
1

2

3

4

5

6

7

8

9

10

3GPP2 S.S0109-0

Version 1.0

Version Date: 30th March 2006

Generic Bootstrapping Architecture
(GBA) Framework 11

12

13

14

15

16

17

18

19

20

21

COPYRIGHT NOTICE

3GPP2 and its Organizational Partners claim copyright in this document and individual Organizational Partners
may copyright and issue documents or standards publications in individual Organizational Partner's name based
on this document. Requests for reproduction of this document should be directed to the 3GPP2 Secretariat at
secretariat@3gpp2.org. Requests to reproduce individual Organizational Partner's documents should be
directed to that Organizational Partner. See www.3gpp2.org for more information.

22

23

S.S0109-0 v1.0

EDITOR 1

2
3
4
5
6

7

8

Gábor Bajkó
Nokia
Tel: (+1) 858 525 3693
Gabor.Bajko@nokia.com

REVISION HISTORY

 9

REVISION HISTORY

Rev. 1.0 Initial Publication 30 March 2006
10

GBA Framework 2

S.S0109-0 v1.0

Table of Contents 1

2

3

4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

1 Introduction and Scope ...5

2 References...5
2.1 Normative References ..5
2.2 Informative References...6

3 Definitions and Abbreviations ..6
3.1 Definitions ..6
3.2 Abbreviations ...7

4 Generic Bootstrapping Architecture ...8
4.1 Reference model ...8
4.2 Network elements ...9

4.2.1 Bootstrapping server function (BSF)..9
4.2.2 Network application function (NAF) ...10
4.2.3 HLR/HSS/AAA..10
4.2.4 MN ...10

4.3 Bootstrapping architecture and reference points...11
4.3.1 Reference point Ub...11
4.3.2 Reference point Ua...11
4.3.3 Reference points Zh1, Zh2, Zh3...11
4.3.4 Reference point Zn ...11

4.4 Requirements and principles for bootstrapping ..11
4.4.1 Access Independence ...11
4.4.2 Authentication methods..12
4.4.3 Requirements on reference point Ub..12
4.4.4 Requirements on reference points Zh1, Zh2, Zh3 ..12
4.4.5 Requirements on reference point Zn ..12
4.4.6 Requirements on Bootstrapping Transaction Identifier......................................13
4.4.7 Requirements on selection of UICC application and related keys13
4.4.8 Requirements on reference point Ua ..14

4.5 Procedures ..15
4.5.1 Initiation of bootstrapping ..15
4.5.2 Bootstrapping procedures...15

4.5.2.1 Bootstrapping mechanism selection..16
4.5.2.2 Bootstrapping Procedures for CDMA1x and CDMA1x EV-DO

Systems ...18
4.5.2.2.1 Bootstrapping based on CAVE 19
4.5.2.2.2 Bootstrapping Based on MN-AAA Key 22
4.5.2.2.3 Common Calculations 25

4.5.2.3 Bootstrapping based on AKA ...26
4.5.3 Procedures using bootstrapped Security Association ...28

GBA Framework 3

S.S0109-0 v1.0

4.5.4 Procedure related to service discovery ...32 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

26
27

28
29
30
31
32
33
34
35

5 UIM-based enhancements to Generic Bootstrapping Architecture (GBA_U)................................32
5.1 Architecture and reference points for bootstrapping with UIM-based enhancements32
5.2 Requirements and principles for bootstrapping with UIM-based enhancements..............32

5.2.1 Requirements on MN ...32
5.2.2 Requirements on BSF...32

5.3 Procedures for bootstrapping with UIM-based enhancements ...33
5.3.1 Initiation of bootstrapping ..33
5.3.2 Bootstrapping procedures...33

5.3.2.1 Bootstrapping Procedures for CDMA1x EV-DO Systems33
5.3.2.1.1 Bootstrapping Based on MN-AAA Key 33

5.3.2.2 Bootstrapping procedures based on AKA.....................................37
5.3.3 Procedures using bootstrapped Security Association ...39
5.3.4 Procedure related to service discovery ...43

5.4 UIM-ME interface description ...43
5.4.1 Introduction ..43
5.4.2 GBA_U Bootstrapping procedure ..43

5.4.2.1 Bootstrapping Based on MN-AAA Key43
5.4.2.2 Bootstrapping procedures based on AKA.....................................44

5.4.3 GBA_U NAF Derivation procedure...45

Annex A (normative): Specification of the key derivation function KDF ..46
A.1 Introduction ..46
A.2 Generic key derivation function ...46
A.3 Input parameter encoding ...47
A.4 NAF specific key derivation in GBA and GBA_U ..47

Annex B (normative): XML Schema Definition...48
B.1 Introduction ..48

Annex-C (Informative): Signaling flows of bootstrapping procedure...50
C.1 Scope of signaling flows...50
C.2 Introduction ..50

C.2.1 General ...50
C.2.2 Rules required to interpret signaling flows...50

C.3 Signaling flows demonstrating a successful bootstrapping procedure based on AKA.....51
C.4 Signaling flows demonstrating a synchronization failure in the bootstrapping procedure based

on AKA ..56

GBA Framework 4

S.S0109-0 v1.0

1 Introduction and Scope 1

2
3

4
5

6
7
8

9
10
11

12

The present document describes the security features and a mechanism to bootstrap keys for application
security.

The scope of this specification includes a generic bootstrapping function, an architecture overview and
the detailed procedure how to bootstrap the credential.

The specification also describes a mechanism, called GBA_U, to bootstrap keys inside the (R-)UIM as
well as keys in the ME. GBA_U requires GBA support in the (R-)UIM, but provides enhanced security
by storing certain derived keys on the (R-)UIM.

In this document, several key words are used to signify the requirements. The key words “shall”, “shall
not”, “should”, “should not” and “may” are to be interpreted as described in the TIA Engineering Style
Manual.

2 References
2.1 Normative References 13

14
15

16
17

18

19

20

21

22

23
24

25

26

27

28
29

30

31

32

33

[1] 3GPP TS 33.102: "3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; 3G Security; Security architecture".

[2] IETF RFC 3310 (2002): "Hypertext Transfer Protocol (HTTP) Digest Authentication Using
Authentication and Key Agreement (AKA)".

[3] IETF RFC 3546 (2003): "Transport Layer Security (TLS) Extensions".

[4] 3GPP2 X.S0013-004-A: "All-IP Core Network Multimedia Domain".

[5] IETF RFC 3548 (2003): "The Base16, Base32, and Base64 Data Encodings".

[6] FIPS PUB 180-2 (2002): "Secure Hash Standard".

[7] IETF RFC 2104 (1997): "HMAC: Keyed-Hashing for Message Authentication".

[8] ISO/IEC 10118-3:2004: "Information Technology – Security techniques – Hash-functions –
Part 3: Dedicated hash-functions".

