
1

2

3

4

5

6

7

8

9

3GPP2 S.S0114-0

Version 1.0

Version Date: 30th March 2006

Security Mechanisms using GBA 10

11

12

13

14

15

16

17

18

19

20

COPYRIGHT NOTICE

3GPP2 and its Organizational Partners claim copyright in this document and individual Organizational Partners
may copyright and issue documents or standards publications in individual Organizational Partner's name based
on this document. Requests for reproduction of this document should be directed to the 3GPP2 Secretariat at
secretariat@3gpp2.org. Requests to reproduce individual Organizational Partner's documents should be
directed to that Organizational Partner. See www.3gpp2.org for more information.

21

22

S.S0114-0 v1.0

EDITOR 1

Yile Guo, Nokia, Email: yile.guo@nokia.com, Phone: 1-858-705-4181 2

3

4

REVISION HISTORY

 5

REVISION HISTORY

Rev. 1.0 Initial Publication 30 March 2006

6

Security Mechanisms using GBA
 2

mailto:yile.guo@nokia.com

S.S0114-0 v1.0

Table of Contents 1

2

3

4
5
6

7
8
9

10
11
12
13

14
15
16
17
18
19
20
21

22
23
24
25

26
27
28
29

1 Introduction and Scope ...4

2 References...4
2.1 Normative References ..4
2.2 Informative References...4

3 Definitions and Abbreviations ..4
3.1 Definitions ..4
3.2 Abbreviations ...5

4 Overview of GBA (Informative)...5
4.1 Introduction to GBA...5
4.2 GBA Architecture...6
4.3 Requirements on Protocols using GBA keys..6

5 TLS with Pre-Shared Keys ...7
5.1 General ...7
5.2 Ciphersuites ..7
5.3 Signaling flow for TLS-PSK with GBA keys...7
5.4 Resumable Session ...9
5.5 Bootstrapping required indication ..9
5.6 Bootstrapping renegotiation indication...9
5.7 Error cases ..10

Appendix-A Ua security protocol identifier (normative) ..11
A.1 Definition..11
A.2 Organization Octet..11
A.3 3GPP2 specified Ua protocols ..11

Appendix-B: Example flow for TLS-PSK (Informative)..12
B.1 Scope of the signaling flow ..12
B.2 Key to interpret the signaling flow ...12
B.3 Signaling flow demonstrating a successful TLS-PSK authentication procedure..............13

Security Mechanisms using GBA
 3

S.S0114-0 v1.0

1 Introduction and Scope 1

2
3
4
5
6

7

This document describes profile of security mechanisms such that the mechanism can utilize
keys that have been generated using the Generic Bootstrapping Architecture (GBA) [3]. GBA
is a method of providing keys in a generic manner based on the 3GPP2 authentication methods.
Similar work has been carried out by 3GPP, see [8] and [9] as part of their General
Authentication Architecture work [6]

2 References
2.1 Normative References 8

9

10

11

12

[1] “The TLS Protocol Version 1.0”, Dierks, IETF RFC 2246.

[2] “Transport Layer Security (TLS) Extensions”, IETF RFC 3546.

[3] 3GPP2 S.S0109 “Generic Bootstrapping Architecture”

[4] “Pre-Shared Key Cyphersuites for Transport Layer Security (TLS)”, IETF RFC 4279

2.2 Informative References 13

14

15

16
17

18
19

20
21
22

23

[5] 3GPP2 C.S0023 “Removable User Identity Module for Spread Spectrum Systems”

[6] 3GPP TR 33.919 “Generic Authentication Architecture (GAA); System description”

[7] 3GPP TS 24.109 Rel-6 “Bootstrapping Interface (Ub) and network application
function interface (Ua): Protocol details”

[8] 3GPP TS 33.220 “Generic Authentication Architecture (GAA); Generic bootstrapping
architecture”

[9] 3GPP TS 33.222 Rel-6 “Generic Authentication Architecture (GAA); Access to
network application functions using Hypertext Transfer Protocol over Transport Layer
Security (HTTPS)”

3 Definitions and Abbreviations
3.1 Definitions 24

25
26
27

28
29
30

Mobile Node For the purposes of this document, the Mobile Node is considered as two
separate entities, the User Identity Module (UIM) and Mobile Equipment
(ME).

