[image: image8.jpg]Doc# OMA-<grp>-2004-<docnum>-CR_<desc>
Submitted to <GroupName>
Submission Date: dd mmm 2004

Doc# OMA-<grp>-2004-<docnum>-CR_<desc>
Submitted to <GroupName>
Submission Date: dd mmm 2004

Change Request

	Title:
	WPKI CR for OBKG Enabler Release
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	SEC

	Doc to Change:
	OMA-SEC-WPKI-V1_0-20040308-D

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Alex Deacon, VeriSign, Inc., alex@verisign.com

	Replaces:
	n/a

1 Reason for Change

This CR incorporates informational text on data flows and the use of the keyGen and genEnrollReq ECMA Script crypto functions into an Appendix.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights Considerations

None
5 Recommendation

It is recommended that this CR be approved by SEC and the changes incorporated into the WPKI draft specification.
6 Detailed Change Proposal

Change 1 - Add the following sentence to the end of Section 6.3.2

See Appendix E for additional informational text and data flows on the use of the ECMA Script crypto keyGen and genEnrollReq functions.

Change 2 - Add the following informative text to the Appendix.
Appendix E. ECMAScript keyGen and genEnrollReq Dataflows

This appendix is informative

E.1.1 Introduction

The definition of the ECMA Script crypto functions genEnrollReq and keyGen allow for the implementation of a mobile PKI model that is more closely aligned with the model currently in wide spread use in wired clients. The movement away from the WAP based PKI model, to one based on well known and broadly supported Internet standards allow for the use of existing infrastructure and a more flexible PKI.

This informative appendix is intended to outline the high level concepts of the new ECMAScript genEnrollReq and keyGen functionality.

This document describes the OMA functionality defined to enable the generation and registration of keys into a PKI. Both key generation and key registration (also called enrolment) events may be triggered by the same entity, or they may be triggered by distinct entities; however key registration is always preceded by key generation. A key generation event may be followed by multiple key registration events, allowing for a single key to be enrolled into multiple PKIs. This approach provides a scalable solution and ease of use since a user may only need a single key, and in some cases a single PIN, while having the advantage of enrolling into multiple PKIs and transacting with multiple merchants. To allow for a standard and easily understood mechanism for generating and registering keys, two new ECMAScript functions, keyGen and genEnrollReq, have been defined to trigger key generation and key registration respectively.

Unlike the WAP model where key pairs were provisioned in a factory and distributed manually, the new keyGen function allows for new key pairs to be generated in the field. In some scenarios the ability to include assurances that the key was generated in a secure manner is required. These assurances may specify that a key was generated per a specific policy and on some approved Security Element (SE), such as a WIM.

In order to accommodate this requirement, the ability to include an assurance signature or an assurance message authentication code (MAC) may be included in the registration request via the genEnrollReq function. The information that is signed or MACed includes the public key and may include additional information indicating the kind of assertion that is being made. This assurance information is then verified by the PKI to prove that the key was generated in a secure manner. This mechanism currently can indicate not only if the key was generated on-board, but may also be used to indicate if a key was injected into a SE. In addition the registration messages generated by the genEnrollReq function are based on industry standard PKCS#10 message formats, ensuring tight integration with the existing CA and PKI infrastructure.

The ability to invoke the key generation and key registration events through ECMAScript commands in conjunction with the ability to obtain an assurance of the fact that the key was generated on-board allows the link between key generation and key registration to be re-established.

To support the requirement where explicit authorization is needed to perform a key generation or key registration, both the keyGen and genEnrollReq functions allow for authorization data to be included. Authorization to use the keyGen function allows the business case where an SE owner (such as an operator) has the ability to charge for the use of empty key slots on its cards to third party vendors. Simillary, authorization to use genEnrollReq a particular key into a PKI allows the key owner to contol who can reuse a particular key in a separate PKI.

E.1.2 Participants

When considering on-board key generation and key registration it is possible to identify three participants. These are:

The PKI

The PKI is responsible for issuing certificates and can initiate key generation and request enrollment information via the use of the ECMAScript genEnrollReq and keyGen commands. Key generation may occur only once, while a key may be enrolled into multiple PKIs.

The separation of key generation and key registration makes it possible to support a model where it is possible to trigger key generation through another (possibly proprietary) mechanism and still have a standard way to enroll the key in a PKI.