[9] 3GPP2 C.S0023: "Removable User Identity Module for Spread Spectrum Systems".

[10] IETF RFC 2617 (1999): "HTTP Authentication: Basic and Digest Access Authentication".

[11] 3GPP2 X.S0004-540-E: "MAP Operations Signaling Protocols".

[12] 3GPP2 C.S0016-C v1.0: "Over-the-Air Service Provisioning of Mobile Stations in Spread
Spectrum Standards".

[13] 3GPP2 S.S0114-0: "Security Mechanisms using GBA".

[14] IETF RFC 3629 (2003): "UTF-8, a transformation format of ISO 10646".

[15] 3GPP2 X.S0006: "Support for AKA".

[16] S.S0055-A: "Enhanced Cryptographic Algorithms".

GBA Framework 5

S.S0109-0 v1.0

[17] 3GPP2 C.S0069-0: "ISIM Application on UICC for CDMA2000®1 Spread Spectrum
Systems".

1
2

3
4

[18] 3GPP2 C.S0074-0: "UICC- Terminal interface Physical and Logical characteristics for
CDMA2000® Spread Spectrum Systems".

2.2 Informative References 5

6

7
8

9

10

11

[19] IETF RFC 1750 (1994): "Randomness Recommendations for Security".

[20] 3GPP TS 33.203: "3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; 3G security; Access security for IP-based services".

[21] 3GPP2 S.R0112-0: "Generic Bootstrapping Architecture System Requirements".

[22] 3GPP2 S.S0086: "IMS Security Framework".

3 Definitions and Abbreviations
3.1 Definitions 12

13

14
15
16

17
18
19
20

21
22

23
24

25
26
27
28

29
30

For the purposes of the present document, the following terms and definitions apply:

Application: In all places in this document where the term application is used to refer to a service
offered by the carrier or a third party to the mobile subscriber, then it always denotes the type of
application and not the actual instance of an application installed on an application server.

Bootstrapping Server Function: BSF is hosted in a network element under the control of the carrier.
BSF, HLR/HSS/AAA, and MNs participate in GBA in which a shared secret is established between the
network and a MN by running the bootstrapping procedure. The shared secret can be used between
NAFs and MNs, for example, for authentication purposes.

Bootstrapping Transaction Identifier: the bootstrapping transaction identifier (B-TID) is used to bind
the subscriber identity to the keying material in reference points Ua, Ub and Zn.

Bootstrapping Usage Procedure: A procedure using bootstrapped security association over Ua
reference point.

GBA Function: A function in the MN executing the bootstrapping procedure with BSF (i.e. supporting
the Ub reference point) and providing Ua applications with security association to run bootstrapping
usage procedure. GBA function is called by a Ua application when a Ua application wants to use
bootstrapped security association.

GBA User Security Settings: GUSS contains the BSF specific information element and the set of all
application-specific USSs. The GUSS may be held in the HSS, HLR, AAA or BSF.

 1 cdma2000® is the trademark for the technical nomenclature for certain specifications and standards of the
Organizational Partners (OPs) of 3GPP2. Geographically (and as of the date of publication), cdma2000®
is a registered trademark of the Telecommunications Industry Association (TIA-USA) in the United
States.

GBA Framework 6

S.S0109-0 v1.0

ME-based GBA: in GBA_ME, all GBA-specific functions are carried out in the ME. The UIM is
GBA-unaware. If the term GBA is used in this document without any further qualification then always
GBA_ME is meant, see section 4 of this specification.

1
2
3

4
5
6

7

8
9

10

11
12
13
14
15

16

17

18
19

20
21
22

23
24
25
26
27
28

Mobile Node (MN): For the purposes of this document, the Mobile Node is considered as two separate
entities, the User Identity Module (UIM) and Mobile Equipment (ME), which implements a GBA
function. The ME contains a high power processor, but no secure memory.

NAF_Id: The full name of the NAF (i.e. FQDN), concatenated with the Ua security protocol identifier.

Network Application Function: NAF is hosted in a network element. GBA may be used between
NAFs and MNs for authentication purposes, and for securing the communication path between the MN
and the NAF.

Removable UIM (R-UIM): An UIM that can be physically removed from the MN. The R-UIM can be
either a stand-alone module as defined in [9], or a multi-application platform (also called a UICC) that
may hold several applications that can be operated concurrently (e.g. ISIM application, cdma2000®
application). For the purposes of the present document, "legacy R-UIM" refers to an R-UIM that is
GBA unaware.

Ua Application: An application on the ME intended to run bootstrapping usage procedure with a NAF.

Ua security protocol identifier: An identifier which is associated with a security protocol over Ua.

UIM-based GBA: this is a GBA with UIM-based enhancement. In GBA_U, the GBA-specific
functions are split between the ME and UIM, see section 5 of this specification.

User Identity Module (UIM): The User Identity Module is a low power processor that contains secure
memory. The User Identity Module may be a Removable-UIM (R-UIM) or part of the Mobile Station
itself.

User Security Setting: A USS is an application and subscriber specific parameter set that defines two
parts, an authentication part, which contains the list of identities of the user needed for the application
(e.g. IMPUs, MSISDN, pseudonyms), and an authorization part, which contains the user permission
flags (e.g. access to application allowed, type of certificates which may be issued). They are sometimes
also called application-specific user security setting. The USS is part of GUSS, and sent from the BSF
to the NAF if requested by the NAF.

3.2 Abbreviations 29

30

31

32

33

34

35

For the purposes of the present document, the following abbreviations apply:

AK Anonymity Key

AKA Authentication and Key Agreement

BS_PW Base Station Password

B-TID Bootstrapping Transaction Identifier

BSF Bootstrapping Server Function

GBA Framework 7

S.S0109-0 v1.0

FQDN Fully Qualified Domain Name 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

GBA Generic Bootstrapping Architecture

GBA_ME ME-based GBA

GBA_U GBA with UIM-based enhancements

GUSS GBA User Security Settings

HSS Home Subscriber System

IK Integrity Key

KDF Key Derivation Function

Ks_int_NAF Derived key in GBA_U that remains on UIM

Ks_ext_NAF Derived key in GBA_U that is sent to the ME

ME Mobile Equipment, referring to a terminal without a UIM

MN Mobile Node, referring to a terminal with UIM

MS_PW Mobile Station Password

NAF Network Application Function

USS User Security Setting

4 Generic Bootstrapping Architecture 17

18
19
20
21
22

The 3GPP2 authentication infrastructure, including the HLR/AC, the UIM and the CAVE, DH and
AKA protocols could be leveraged to enable application functions in the network and on the user side to
establish shared keys. Therefore, 3GPP2 can provide the "bootstrapping of application security" to
authenticate the subscriber by defining a Generic Bootstrapping Architecture (GBA) based on the
available protocols. The system requirements for GBA are described in [21].