• User Identity Module (UIM): The User Identity Module is a low power
processor that contains secure memory. The User Identity Module may be a
Removable-UIM (R-UIM [5]) or part of the Mobile Node itself.

Security Mechanisms using GBA
 4

S.S0114-0 v1.0

• Removable UIM (R-UIM): An UIM that can be physically removed

from the ME. An R-UIM may be used in multiple ME’s.
1
2

3
4

5

6
7

8
9

10
11
12

13
14
15

• Mobile Equipment (ME): The ME contains a high power
processor, but is not assumed to contain secure memory or secure processing.

Transport Layer Security (TLS) Protocol Transport layer protection of data.

Cipher suite A description of the set of algorithms used for authentication, key
agreement

TLS Handshake Protocol A sub protocol of TLS that performs the functions
of authentication, cipher suite agreement and session secret
establishment for securing application data. The handshake may
either establish a new master secret, or resume a previous session
using the master secret established during that session.

TLS using a Pre-Shared Key TLS-PSK: A set of cipher suites for the TLS
Protocol in which a Pre-Shared Key (PSK) is used for mutual
authentication between the client and the server.

3.2 Abbreviations 16

17

18

19

20

21

22

23

24

25

26

BSF Bootstrapping Server Function

GBA Generic Bootstrapping Architecture

ME Mobile Equipment

MN Mobile Node

NAF Network Application Function

R-UIM Removable UIM

TLS Transport Layer Security

TLS-PSK TLS using a Pre-Shared Key (PSK)

UIM User Identity Module

4 Overview of GBA (Informative)
4.1 Introduction to GBA 27

28
29
30
31
32
33

The aim of GBA is to provide a method of generating keying material that can be used by an
MN and a Network Application Function (NAF). This keying material is generated using
methods based upon the 3GPP2 authentication methods. Full details of GBA can be found in
[3] and are summarized below in section 4.2. The description of protocols that use GBA
generated keys are given in this specification. Section 4.3 describes the functionality for a
protocol to be able to use GBA derived keys.

Security Mechanisms using GBA
 5

S.S0114-0 v1.0

4.2 GBA Architecture 1

2

3

4
5

6
7
8
9

10

11
12

13
14
15
16

17
18
19
20

HSS

ZnZn

Zh3Zh3Zh2Zh2Zh1Zh1

Ua Ua UbUb

AAAAAAHLRHLR

NAFNAF

UEMN

BSFBSF

Figure 1 GBA Architecture

Figure 1 gives the architecture for GBA. The following is a brief description of the GBA (for
full details see [3]).

The MN and BSF run the bootstrapping procedure in order to generate a shared key, Ks, and
the bootstrapping identity, B-TID. The B-TID is the unique identifier that is used in GBA. The
BSF retrieves the necessary authentication material from the HLR/HSS/AAA depending on the
authentication method used. The Ks will be stored in either the ME or the UIM and the BSF
will know where it is stored.

The interaction between the MN and NAF is described in this specification. As part of this the
MN and NAF must agree on the NAF identity and the MN must pass the B-TID to the NAF.

The NAF interacts with the BSF to request the keying material to use with the MN. The NAF
sends the B-TID and other parameters to the BSF, which uses these and Ks to calculate the
keying material for the NAF. The MN has access to the same parameters and can calculate the
key for itself.

When Ks is held on the ME, the keying material sent to the NAF from the BSF is called
Ks_NAF. If Ks is held on the UIM, the NAF is sent Ks_ext_NAF and Ks_int_NAF from the
BSF. Both Ks_ext_NAF and Ks_int_NAF are generated in the UIM. Ks_int_NAF is never
given out of the UIM, whereas Ks_ext_NAF is given to the ME.