Mobile entity

In this model the mobile entity is responsible for interpreting and acting upon the new ECMAScript genEnrollReq and key gen commands it will receive from a PKI. Mainly this involves the proper generation, signing and formatting of the response that is returned to the ECMAScript command. In the case where an SE is being used, it also interacts with the SE for cryptographic operations.

In some cases, the ME is also responsible for interacting with the SE for administrative functionality such as the setting and verifying relevant PIN’s. When this is the case, the ME also is responsible for interacting with the user when necessary. An example of this would be the selecting of a new PIN at key generation time.

The interpretation and implementation of the ECMAScript commands is part of the browser implementation on the mobile entity.

Security Element

The SE will perform operations triggered by the mobile entity including the generation of new keys in addition to standard cryptographic functionality such as signature generation used for POP. SE’s that support the key assurance concept will be responsible for the generation of these assurances values. Other SE functionality would include the management of user PINs and any relevant flags.

The following picture summarizes the three entities and their roles in the on-board key generation and registration process.

[image: image1.wmf]:

SE

ME

PKI

E.1.3 Example Scenarios

This section is informative.

Scenario 1

This scenario describes the generation of a key via the keyGen function. There is no requirement that the key generation command be authenticated. Once generated this key can be enrolled into a PKI using the enrol function at a later time. The device is responsible for sending the appropriate key generation command to the SE.

[image: image2.wmf]SE

Device

CA/RA

ME browses to PKI Portal

Portal builds and sends xHTML enrolment page

Generate Key

OK

Public Key Hash

<html>

 ...

 keyGen()

 ...

</html>

keyGen(...)

1) Ask security element to generate key

based on input parameters.

OK

Public Key Hash

Scenario 2

This scenario describes the enrolment of a previously generated key into a PKI. The generation of the key assurance structure is not included for simplicity. (See Scenario 5 for key assurance details) Like Scenario 1, there is no authorization needed to enroll. Once the device finds an appropriate key based on the genEnrollReq function input parameters, it retrieves the public key and builds the PKCS#10 CertificationRequestInfo structure. Once built the device then sends the hash to be signed by the appropriate private key managed by the SE. The device then creates the PKCS#10 Certification request structure based on the PKCS#1 signature returned by the SE and returns the base64 encoded structure to the function. The PKI is the responsible for verifying the signature, authenticating the identity and issuing the certificate.

[image: image3.wmf]SE

Device

CA/RA

ME browses to PKI Portal

Portal builds and sends xHTML enrolment page

genEnrollReq (...)

1) Find a key based on parameters

2) Retriveve Public Key

3) Build CertificationRequestInfo Structure

4) Hash CertificationRequestInfo Structure

Sign hash with corresponding private key

Signature

PKCS#1 signature blob

Base64 PKCS#10 Request

Naming, Authentication Data

1) Validate P10

2) Authenticate

3) Issue Cert

CertResponse

<html>

 ...

genEnrollRe

q()

 ...

</html>

1) Build CertificationRequest Structure

2) Base64 Certification Request Structure

Scenario 3

This scenario depicts a call to both the keyGen and genEnrollReq functions in a single xHTML page.

[image: image4.wmf]SE

Device

CA/RA

ME browses to PKI Portal

Portal builds and sends xHTML enrolment page

Generate Key

OK

Public Key Hash

<html>

 ...

 keyGen()

genEnrollRe

q()

 ...

</html>

keyGen (...)

1) Ask security element to generate key

based on input parameters.

genEnrollReq (...)

1) Find a key based on parameters

2) Retriveve Public Key

3) Build CertificationRequestInfo Structure

4) Hash CertificationRequestInfo Structure

Sign hash with corresponding private key

Signature

PKCS#1 signature blob

Base64 PKCS#10 Request

Naming, Authentication Data

1) Validate P10

2) Authenticate

3) Issue Cert

CertResponse

1) Build CertificationRequest Structure

2) Base64 Certification Request Structure

Scenario 4

This scenario depicts a key generation and enrolment data flow as described in Scenario 3, however it assumes that the SE being used is a WIM and thus details the WIM specific commands used by the device. This scenario does not depict the case where explicit authorization is needed for either key generation or enrolment.