4.1 Reference model 23

24
25

Figure 4.1 shows a simple network model of the entities involved in the bootstrapping approach, and the
reference points used between them.

GBA Framework 8

S.S0109-0 v1.0

BSF

UE

NAF

HSS HLR AAA

Ub Ua

Zh1 Zh2 Zh3

ZnBSF

MN

NAF

HSS HLR/AC AAA

Ub Ua

Zh1 Zh2 Zh3

Zn

 1

2

3

Figure 4.1: Simple network model for bootstrapping

4.2 Network elements
4.2.1 Bootstrapping server function (BSF) 4

5
6
7
8
9

10

11
12
13

14
15

16
17

18

A generic Bootstrapping Server Function (BSF) and the MN shall mutually authenticate and agree on a
key that is afterwards applied to generate keying material for use between the MN and a Network
Application Function (NAF). The BSF shall restrict the applicability of the key material to a specific
NAF by using the key derivation procedure as specified in Annex A. The key derivation procedure may
be used with multiple NAFs during the lifetime of the key material. The lifetime of the key material is
set according to the local policy of the BSF. The generation of key material is specified in section 4.5.3.

For bootstrapping based on CAVE, the BSF shall be capable of issuing a conventional AUTHREQ [11]
to the HLR/AC and requesting KEYs from the HLR/AC. The BSF shall set the SYSACCTYPE
parameter to indicate GBA access.

For bootstrapping based on MN-AAA Key, the BSF shall be capable of obtaining the MN-AAA
Authenticator associated with the MN from the H-AAA.

For bootstrapping based on AKA, the BSF shall be capable of obtaining an Authentication Vector from
the HLR or HSS.

The BSF is always located in the home network.

GBA Framework 9

S.S0109-0 v1.0

4.2.2 Network application function (NAF) 1

2
3
4

5

6

7

8
9

10
11

12
13

14

15
16
17

After the bootstrapping has been completed, the MN and a NAF can run some application specific
protocol where the protection of the messages uses the keying material derived from the key generated
during the mutual authentication between MN and BSF.

General assumptions for the functionality of a NAF are:

- there is no previous security association between the MN and the NAF;

- NAF shall be able to locate and communicate securely with the subscriber's BSF;

- NAF shall be able to acquire a shared key material established between MN and the BSF during the
run of the application-specific protocol;

- NAF shall be able to acquire zero or more application-specific User Security Settings USSs from the
BSF;

- NAF shall be able to set the local validity condition of the shared key material according to the local
policy;

- NAF shall be able to check lifetime and local validity condition of the shared key material.

NOTE: A MN and a NAF that support a Ua protocol that does not provide replay protection over
unconnected runs of the protocol, will need to take corresponding action to avoid replay
attacks if desired.

4.2.3 HLR/HSS/AAA 18

19
20
21

22
23

24

For bootstrapping based on SMEKEY, in response to the AUTHREQ message from the BSF, the
HLR/AC shall return an authreq with the SMEKEY. Note that the BSF looks just like a VLR to the
HLR/AC.

For bootstrapping based on MN-AAA Key, the H-AAA shall return the MN-AAA Authenticator
associated with the MN when requested by the BSF.

For bootstrapping based on AKA, the HLR/HSS shall return an Authentication Vector to the BSF.

4.2.4 MN 25

26

27

28

29

30
31

32
33

34
35

The required functionalities from the MN are:

- the support of HTTP Digest authentication;

- the support of HTTP Digest AKA protocol;

- the capability to use UIM in bootstrapping;

- the capability to receive SMEKEY from UIM, which is GBA unaware for bootstrapping based on
SMEKEY;

- the capability to receive MN-AAA Authenticator from UIM, which is GBA unaware for
bootstrapping based on MN-AAA Key;

- the capability to derive new key material to be used with the protocol over Ua interface from the
session keys;

GBA Framework 10

S.S0109-0 v1.0

1

2

3

4

- support of NAF-specific application protocol;

- a GBA-aware ME shall support both GBA_U and GBA_ME procedures;

- the capability to get the NAF_Id as needed.

4.3 Bootstrapping architecture and reference points
4.3.1 Reference point Ub 5

6
7
8

The reference point Ub is between the MN and the BSF. Reference point Ub provides mutual
authentication between the MN and the BSF. It allows the MN and the BSF to bootstrap the session
keys

4.3.2 Reference point Ua 9

10
11

The reference point Ua carries the application protocol, which is secured using the keys material agreed
between MN and BSF.

4.3.3 Reference points Zh1, Zh2, Zh3 12

13
14

The reference points Zh1, Zh2, Zh3 used between the BSF and the HLR/HSS/AAA allow the BSF to
fetch the required authentication information and all GBA User Security Settings (GUSS).

4.3.4 Reference point Zn 15

16
17
18

The reference point Zn is used by the NAF to fetch the key material agreed during a previous
authentication and session key generation over the reference point Ub from the MN to the BSF. It is
also used to fetch application-specific user security settings from the BSF, if requested by the NAF.

4.4 Requirements and principles for bootstrapping 19

20

21

22
23

24
25

26

27
28

29
30

The following requirements and principles are applicable to bootstrapping procedure:

- the bootstrapping function shall not depend on the particular NAF;

- the server implementing the bootstrapping function needs to be trusted by the home operator to
handle authentication material;

- the server implementing the NAF needs only to be trusted by the home operator to handle derived
key material;

- to the extent possible, existing protocols and infrastructure should be reused;

- in order to ensure wide applicability, all involved protocols are preferred to run over IP where
appropriate;

- it shall be prevented that a security breach in one NAF who is using the GBA, can be used by an
attacker to mount successful attacks to the other NAFs using the GBA.

4.4.1 Access Independence 31

32
33

Bootstrapping procedure is access independent. Bootstrapping procedure requires IP connectivity from
MN.

GBA Framework 11

S.S0109-0 v1.0

4.4.2 Authentication methods 1

2
3

Authentication between the MN and the BSF shall require a UIM with a valid subscription to the
network service where the BSF is located.

4.4.3 Requirements on reference point Ub 4

5

6

7

8

9

10
11

12
13

The requirements for reference point Ub are:

- the BSF shall be able to identify the MN;

- the BSF and the MN shall be able to authenticate each other;

- the BSF shall be able to send a bootstrapping transaction identifier to the MN;

- the MN and the BSF shall be able to establish shared keys;

- the BSF shall be able to indicate to the MN the lifetime of the key material. The key lifetime sent by
the BSF over Ub shall indicate the expiry time of the key.

NOTE: This does not preclude a MN to refresh the key before the expiry time according to the MN's
local policy.