4.3 Requirements on Protocols using GBA keys 21

22

23

Using GBA keys places the following requirements on a protocol

1. The MN and NAF must agree on a NAF identity (NAF-ID).

Security Mechanisms using GBA
 6

S.S0114-0 v1.0

1

2
3

4
5

6

2. The MN must pass the B-TID to the NAF.

3. The NAF must be able to fetch the keying material from the BSF during the protocol
after it has received the B-TID.

4. The MN and NAF must have some way of agreeing that GBA generated keys will be
used.

5 TLS with Pre-Shared Keys
5.1 General 7

8
9

10
11

12
13
14

15
16
17
18

This section describes the case where the TLS application resides in the ME. In this case,
Ks_(ext_)NAF shall be used to create the TLS tunnel between the ME and NAF.

The method of using GBA generated keys in TLS with pre-shared keys follows that given in
clause 5.4 of [9] with further details in clause 5.3.3 of [7].

The Ua security protocol identifier for protocol shall be (0x01,0x00,0x01,yy,zz) where “yy,zz”
is the protection mechanism CipherSuite code according to the defined values for TLS
CipherSuites in [1] and [4].

Both the MN and the NAF shall support the features of GBA as described in [3]. They shall
also support the TLS 1.0 [1] and TLS-PSK [4]. Additionally both the MN and NAF shall
support the server_name TLS extension as described in RFC 3546 [2]. All other TLS
extensions are optional.

5.2 Ciphersuites 19

20
21

22
23

24
25

26

27
28
29
30
31

The MN shall support the CipherSuite TLS_PSK_WITH_AES_128_CBC_SHA. All other
Cipher Suites as defined in TLS-PSK [4] are optional for implementation on the MN.

The NAF shall support the CipherSuite TLS_PSK_WITH_AES_128_CBC_SHA. All other
Cipher Suites as defined in TLS-PSK [4] are optional for implementation for the NAF.

Cipher Suites with NULL encryption may be used. The MN shall always include at least one
cipher suite that supports encryption during the handshake phase.

Cipher Suites with NULL integrity protection (or HASH) are not allowed.

Note: TLS-PSK Diffie-Hellman ciphersuites will prevent the operator being able to decrypt the
TLS Session, i.e. calculate the TLS pre-master key. As the MN and NAF are not mandated to
support them for all application supporting TLS-PSK with GBA keys, they could be mandated
for a specific application. This will need to be covered in the specification relating to that
application.

5.3 Signaling flow for TLS-PSK with GBA keys 32

33
34

This section describes how to combine GBA with TLS in order to provide mutual
authentication between the MN and NAF.

Security Mechanisms using GBA
 7

S.S0114-0 v1.0

MN BSF

ClientHello(PSK-based ciphersuites, NAF-ID)

ServerHello(PSK-based ciphersuite)
ServerKeyExchange(PSK identity hint)

ServerHelloDone

Application Data

NAF

(5) Zn interface

(3) Bootstrapping and generation
of NAF specific key material

ClientKeyExchange(PSK identity)
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

(1)

(2)

(4)

(7)

(9)

(6) Authentication

(8) Authentication

 1

2

3
4

5

6

7
8
9

10
11

12
13

14
15

Figure 2 TLS-PSK Flows

(1) The MN sends the ClientHello message to the NAF. In order to indicate the MN is
capable of TLS-PSK using GBA derived keys, it shall

a. include one or more PSK-based ciphersuites;

b. include the NAF-ID (the identity of the NAF) in the server_name TLS extension.

Note: this is needed as a NAF may have more than one address and the NAF and MN
must agree on a NAF-ID in order for the same Ks_(ext_)NAF to be generated for both
ends.

(2) The NAF shall respond to the MN with the ServerHello, ServerKeyExchange and
ServerHelloDone messages. In order to use TLS-PSK with GBA keys, then it shall

a. select one of the PSK-based ciphersuites that were included in the ClientHello
message and send this to the client in the ServerHello message;

b. include the string “3GPP-bootstrapping” as a PSK identity hint (note: this does
not preclude the use of other identity hints).

Security Mechanisms using GBA
 8

S.S0114-0 v1.0

1
2
3
4
5

6
7
8

9
10
11

12
13

14

15

16
17

(3) If the MN has a valid Ks, it shall use this and the NAF-ID sent to the NAF to calculate the
Ks_(ext_)NAF. Otherwise it shall perform a bootstrapping procedure with the BSF to
generate a fresh Ks and then generate Ks_(ext_)NAF. The details of these procedures can
be found in [3]. The MN derives the TLS premaster secret from Ks_(ext_)NAF as
described in [4].

