 function GenerateKey() {

 // Prompt user for a few parameters

 var null = "";

 var keyLabel = "";

// Use any available key
 var keyAlgString = confirm("Algorithm :", "RSA", "ECC");

 var keyLength = prompt("Key Length [512 - 1024]: ", "1024");

 var keyUsageString = confirm("Key Usage", "Auth", "Signature");

 var keyType, keyUsage;

 if (keyAlgString) {

 keyType=0x0000;

 }

 else {

 keyType=0x0003;

 }

 if (keyUsageString) {

 keyUsage=0x0004;

 }

 else {

 keyUsage=0x0100;

 }

 var result = crypto.keyGen(keyLabel, keyType, keyLength, keyUsage,

 null, null, null);

 return result;

}

</script>

<body>

<form>

<input type="button" value="Generate Key Pair" onclick="GenerateKey()"/>

</form>

</body>

</html>

7.3.2.13.2 genEnrollReq Example

<html>

<script type="text/ecmascript">

 function GenerateCertificateRequestMessage() {

 var RSA = 0x0000;

 var AuthKey = 0x0004;

 var name=prompt("Name: ");

 var company=prompt("Company: ");

 var country=prompt("Country: ");
 var dn = "CN = " + name + "O = " + company + "C = " + country;
 var request = crypto.genEnrollReq(dn, RSA, 1024, AuthKey, 0, "", "", "");

 return result;

}

</script>

<body>

<p>Certificate Enrollment Page</p>

<form>

<input type="button" value="Generate P10 Request"

 onclick="GenerateCertificateRequestMessage()"/>

</form>

</body>

</html>

7.3.2.13.3 Key Generation and GenEnrollReq Example

<html>

<script type="text/ecmascript">

function GenerateCertificateRequestMessage(keyID) {

 var keyType = 0x1000; // unspecified

 var keyUsage = 0x0000; // unspecified
 var keyLength = 0x0000; // unspecified
 var name=prompt("Name: ");

 var company=prompt("Company: ");

 var country=prompt("Country: ");

 var dn = "CN = " + name + "O = " + company + "C = " + country;

 var request = crypto.genEnrollReq(dn, keyType, keyLength, keyUsage,
 1, keyID, "", "");

 return request;

}

function GenerateKey() {

 // Prompt user for a few parameters

 var null = "";

 var keyLabel = "BankCoAuthKey"; // Use the Bank Co.’s Auth Key
 var keyType = 0x1000; // unspecified as keyLabel is present
 var keyUsage = 0x0000; // unspecified as keyLabel is present
 var result = crypto.keyGen(keyLabel, keyType, keyLength, keyUsage,

 null, null, null);

 return result;

}

function GenAndEnroll() {

 var publicKeyHash;

 var pkcs10;

 publicKeyHash = GenerateKey();

 pkcs10 = GenerateCertificateRequestMessage(publicKeyHash);

 return pkcs10;

}

</script>

<body>

<p>Key Gen and Certificate Enrollment Page</p>

<form>

<input type="button" value="Gen Key and Enroll" onclick="GenAndEnroll()"/>

</form>

</body>

</html>

7.3.3 PKI Portal Discovery

Where clients are required, or wish, to register over-the-air with a PKI, they contact a PKI portal. The client will typically discover the PKI portal either via manual browsing or through a URL contained within a WML or xHTML page. Different URLs can be used to select between different PKI registration options. For example, the certificates resulting from registration starting at "pkip.org.com/pkip/banking" and "pkip.org.com/pkip/stock-trades" may reflect separate certification and certificate policies.

The PKI portal MAY be a combined CA and RA (really just a CA) in which case there will be no need to use PKI messaging in order to create certificates.

7.3.4 Authenticating the enrolment

There are many ways for PKI portals to authenticate the enrollment of a certificate. A PKI portal that trusts the issuer (e.g. an operator or bank) of any device certificates could choose to use the validity of these certificates to determine authenticity of the enrollment. Also, the PKI portal may pre-authenticate users by sending (out of band) usernames and passwords which are used during enrollment.

The client MAY supply further information, or the PKI portal MAY derive additional information from other sources. The PKI portal MAY re-format the public key and other information into a certificate request to be sent to a CA. This request MAY use CMP or CMC formatting as appropriate.