4.4.4 Requirements on reference points Zh1, Zh2, Zh3 14

15

16

17
18

19

20

21

The requirements for reference point Zh are:

- mutual authentication, confidentiality and integrity shall be provided;

NOTE: This requirement may be fulfilled by physical or proprietary security measures because the
BSF and HLR/HSS/AAA are located within the same operator’s network.

- the BSF shall be able to send bootstrapping information request concerning a subscriber;

- no state information concerning bootstrapping shall be required in the HLR/HSS/AAA;

- all procedures over reference point Zh shall be initiated by the BSF.

4.4.5 Requirements on reference point Zn 22

23

24

25

26
27

28

29
30

31
32
33

The requirements for reference point Zn are:

- Mutual authentication, confidentiality and integrity shall be provided;

- The BSF shall verify that the requesting NAF is authorised;

- The NAF shall be able to send a key material request to the BSF containing the NAF_Id. The BSF
shall be able to verify that a NAF is authorized to use the FQDN included in the NAF_Id;

- The BSF shall be able to send the requested key material to the NAF;

- The NAF shall be able to get a selected set of application-specific USSs from the BSF, depending on
the policy of the BSF and the application indicated in the request from the NAF over Zn;

- The BSF shall be able to indicate to the NAF the lifetime of the key material. The key lifetime sent
by the BSF over Zn shall indicate the expiry time of the key, and shall be identical to the key
lifetime sent by the BSF to the MN over Ub.

GBA Framework 12

S.S0109-0 v1.0

1
2

3

NOTE: This does not preclude a NAF to refresh the key before the expiry time according to the
NAF's local policy.

4.4.6 Requirements on Bootstrapping Transaction Identifier 4

5
6

7

8

9

10

11
12

13
14
15
16
17
18
19
20
21
22
23

Bootstrapping transaction identifier (B-TID) shall be used to bind the subscriber identity to the keying
material in reference points Ua, Ub and Zn.

Requirements for B-TID are:

- B-TID shall be globally unique;

- B-TID shall be usable as a key identifier in protocols used in the reference point Ua;

- NAF shall be able to detect the home network and the BSF of the MN from the B-TID.

NOTE 1: NAF can remove the security association based on deletion conditions after the key has
become invalid.

NOTE 2: Care has to be taken that the parallel use of GBA and non-GBA authentication between MN
and NAF does not lead to conflicts, e.g. in the name space. This potential conflict cannot be
resolved in a generic way as it is dependent on specific protocol and authentication
mechanism used between MN and application server. It is therefore out of scope of this
specification.
For the example of HTTP Digest authentication used between MN and NAF, parallel use is
possible as the following applies: <username, password>-pairs must be unique to one realm
only. As the NAF controls the realm names, it has to ensure that only the GBA based realm is
named with the reserved 3GPP2 realm name. In the special case that the NAF wants to allow
non-GBA based authentication in the GBA realm also, it has to ensure that no usernames in
the format of a B-TID are used outside GBA based authentication.

4.4.7 Requirements on selection of UICC application and related keys 24

25
26
27

28

29
30
31
32

33
34

35

36
37

38
39

When several applications are present on the UICC, which are capable of running AKA, then the MN
shall choose one of these UICC applications for performing the GBA procedures specified in this
document in the following order of preference:

1. The MN determines which UICC application is to be involved:

a. the application on the ME that needs Ks_NAF (Ua application) may indicate to the GBA support
function (GBA function) the type or the name of the UICC application: no preference,
cdma2000® application, ISIM [17], or the "Label" (see definition in [18]) of the UICC
application.

 If the application on the ME indicated a “Label” of the UICC application, step b below shall be
executed.

 If the application on the ME indicated that the UICC application type should be:

- the cdma2000® application on the UICC; step b below is skipped and in steps c and d only
cdma2000® applications are considered.

- the ISIM on the UICC; step b below is skipped and in steps c and d only ISIM applications
are considered.

GBA Framework 13

S.S0109-0 v1.0

1
2

3
4
5

6
7
8
9

10
11
12
13

14

15

16
17
18
19
20

21
22

23
24

25
26

27
28

29
30
31

32
33

34
35

36
37

- if the application on the ME did not indicate a preference, step b below is skipped and the
selection process is executed as described below, starting with step c;

b. if a "Label" was indicated in step a, the GBA function shall select the UICC application with the
"Label" indicated; if selection of this UICC application does not succeed the selection procedure
fails;

c. if no "Label" was indicated in step a, the GBA function shall choose among the active UICC
applications; if there is more than one active UICC applications, the GBA function may show a
UICC application choosing dialogue to the end user (the list contains the "Labels" from the
application list of the UICC), from which the end user chooses the UICC application to be
selected; if no dialogue is shown the GBA function shall select the "last selected" active UICC
application; in case the Ua application indicated "no preference" and both a "last selected"
cdma2000® application and a "last selected" ISIM are active, then the "last selected" cdma2000®
application is selected.

d. if there are no UICC applications active:

- if there is only one UICC application, the GBA function selects it, if possible;

- if there is more than one UICC application, the GBA function may show a UICC application
choosing dialogue to the end user (the list contains the "Labels" from the application list of
the UICC), from which the end user chooses the UICC application to be selected; if no
dialogue is shown the GBA function shall select the "last selected" UICC application, if
possible.

e. if the type indicated in step a and used in step d was ISIM, but there was no ISIM to select, then
step d is repeated with type cdma2000® application; otherwise the selection process fails.

NOTE 1: Step e is required for the case that an ISIM as defined in TS 33.203 [20] may be realised
using a cdma2000® application on the UICC.

2. If there already is a key Ks derived from the chosen UICC application, the MN takes this key to
derive Ks_NAF.

3. If there is no such key Ks, the MN first runs the Ub protocol involving the selected UICC
application and then goes to step 2.

Whenever a UICC application is successfully selected or terminated, the rules in this section for
choosing the UICC application are re-applied and, consequently, the UICC application chosen for
GBA may change.

Whenever a UICC application is terminated the shared key Ks established from it in the protocol over
the Ub reference point (according to sections 4.5.2 and 5.3.2) shall be deleted.

NOTE 2: At any one time, there is at most one UICC application chosen for performing the GBA
procedures.

NOTE 3: The Ua applications can continue using the NAF specific keys derived also after the shared
key Ks itself has been deleted until the key lifetime expires.

4.4.8 Requirements on reference point Ua 38

39

40
41

The generic requirements for reference point Ua are:

- the MN and the NAF shall be able to secure the reference point Ua using the GBA-based shared
secret;

GBA Framework 14

S.S0109-0 v1.0

1
2

3

4
5

6
7

8
9

10

NOTE : The exact method of securing the reference point Ua depends on the application protocol
used over reference point Ua.