(4) The MN sends the ClientKeyExchange, ChangeCipherSpec and Finished messages to the
NAF. It shall include a PSK identity in the ClientKeyExchange message made up of
“3GPP-bootstrapping” followed by the separator character “;” and finally B-TID.

(5) The NAF extracts the B-TID from the ClientKeyExchange message. If it does not already
have the relevant Ks_(ext_)NAF, it fetches the key from the BSF by sending B-TID and
the NAF-ID sent in the ClientHello message (see [3]) to the BSF.

(6) The NAF derives the TLS premaster secret from Ks_(ext_)NAF as described in [4]. The
NAF validates the Finished message sent by the MN.

(7) The NAF sends the ChangeCipherSpec and Finished messages to the MN.

(8) The MN validates the Finished message sent by the NAF.

(9) The MN and NAF use the TLS Application protocol to securely transmit data to each
other.

5.4 Resumable Session 18

19
20
21
22
23

The TLS Handshake Protocol negotiates a session, which is identified by a Session ID. The
MN and NAF shall allow for resuming a session. The lifetime of a session shall not exceed the
lifetime of the bootstrapped key that was used to calculate the pre-master key for that session.
Either the MN or NAF may have their own policy to restrict the lifetime of a session. It is
recommended that the lifetime of a session is at most 24 hours.

5.5 Bootstrapping required indication 24

25
26
27
28

29
30

During TLS handshake, the NAF shall indicate to the MN that bootstrapped security
association is required by sending a ServerHello message containing a PSK-based ciphersuite,
and a ServerKeyExchange message containing the psk_identity_hint field which contains a
static string "3GPP-bootstrapping". This shall trigger the MN to use GBA keys.

NOTE: The NAF shall select a PSK-based ciphersuite only if the MN has offered one or more
PSK-based ciphersuites in the corresponding ClientHello message.

5.6 Bootstrapping renegotiation indication 31

32
33
34
35
36
37

During usage of TLS session, the NAF shall indicate to the MN that bootstrapped security
association has expired by sending close_notify alert message to the MN. The MN may
attempt resume the old TLS session by sending a ClientHello message containing the old
session ID. The NAF shall refuse to use the old session ID by sending a ServerHello message
with a new session ID. This will indicate to the MN that the bootstrapped security association
it used has expired.

Security Mechanisms using GBA
 9

S.S0114-0 v1.0

1
2
3
4

During TLS handshake, the NAF shall indicate to the MN that the bootstrapped security
association has expired by sending handshake_failure message as a response to the Finished
message sent by the MN. This will indicate to the MN that the bootstrapped security
association it used has expired.

5.7 Error cases 5

6

7
8
9

10
11
12
13

14

15

Authentication failures are handled as they are described in [1] and in [4]

For a network initiated re-authentication, if there is no response within a given time limit from
an authentication failure has occurred after that the request has been attempted for a limited
number of times. This failure can be due to several reasons, e.g. that the MN has powered off
or due to that the message was lost due to a bad radio channel. The NAF shall then still assume
that if a TLS session is still valid that it can be re-used by the MN at a later time. If the MN re-
uses an existing session then the NAF shall re-authenticate the MN and not give access unless
the authentication was successful.

Security Mechanisms using GBA
 10

S.S0114-0 v1.0

Appendix-A Ua security protocol identifier
(normative)

1

2

A.1 Definition 3

4
5
6

7
8

The Ua security protocol identifier is a string of five octets. The first octet denotes the
organization which specifies the Ua security protocol. The four remaining octets denote a
specific security protocol within the responsibility of the organization.

For all Ua protocols specified by 3GPP2 this Annex shall contain a complete list of these
protocols. Two organization octets are reserved for special use.

A.2 Organization Octet 9

10
11

12
13
14

15
16

17
18

19

20
21
22
23

24

25

The organization octet denotes the organization specifying the particular protocol. Following is
a list of registered organization octets:

“0x00” as first octet is the default value for protocols not specified otherwise. When octet
“0x00” is used as first octet, only Ua security protocol identifier (0x00,0x00,0x00,0x00,0x00)
shall be used.