[image: image5.wmf]WIM

Device

CA/RA

ME browses to PKI Portal

Generate_Asymetric_Key_Pair

OK

Public Key Hash || 9000

<html>

 ...

 keyGen()

genEnrollRe

q()

 ...

</html>

Portal builds and sends xHTML enrolment page

keyGen (...)

1) Search WIM for an available key slot

that matches the input parameters

genEnrollReq (...)

1) Find a key based on parameters

2) If PuKDF exists then get public key

3

) Build CertificationRequestInfo Structure

4) Hash CertificationRequestInfo Structure

Sign hash with corresponding private key

Signature

PKCS#1 signature blob

Base64 PKCS#10 Request

Naming, Authentication Data

1) Validate P10

2) Authenticate

3) Issue Cert

CertResponse

1) Build CertificationRequest Structure

2) Base64 Certification Request Structure

Scenario 5

This scenario extends Secnario 4 above with the addition of the key assurance attribute in the PKCS#10 request. In this scenario the device must first request the key assurance information from the WIM before it creates the PKCS#10 message and signature.

[image: image6.wmf]WIM

Device

CA/RA

ME browses to PKI Portal

Generate_Asymetric_Key_Pair

OK

Public Key Hash || 9000

<html>

 ...

 keyGen()

genEnrollRe

q()

 ...

</html>

Portal builds and sends xHTML enrolment page

keyGen (...)

1) Search WIM for an available key slot

that matches the input parameters

genEnrollReq (...)

1) Find a key based on parameters

2) If there isn't key in the PublicKDF, then

3) Call WIM Generate_Key_Assurance

Sign hash with corresponding private key

Signature

PKCS#1 signature blob

Base64 PKCS#10 Request

Naming, Authentication Data

1) Validate P10

2) Validate KeyAssertion

3) Authenticate

4) Issue Cert

CertResponse

1) Build CertificationRequest Structure

2) Base64 Certification Request Structure

OK

AssuranceInfo || AssuranceSignature || 9000

Generate_Key_Assurance

1) Build KeyGenAssertion attribute from

AssuranceInfo and AssuranceSignature

2) Build CertificationRequestInfo Structure,

including the KeyAssertion attribute.

3) Hash CertificationRequestInfo Structure

Scenario 6

Scenario 6 is the most complex scenario. It shows the data flow in a case where explicit authorization is necessary to both generate a key and enroll for a certificate. In addition, the key assurance information is included.

[image: image7.wmf]Generate_Key_Assurance

authCode

WIM

Device

CA/RA

ME browses to PKI Portal

<html>

 ...

 keyGen()

genEnrollRe

q()

 ...

</html>

Portal builds and sends xHTML enrolment page

keyGen (...)

1) Search WIM for an available key slot

that matches the input parameters

genEnrollReq (...)

1) Find a key based on parameters

2) If there isn't key in the PublicKDF, then

3) Call WIM Generate_Key_Assurance

Sign hash with corresponding private key

Signature

PKCS#1 signature blob

Base64 PKCS#10 Request

Naming, Authentication Data

1) Validate P10

2) Validate KeyAssertion

3) Authenticate

4) Issue Cert

CertResponse

1) Build CertificationRequest Structure

2) Base64 Certification Request Structure

1) Build KeyGenAssertion attribute from

AssuranceInfo and AssuranceSignature

2) Build CertificationRequestInfo Structure,

including the KeyAssertion attribute.

3) Hash CertificationRequestInfo Structure

authorizationData

Err_No_Authorisation

 WIM serial number || 20 bytes challenge || 9000

Generate_Asymetric_Key_Pair

error:AuthReq:

cardSerialNumber:Challenge

Compute

authData

Generate_Asymetric_Key_Pair

authoriztionData

OK

Public Key Hash || 9000

authCode

error:AuthReq:

cardSerialNumber:Challenge

Err_No_Authorisation

 WIM serial number || 20 bytes challenge

Generate_Key_Assurance

OK

AssuranceInfo || AssuranceSignature || 9000

Compute

authCode

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 2)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040122]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 2)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040122]

_1140272155.vsd

_1140272240.vsd

_1140272353.vsd

_1140272354.vsd

_1140272352.vsd

_1140272226.vsd

_1099910731.vsd