- the NAF shall be able to indicate to the MN that GBA-based shared secret should be used;

- the NAF shall be able to indicate to the MN that the current shared secret has expired and the MN
should use newer shared secret with the NAF.

- any security protocol over Ua shall be associated with a Ua security protocol identifier. This
identifier shall be specified in Annex A of [13].

- the NAF and MN may agree a key derivation parameter (e.g by exchange random numbers) that is
used in the generation of the shared secret (these random numbers can be used to provide some
replay protection for Ua protocols that do not have any).

4.5 Procedures 11

12
13
14

This chapter specifies in detail the format of the bootstrapping procedure that is further utilized by
various applications. It contains the authentication procedure with BSF, and the key material generation
procedure.

4.5.1 Initiation of bootstrapping 15

16
17
18
19

20

21

22
23

24
25
26
27

Before communication between the MN and the NAF can start, the MN and the NAF first have to agree
whether to use the GBA. When a MN wants to interact with a NAF, but it does not know if the NAF
requires the use of shared keys obtained by means of the GBA, the MN shall contact the NAF for
further instructions (see figure 4.2).

NAFMN

2. Bootstrapping
initiation required

1. Request

Figure 4.2: Initiation of bootstrapping

1. MN starts communication over reference point Ua with the NAF without any GBA-related
parameters.

2. If the NAF requires the use of shared keys obtained by means of the GBA, but the request from MN
does not include GBA-related parameters, the NAF replies with a bootstrapping initiation message.
The form of this indication may depend on the particular reference point Ua and is specified in the
relevant stage 3-specifications.

4.5.2 Bootstrapping procedures 28

29
30
31

When a MN wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it
shall first perform a bootstrapping authentication. Otherwise, the MN shall perform a bootstrapping
authentication only when it has received bootstrapping initiation required message or a bootstrapping

GBA Framework 15

S.S0109-0 v1.0

1
2

negotiation indication from the NAF, or when the lifetime of the key in MN has expired (cf. subsection
4.5.3).

4.5.2.1 Bootstrapping mechanism selection 3

4
5

6
7
8
9

10
11
12

13
14

15
16

17
18

19
20
21

22
23
24
25
26
27
28

29
30
31
32
33
34

35
36
37

38
39
40
41
42

There are three bootstrapping mechanisms in 3GPP2: AKA, bootstrapping based on CAVE, and
bootstrapping based on MN-AAA Key.

Each of the bootstrapping mechanisms requires a corresponding identity. The MN shall select the
corresponding identities according to the following rules. For the ISIM application, the corresponding
identity shall be the IMPI from that ISIM application. For MN-AAA based bootstrapping, when it is
available the NAI related to the MN-AAA key shall be the corresponding identity. Otherwise the
3GPP2 Mobile Station ID (MSID) shall be converted into an NAI using the rules for deriving an IMPI
given in Annex C of [4] and this NAI shall be the corresponding identity. The user identity shall be set
equal to one of the corresponding identities.

If an IMPI is sent as the corresponding identity, then AKA based bootstrapping shall use the ISIM
associated with that IMPI. Otherwise it will be based on the cdma2000® application.

Note: The MN using a particular user identity does not prevent the BSF from selecting the
bootstrapping it prefers.

If an MN supports more than one mechanism, the BSF shall choose the bootstrapping mechanism by the
following procedure, which is illustrated in Figure 4.3:

1. The MN sends an initial bootstrapping request in the form of an HTTP GET to the BSF. The MN
includes the user’s identity in the Authorization header. Moreover, the list of supported
mechanisms and the corresponding identities (e.g. {A, B C}) are included in the HTTP payload.

2. Upon receiving the bootstrapping request, the BSF extracts the list of supported mechanisms and
the corresponding identities from the payload. Based on this, the list of authentication mechanisms
the BSF itself supports, the user information held in GUSS (retrieved based on the user’s identity),
and possibly other information, the BSF decides on the mechanism to use for bootstrapping. If the
GUSS is not needed to resolve the mechanism to use for bootstrapping, then it may be retrieved
after the MN has been successfully authenticated in step 6. From this point on, the bootstrapping
procedure follows that of the chosen mechanism.

3. The BSF sends an HTTP 401 Unauthorized response to the MN. The response comprises the
appropriate information based on the selected mechanism. For instance, if 3GPP AKA is selected,
the WWW-Authenticate header will contains AKA parameters in accordance with [2]. In addition,
the payload will include an indication of the selected mechanism (in this case, A), together with the
corresponding identity. In addition, the quality of protection (qop) for Digest authentication is set to
“auth-int”, indicating that integrity protection of payload is required;

4. The MN retrieves the BSF’s selection from the payload and continues the bootstrapping procedure
according to the selection. Typically, this will comprise of computing a response based on the
challenge received and some shared secrets;

5. The MN sends a new request in the form of HTTP GET to the BSF, with the computed response in
accordance with the selected mechanism. In addition, the payload comprises the original list of
authentication mechanisms that the MN supports, together with the corresponding identities. Since
qop has been set to “auth-int”, this original list is included in the computation of the Digest
response and therefore is integrity protected;

GBA Framework 16

S.S0109-0 v1.0

1
2
3

4
5
6
7

8
9

10

11

12
13
14

15
16
17
18

6. The BSF first verifies that the list presented in the payload matches that received in step 2. If it
matches that the BSF continues with the authentication based on the selected mechanism. If not, the
BSF responds with a 403 Forbidden message;

7. If successful, the BSF responses with an HTTP 200 OK message, indicating a successful
authentication and bootstrapping. The message also includes an indication of the selected
mechanism and the corresponding identity for MN’s reference. Similarly, this indication is integrity
protected by setting qop to “auth-int”;

8. The MN verifies that the selected mechanism and the corresponding identity are indeed the same as
that indicated in step 3. Only if it matches that the MN continues with the bootstrapping. Otherwise
the MN may retry at a later time;

9. Both BSF and MN derive the bootstrapping key based on the selected bootstrapping mechanism.

Note 1: In subsequent Ks_(int/ext_)NAF derivations using the bootstrapping key, Ks, the NAI used as input
to the key derivation function (see Annex A) is the corresponding identity sent by the BSF in step
7.

Note 2: The original list of supported mechanism and the chosen mechanism sent in steps 1 and 3 are not
integrity protected. Hence they may be modified by a man-in-the-middle attacker and may result in
bid-down attacks. The same parameters are sent once again in steps 5 and 7 which are integrity
protected. Therefore any modification in steps 1 and 3 can be detected.