NOTE: All protocols having this Ua security protocol identifier cannot be separated from each
other.

“0x01” .. “0xFE” as the first octet denote organizations specifying Ua security protocol
identifiers.

“0xFF” as the first octet denotes the private range of Ua security protocol identifiers.

NOTE: identifiers with “0xFF” as first octet may be used for defining local/experimental
protocols without need for registration. When using such an identifier, however, it may happen
that a security breach in one security protocol over Ua can be exploited by an attacker to mount
successful attacks on a different security protocol over Ua.

3GPP2 has “0x02” as its organization identifier.

NOTE: For other organisation codes, see 3GPP TS 33.220 [8].

A.3 3GPP2 specified Ua protocols 26

27 The are currently no Ua security protocol identifiers specified by 3GPP2.

Security Mechanisms using GBA
 11

S.S0114-0 v1.0

Appendix-B: Example flow for TLS-PSK (Informative) 1

B.1 Scope of the signaling flow 2

3
4
5

This appendix is provided to give an informative example of using TLS-PSK with GBA. The
normative description can be found in section 5 of this specification. The example is taken
from [7] with some small changes to make it 3GPP2 specific.

B.2 Key to interpret the signaling flow 6

7
8

9
10

11

12

13

14
15
16
17

18
19

20
21

22
23

24
25
26

27

28

29

30

The following rules have been applied to TLS handshake signaling flows to improve
readability, reduce errors and increase maintainability:

a) The description of TLS messages and their fields are identified by three fields:
"TLS.MESSAGE.FIELD":

- "TLS" identifies that the message is a TLS message;

- "MESSAGE" identifies the name of the TLS message (e.g. ClientHello);

-"FIELD" identifies the name of the TLS message field (e.g. client_version).

An example being "TLS.ClientHello.client_version", which identifies TLS message
"ClientHello" and its data field "client_version". The possible TLS message and TLS
message field names as well as their encoding to the TLS protocol are specified in
IETF TLS related specifications such as [1] and [2].

b) If multiple TLS messages are sent in sequence from one entity to another this is described as
one step.

- the figures describe the sending of multiple TLS messages in one step by listing the
TLS message names in separate lines;

- the description of the step contains the explanation of the messages and their
parameters as described in bullet a).

c) In order to differentiate between TLS handshake messages and other messages, the TLS
handshake messages are marked with simple arrow line, and all other messages with block
arrows.

d) The flows show the signaling exchanges between the following functional entities:

- Mobile Node (MN);

- Bootstrapping Server Function (BSF);

- Network Application Function (NAF).

Security Mechanisms using GBA
 12

S.S0114-0 v1.0

B.3 Signaling flow demonstrating a successful TLS-PSK
authentication procedure

1
2

3
4

5

6
7
8
9

10

11

12
13

14
15

16

17
18

19
20

21
22
23
24
25

26
27

28
29

30

31
32

The signaling flow in figure 2 in section 5 describes the generic message exchange between
MN and NAF using TLS-PSK.

1. TLS handshake message: ClientHello (MN to NAF)

The MN sends ClientHello message to the NAF. In order to indicate that the MN is
capable of PSK-based authentication it includes the PSK-based ciphersuites to the list
of acceptable ciphersuites list. The MN also includes to the ClientHello message the
server_name TLS extension containing the hostname of the NAF.

TLS.ClientHello.client_version: the version of the TLS protocol in the MN is {3, 1}.

TLS.ClientHello.random: a MN generated random structure.

TLS.ClientHello.session_id: the ID of the TLS session is empty, i.e. no previous
TLS session is used.

TLS.ClientHello.cipher_suites: the list of ciphersuites includes one or more PSK-
based ciphersuites.

TLS.ClientHello.compression_methods: a list of the compression methods is null.

TLS.ClientHello.client_hello_extension_list: list of extensions includes
server_name extension that contains the NAF-ID.

2. TLS handshake messages: ServerHello, ServerKeyExchange, ServerHelloDone (NAF
to MN)

If the NAF wants to use PSK-based authentication, it selects one of the acceptable
PSK-based ciphersuites, places the selected ciphersuite in the ServerHello message,
and includes an appropriate ServerKeyExchange message. The NAF can help the MN
in selecting the correct PSK identity by providing a list of hints in
ServerKeyExchange message. That list includes a static string "3GPP-bootstrapping ".