7.3.5 Enrolment Response

The PKI portal MAY then respond to the client in a standard fashion using the response types defined below. The response MAY include a certificate and/or certificate URL resulting from the exchange or an indication that the client SHOULD return later to retrieve this information.
Delivery of Certificates
In some cases it is sufficient that the CA only publish the certificate (in an LDAP directory or other repository) or stores it in a database, and therefore the certificate does not need to be delivered to the handset. So, it is sufficient to acknowledge the user (using WAE application) that the certificate has been successfully issued and published. In this case there is no information about the certificate in the handset, just the original key id, which can be used in WTLS or TLS and in applications using signatures (SignText()).

If the certificate has to be delivered, this can be done using WAE with the WSP content type

application/x-x509-user-cert (WSP assigned number 0x1B).

Another scenario is to deliver only a certificate “pointer”. An example of such is a certificate URL, used in PKCS#15 and WIM specifications. Finally, certification can require significant elapsed time. The WAE application should be contracted to handle this. E.g. the user is informed that certification is initiated, but actual certificate delivery would take place later. In either of these cases the WSP content type application/vnd.wap.cert-response MAY be returned or an application specific response MAY be returned.

Note: If the client passes a certificate URL rather than the certificate itself, it is requesting the server to do work (i.e. retrieve the certificate indicated in the certificate URL) prior to the client authenticating itself. A potential denial of service attack exists where a client deliberately passes an invalid certificate URL. Servers may protect themselves against such attacks by various means, e.g. by only "following" URLs which match some configured criteria.

The content corresponding to application/vnd.wap.cert-response contains the structure defined below:

enum { cert_info (0), cert(1), referral(2), (255) } CertRespType;

struct {

unit8

version;

CertRespType
type;

select (type) {

case cert_info:

CertDisplayName
display_name;

Identifier

ca_domain;

Identifier

subject;

opaque

url<0..255>;

 case cert:

CertDisplayName
display_name;

Identifier

ca_domain;

Identifier

subject;

X509Certificate
cert;

case referral:

opaque

url<0..255>;

uint32

seconds_to_wait;

}

} CertResponse;

	Item
	Description

	version
	The version of this data structure. For this specification it MUST be 1.

	cert_info
	These fields contain the details of a certificate which has been issued for the client.

display_name: (max 32 chars, so it can fit in a PKCS#15 label) SHOULD be a human readable name which indicates the services for which the certificate is useful. This field MUST NOT be empty. The character set used here SHOULD be UTF8 (in order to be stored in WIM, it MUST

be UTF8).
ca_domain: MUSTcontain the hash of the CA's public key - this MAY be omitted if the cert field is present and the certificate contains an authorityKeyId extension and the client is able to extract this field from the certificate. If omitted IdentifierType.null MUST be used to indicate the absence of the ca_domain. Note that the ca_domain field might, in some cases, not match the AKID from the client certificate, if e.g. the issuing CA is a subbordinate CA within a hierarchy and the WTLS or TLS servers use the root of the hierarchy as the ca_domain.

subject: MUST contain the hash of the certified subject public key.

url: this field, which SHOULD be used contains a URL usable to retrieve the relevant certificate. Section 7.4 specifies the URL scheme. The client SHOULD store this URL along with the ca_domain and use these as required in WTLS or SignText. Note that this field is expected to be present as in most cases we wish to avoid sending client certificates to clients.

	cert
	display_name: as above

ca_domain: as above

subject: as above

cert: this field contains the client's certificates. Note that, where possible, implementers are encouraged to use the cert_info option in preference to this one. When used, this option

normally contains a single X.509 certificate. The client SHOULD store the certificate along with the associated private key. If possible, the client SHOULD verify that the key in the certificate matches its private key.

	referral
	The client MAY check back at the URL specified (by url) after a delay (specified by seconds_to_wait). A PKI portal, which returns a referral, MUST ensure that clients who do check back again receive a response of the same type (i.e. application/vnd.wap.cert-response). Clients MAY use this method to automate retrieval of certificates or certificate URLs.

·

· Change 2: Updated SCR Entries

<TBD>

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20031003]

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20031003]