GBA Framework 17

S.S0109-0 v1.0

9. Ks agreed

From this point
mechanism A is
used

9. Ks agreed

6. Verifies list is the same as
in step 1. Continues with
mechanism A.

6. Verifies list is the same as
in step 1. Continues with
mechanism A.

5. GET /HTTP/1.1
Authorization: Digest username= user identity
Payload contains: [A, B, C]

1. GET /HTTP/1.1
Authorization: Digest username= user identity
Payload contains: [A, B, C]

8. Verifies selection is same
as in step 3. Continues with
mechanism A

8. Verifies selection is same
as in step 3. Continues
with mechanism A

7. HTTP/1.1 200 OK
Authentication - Info: Digest, …
Payload contains: [A]

4. Compute responses based
on mechanism A
4. Compute responses based
on mechanism A

3. HTTP/1.1 401 Unauthorized
WWW- Authenticate: Digest nonce=”xxx”,qop=”auth int”, …
Payload contains: [A]

2. Select auth. method A
Create challeng

2. Select auth. method A
Create challenge e

BSF BSF MN MN

 1
2

3

Figure 4.3 Bootstrapping mechanism selection

4.5.2.2 Bootstrapping Procedures for CDMA1x and CDMA1x EV-DO Systems 4

5
6
7
8
9

10
11
12

13
14
15

16

This section details the bootstrapping procedures to generate a bootstrapping key (Ks) from the
cdma2000® Legacy session key material (SMEKEY, CDMA_PLCM, AUTHR) for CDMA1x systems
or the AAA key material (MN-AAA Key) for CDMA1x EV-DO systems. To achieve cryptographic
separation and Perfect Forward Secrecy (PFS) for Ks generation based on either SMEKEY or MN-
AAA Key , Password Protected Diffie-Hellman (D-H) method is used (see [12]).

The mutual authentication between MN and the BSF is achieved through using the HTTP Digest
authentication. The HTTP Digest authentication mechanism also protects the integrity of information
carried in the payload, including B-TID, lifetime of Ks, etc.

The bootstrapping procedure based on CAVE is described in section 4.5.2.2.1; and the bootstrapping
procedure based on MN-AAA Key is described in section 4.5.2.2.2. The common calculations used by
the two procedures are specified in section 4.5.2.2.3.

GBA Framework 18

S.S0109-0 v1.0

4.5.2.2.1 Bootstrapping based on CAVE 1
2
3
4
5
6
7
8

9
10
11

12
13
14
15
16
17

18

19

In this case, the BSF uses the AUTHREQ transactions [11] and existing CAVE authentication
procedures to request RANDU, AUTHU pair. These are transformed into a RAND, AUTHR pair and
used to request the associated session keys, SMEKEY and CDMA_PLCM from the HLR/AC. The
CAVE RAND parameter is transported to the MN using the HTTP digest authentication mechanism as
the part of payload described below. Once the GBA Function in the MN and the BSF possess the
AUTHR and the associated key material, they are ready to perform the key agreement protocol that
allows them to securely agree on a Ks.

As there is no SSD update mechanism defined in GBA, the HLR/AC shall not begin an SSD update
when the SYSACCESSTYPE is GBA access. Furthermore, since SSD is not needed by the BSF, the
HLR/AC should not send SSD to the BSF.

The Diffie-Hellman key agreement is used to ensure cryptographic separation between the CAVE
generated key material (SMEKEY, CDMAPLCM and AUTHR) and the Ks. The CAVE generated
material is used as the password for authenticating the Diffie-Hellman key agreement between the MN
and the BSF (MS_PW and BS_PW will both be set equal to this material). The Diffie-Hellman
parameters (i.e. BS_RESULT and MS_RESULT), B-TID, and lifetime of Ks are all carried in the
HTTP payloads, which are integrity protected by setting “qop” equals to auth-int.

Figure 4.4 shows the bootstrapping procedure based on CAVE, followed by step-by-step descriptions.

GBA Framework 19

S.S0109-0 v1.0

MN
CAVE on UIM

GBA
Function BSF HLR/AC

1. GET / HTTP/1.1
Authorization: Digest username=IMSI@realm.com, [ESN]

4. Generate gx and RAND = RANDU | MIN2

8. HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest nonce=”<AKA_challenge, RAND>”,
qop=”auth-int”, [BS_RESULT]

9. RAND

10. AUTHR, KEYS

12. GET /HTTP/1.1
Authorization: Digest … (RES128 used as password),
 cnonce = 128 bits, Qop=”auth-int”, [MS_RESULT]

5. AUTHREQ(RAND, AUTHR)

6. VERIFIES AUTHR,
generates KEYS

7. authreq (KEYS)

13.Calculate gxy; Temp AKA key, RES128, Ks,
Verifies Digest response.

15. Verify Digest

14. HTTP/1.1 200 OK
Authentication-Info: Digest … (RES128 used as password)
[B-TID, key lifetime]

11.Calculate gy and gxy;
Temp AKA key, RES128, Ks

2.AUTHREQ

3. authreq (RANDU, AUTHU)

GBA Framework 20

1

2

Figure 4.4: Bootstrapping based on CAVE

S.S0109-0 v1.0

1
2
3

4
5
6

7

8
9

10

11
12
13
14
15

16

17

18
19
20
21
22

23
24
25

26
27

28
29
30
31
32
33

34
35
36
37
38

39
40
41
42
43
44

45
46

1. The MN sends an HTTP GET request towards the BSF. The user’s identity, in the form of
“IMSI@realm.com”, is included as the username in the Authorization header. The ESN is also sent
in payload since the BSF needs it to format a valid AUTHREQ to the HLR/AC.

2. The BSF derives the IMSI from the received user’s identity, and sends an AUTHREQ request for
RANDU/AUTHU pair to the HLR. The AUTHREQ includes IMSI, ESN and the SYSACCTYPE
parameter set to GBA access.

3. The HLR/AC responds with an authreq, which includes a RANDU/AUTHU pair.

4. The BSF takes the 24 bit RANDU value and concatenates it with the 8 least significant bits of
IMSI_S2 derived from IMSI to create RAND. It sets AUTHR equal to AUTHU. It also generates x
and calculates (gx mod p).

5. The BSF sends an AUTHREQ [11] to the HLR/AC. The AUTHREQ includes
SYSACCTYPE=GBA access and RAND and AUTHR parameter as above. The SYSCAP
parameter is set to indicate that authentication parameters were requested on the system access (bit
A=1) and that Signaling Message Encryption and Voice Privacy are supported by the system (bit
B=1 and bit C=1). All other SYSCAP parameters are set to zero.

6. The HLR/AC validates the AUTHR and generates the SMEKEY and CDMAPLCM.

7. The HLR/AC transfers these keys in an authreq response to the BSF.

8. The BSF calculates BS_PW = MS_PW = SMEKEY|CDMAPLCM|AUTHR. The BSF generates a
128 bit random AKA Challenge. The BSF sends a HTTP 401 response to the MN. The
AKA_Challenge and RAND are base64-encoded and carried in the nonce field of the WWW-
Authenticate header. The field “qop-options” is set to “auth-int” to ensure integrity protection of the
HTTP Digest message. The payload carries BS_RESULT (as defined in section 4.5.2.2.3).