TLS.ServerHello.server_version: the version of the TLS protocol in the NAF is {3,
1}.

TLS.ServerHello.random: a NAF generated random (must be different from
ClientHello.random).

TLS.ServerHello.session_id: the identity of the TLS session generated by the NAF.

TLS.ServerHello.cipher_suite: the ciphersuite selected by the NAF is one of the
PSK-based ciphersuites listed in ClientHello.cipher_suites.

Security Mechanisms using GBA
 13

S.S0114-0 v1.0

TLS.ServerHello.compression_method: the compression method selected by the
NAF is null.

1
2

3

4
5

6

7

8
9

10

11
12

13
14
15
16
17

18
19

20

21
22

23

24
25
26

27

28

29

30

31

TLS.ServerHello.server_hello_extension_list: list of extensions is empty.

TLS.ServerKeyExchange.psk_identity_hint: the PSK identity hint contains the
constant string "3GPP-bootstrapping".

TLS.ServerHelloDone: this message does not have data fields.

3. Bootstrapping and generation of NAF specific key material at MN

The MN performs the bootstrapping procedure to produce B-TID and Ks_(ext_)NAF
as described in clause A.3. If bootstrapping procedure has been done recently, the MN
can use the B-TID and Ks_(ext_)NAF produced from that procedure.

4. TLS handshake messages: ClientKeyExchange, ChangeCipherSpec, Finished (MN to
NAF)

The MN sets concatenated "3GPP-bootstrapping" string, separator character ";" and
the B-TID as the PSK identity, and Ks_(ext_)NAF as the pre-shared key. The MN
then sends ClientKeyExchange containing the B-TID, ChangeCipherSpec, and
Finished messages to the NAF. The TLS premaster secret is derived from
Ks_(ext_)NAF as specified in [4].

TLS.ClientKeyExchange.psk_identity: the PSK identity contains concatenated
"3GPP-bootstrapping" string, separator character ";" and the B-TID.

TLS.ChangeCipherSpec.type: contains value 1 (change_cipher_spec).

TLS.Finished.verify_data: the verify data contains the hash of the handshake
messages. For details, see [1].

5. Zn: NAF specific key procedure

The NAF extracts the B-TID from the ClientKeyExchange message and requests the
NAF specific key (Ks_(ext_)NAF) from BSF. The BSF returns Ks_(ext_)NAF that
corresponds to the B-TID.

6. Authentication at NAF

 The NAF validates the Finished message sent by the MN.

7. TLS handshake messages: ChangeCipherSpec, Finished (NAF to MN)

The NAF sends ChangeCipherSpec, and Finished messages to the MN.

TLS.ChangeCipherSpec.type: contains value 1 (change_cipher_spec).

Security Mechanisms using GBA
 14

S.S0114-0 v1.0

Security Mechanisms using GBA
 15

1
2

3

4

5

6

7

TLS.Finished.verify_data: the verify data contains the hash of the handshake
messages. For details, see [1].

8. Authentication at MN

 The MN validates the Finished message sent by the NAF.

9. Application data transfer

 The MN and the NAF initiate application data transfer in the TLS session.

	Introduction and Scope
	References
	Normative References
	Informative References

	Definitions and Abbreviations
	Definitions
	Abbreviations

	Overview of GBA (Informative)
	Introduction to GBA
	GBA Architecture
	Requirements on Protocols using GBA keys

	TLS with Pre-Shared Keys
	General
	Ciphersuites
	Signaling flow for TLS-PSK with GBA keys
	Resumable Session
	Bootstrapping required indication
	Bootstrapping renegotiation indication
	Error cases

	Appendix-A Ua security protocol identifier (normative)
	A.1Definition
	A.2Organization Octet
	A.33GPP2 specified Ua protocols

	Appendix-B: Example flow for TLS-PSK (Informative)
	B.1Scope of the signaling flow
	B.2Key to interpret the signaling flow
	B.3Signaling flow demonstrating a successful TLS-PSK authentication procedure