9. The GBA Function at the mobile station verifies that the received BS_RESULT is not zero. The
RAND challenge value received by the GBA Function is sent to the legacy R-UIM or the 1xRTT
terminal as a simulated Global Challenge.

10. The 1xRTT terminal (or the legacy R-UIM) responds to the global challenge with an AUTHR,
SMEKEY and CDMAPLCM. These parameters are then delivered to the GBA Function.

11. The GBA function calculates MS_PW = BS_PW = SMEKEY|CDMAPLCM|AUTHR and recovers
(gx mod p) from the BS_RESULT. It then generates a secret random number “y” for the Diffie-
Hellman method and calculates (gy mod p) and (gxy mod p). It then generates the 128-bit random
number, CRAND. It then calculates the Temp_AKA_Key as defined in section 4.5.2.2.3. The GBA
function uses the Temp_AKA_Key and the AKA_Challenge with the standard AKA functions [16]
f3, f4, and f2 to generate CK, IK and a 128 bits RES128 respectively.

12. The MN sends another HTTP GET request to the BSF with an appropriate Authorization header.
The Digest response is computed in accordance with [10] using RES128 as the password. The
CRAND is base64-encoded and carried in the cnonce field. The HTTP payload contains
MS_RESULT= (as defined in section 4.5.2.2.3). The format of the HTTP payload is specified in
Annex B.

13. The BSF verifies that the received MS_RESULT is not zero. The BSF recovers the CRAND from
the cnonce field. The BSF uses BS_PW= MS_PW to recover (gy mod p). From this it calculates
(gxy mod p) and Temp_AKA_Key as defined in section 4.5.2.1.3. It then uses Temp_AKA_key and
AKA_Challenge with the standard AKA functions [16] f3, f4, and f2 to generate CK, IK and a 128
bits RES128 respectively. The BSF authenticates the MN by verifying the Digest response using
RES128 as the password. If successful, the BSF sets Ks= CK|IK.

14. The BSF generates the B-TID by taking the base64 encoded AKA_Challenge value from step 8,
and the BSF server name, i.e. base64encode(AKA_challenge)@BSF_servers_domain_name. The

GBA Framework 21

S.S0109-0 v1.0

BSF sends a 200 OK response to the MN. The server digest response, “rspauth”, calculated
according to [10] using RES

1
2
3
4

5
6

7
8
9

10
11

12
13
14
15
16
17

18
19

20

21

128 as the password, is carried in the Authentication-Info header. The
payload of the 200 OK response also contains the B-TID, and the lifetime of the key Ks. The
format of the HTTP payload is specified in Annex B.

15. The MN verifies rspauth according to [10] using RES128 as the password. If successful, the server
is authenticated, the MN sets Ks=CK|IK, and the bootstrapping is complete.

4.5.2.2.2 Bootstrapping Based on MN-AAA Key
In this case, the Mobile IP authentication message exchanges are transported using the HTTP Digest
authentication mechanism as described below. Once the GBA Function and the BSF possess the MN-
AAA Authenticator, they are ready to perform the key agreement protocol that allows them to securely
agree on a Ks.

The Diffie-Hellman key agreement is used to ensure cryptographic separation between the MN-AAA
Key and the Ks. The MN-AAA Authenticator is used as the password for authenticating the Diffie-
Hellman key agreement between the MN and the BSF (MS_PW and BS_PW will both be set equal to
the MN-AAA Authenticator). The Diffie-Hellman parameters (i.e. BS_RESULT and MS_RESULT), B-
TID, and lifetime of Ks are all carried in the HTTP payloads, which are integrity protected by setting
“qop” equals to auth-int.

Figure 4.5 shows the bootstrapping procedure based on MN-AAA Key, followed by step-by-step
descriptions.

GBA Framework 22

S.S0109-0 v1.0

 MN
MN-AAA

function on
UIM

GBA
Function BSF H-AAA

1. GET / HTTP/1.1
Authorization: Digest username= user identity
[MS_CHALLENGE]

2. Generate AKA_Challenge, BS_CHALLENGE & gx

6. HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
nonce=”<AKA_Challenge, BS_CHALLENGE>”,
qop=”auth-int”, [BS_RESULT]

7. BS_CHALLENGE,
MS_CHALLENGE

8. Return MN-AAA Authenticator

10. GET /HTTP/1.1
Authorization: Digest (RES128 used as password),
cnonce=CRAND, qop=”auth-int”, [MS_RESULT]

3. RADIUS Access Request

4. Calculate MN-AAA
Authenticator

5. RADIUS Access Accept
[MN-AAA Authenticator]

13. Verify Digest

12. HTTP/1.1 200 OK
Authentication-Info: Digest … (RES used as password)
 [B-TID, key lifetime]

9. Create CRAND. Calculate gy and gxy;
Temp_AKA_key; RES128; Ks

11.Calculate gxy; Temp_AKA_key; RES128;
Verifies Digest response.

GBA Framework 23

1

2

1. The MN creates a 16-bytes random number, MS_CHALLENGE. The MN sends an HTTP GET 3
request towards the BSF. The user’s identity, in the form of “IMSI@realm.com”, is included as the 4
username in the Authorization header. The MS_CHALLENGE is included in the payload. 5

Figure 4.5: Bootstrapping procedure based on MN-AAA Key

S.S0109-0 v1.0

2. The BSF generates a random 128 bit AKA Challenge and a 16-bytes random number,
BS_CHALLENGE. It also generates x and calculates (gx mod p).

1
2

3. The BSF, acting as a RADIUS client, sends an Access Request message to the H-AAA requesting 3
4

4. The MN-AAA algorithm uses the MS_CHALLENGE (as MIP-RRQ) and BS_CHALLENGE (as 5
6

5. The H-AAA responds with the Access Accept message containing the MN-AAA Authenticator. 7

6. The BSF sends a HTTP 401 8
response to the MN. The AKA_Challenge and BS_CHALLENGE are base64-encoded and carried 9

10
The payload carries BS_RESULT (as defined in section 4.5.2.2.3). 11

7. 12
] 13

14

15
16

ge)values, as per current legacy UIM specifications. The 17
MN-AAA Authenticator is returned to the GBA Function. 18

9. om this 19
20

ion then creates the 128-bit CRAND 21
and calculates the Temp_AKA_Key as defined in section 4.5.2.2.3. It then uses Temp_AKA_Key 22

 and a 23
 24

25

10. 26
27

-encoded and carried in the cnonce field. The HTTP payload contains the 28
MS_RESULT (as defined in section 4.5.2.2.3). The format of the HTTP payload is specified in 29

30

11. ver (gy 31
 32

en uses Temp_AKA_key and AKA_Challenge with the standard AKA functions [16] 33
f3, f4, and f2 to generate CK, IK and a 128 bits RES respectively. The BSF authenticates the MN 34

35
36

12. 37
e 38

ds a 200 OK response to the MN. The server digest response, “rspauth”, calculated 39
according to [10] using RES as the password, is carried in the Authentication-Info header. The 40

41
42

13. is 43
44

 45

the MN-AAA Authenticator associated with the MN.

Mobile_IP Challenge) to calculate the MN-AAA Authenticator.

The BSF calculates BS_PW = MS_PW = MN-AAA Authenticator.

in the nonce field of the WWW-Authenticate header. The field “qop-options” is set to “auth-int”.

The GBA Function, after verifying that the BS_RESULT is not zero, sends BS_CHALLENGE and
MS_CHALLENGE to the legacy UIM and requests the MN-AAA algorithm in the legacy UIM [9
to compute the MN-AAA Authenticator.

8. The MN-AAA algorithm computes the 16-byte MN-AAA Authenticator (C.S0023-B Section 4.7.3)
using the MN-AAA Key and the received MS_CHALLENGE (as MIP-RRQ) and
BS_CHALLENGE (as Mobile_IP Challen

The GBA Function calculates MS_PW = BS_PW = MN-AAA Authenticator and fr
recovers (gx mod p). It then generates a secret random number “y” for the Diffie-Hellman method
and calculates (gy mod p) and (gxy mod p). The GBA funct

and AKA_Challenge with the standard AKA functions [16] f3, f4, and f2 to generate CK, IK
128 bits RES128 respectively. For the Digest authentication, the GBA Function uses the CRAND as
a client nonce.

The MN sends another HTTP GET request to the BSF with an appropriate Authorization header.
The Digest response is computed in accordance with [10] using RES128 as the password. The
CRAND is base64

Annex B.

The BSF verifies that the received MS_RESULT is not zero. The BSF uses MS_PW to reco
mod p). From this it calculates (gxy mod p) and Temp_AKA_key as defined in section 4.5.2.2.3.
The BSF th

128
by verifying the Digest response using RES128 as the password. If successful, the BSF sets Ks=
CK|IK.

The BSF generates the B-TID by taking the base64 encoded AKA_Challenge value from step 2,
and the BSF server name, i.e. base64encode(AKA_Challenge)@BSF_servers_domain_name.Th
BSF sen

128
payload of the 200 OK response also contains the B-TID, and the lifetime of the key Ks. The
format of the HTTP payload is specified in Annex B.

The MN verifies rspauth according to [10] using RES128 as the password. If successful, the server
authenticated, the MN sets Ks=CK|IK and the bootstrapping is complete.

GBA Framework 24

S.S0109-0 v1.0

4.5.2.21
This the Ks generation. The 2
inputs used in the common calculations are: 3

4

5

6

_PW = BS_PW = SMEKEY|CDMA_PLCM|AUTHR. 7

 MS_PW = BS_PW = MN-AAA-Authenticator. 8

9

10
80DC1CD1 11

020BBEA6 0x3B139B22 0x514A0879 0x8E3404DD 12
1C245 13

0xE485B576 0x625E7EC6 0xF44C42E9 0xA637ED6B 0x0BFF5CB6 0xF406B7ED 14
0xEE386BFB 0x5A899FA5 0xAE9F2411 0x7C4B1FE6 0x49286651 0xECE65381 15
0xFFFFFFFF 0xFFFFFFFF 16

4.5.2.2.17
]. 18

MS_PW_HASH = H0 (0x00000001,0x00000001, H0 (MS_PW)) modulo 2128 | 19
0000002, H0 (MS_PW)) modulo 2128 | 20

128 21
22

H0 (0x00000001,0x00000005, H0 (MS_PW)) modulo 2128 | 23
24
25
26
27

 28

MS_RESULT = (MS29

(Note that MS_RESU may be reduced 30
odulo PARAM_P p31

X32
PARAM_P|(BS_RESULT/BS_PW_HASH) modulo PARAM_P | ((BS_RESULT/BS_PW_HASH)X) 33

34

Temp AKA key = H0 (0x00000003 | 0x00000120 |MS_PARAM |MS_PARAM) modulo 2128. 35

e 36
P2 AKA functions f3, f4, and f2 respectively as defined in [16] for GBA_ME. 37

38

39

.3 Common Calculations
 section specifies common MS and BSF calculations required to perform

MIP-RRQ = MS_CHALLENGE

Challenge = BS_CHALLENGE

H0 is the SHA-1 function (FIPS-180-1).

For CAVE based bootstrapping MS

For MN-AAA based bootstrapping

PARAM_G is set to ‘00001101’.

PARAM_P is set to the following 1024-bit prime number (Most Significant Bit first) as:
0xFFFFFFFF 0xFFFFFFFF 0xC90FDAA2 0x2168C234 0xC4C6628B 0x

0x29024E08 0x8A67CC74 0x

0xEF9519B3 0xCD3A431B 0x302B0A6D 0xF25F1437 0x4FE1356D 0x6D5

3.1 Mobile Station Calculations
X is a 384-bit random number. This number should be generated by the MS as recommended by [19

H0 (0x00000001,0x0
H0 (0x00000001,0x00000003, H0 (MS_PW)) modulo 2 |
H0 (0x00000001,0x00000004, H0 (MS_PW)) modulo 2128 |

H0 (0x00000001,0x00000006, H0 (MS_PW)) modulo 2128 |
H0 (0x00000001,0x00000007, H0 (MS_PW)) modulo 2128 |
H0 (0x00000001,0x00000008, H0 (MS_PW)) modulo 2128 |
H0 (0x00000001,0x00000009, H0 (MS_PW)) modulo 2128.

_PW_HASH * PARAM_GX) modulo PARAM_P.

LT is 1024 bits or 128 octets. In addition, the MS_PW_HAS
rior to multiplication to simplify implementation.)

H
m

MS_PARAM = MS_PW | CRAND | H0 (PARAM_G modulo

modulo PARAM_P).

CK, IK, and RES128 are computed using the Temp_AKA-Key as the Ki, the AKA_Challenge as th
RAND, and standard 3GP

KS = (CK | IK).

GBA Framework 25

S.S0109-0 v1.0

4.5.2.2. alculations 1
Y is a 384-bit random number. This number should be generated by the BSF as recommended by [19]. 2

BS_PW_HASH = H0 (0x00000001,0x00000001, H0 (BS_PW)) modulo 2128 | 3
01,0x00000002, H0 (BS_PW)) modulo 2128 | 4

128 5
H0 (0x00000001,0x00000004, H0 (BS_PW)) modulo 2 | 6
H0 (0x00000001,0x00000005, H0 (BS_PW)) modulo 2128 | 7

8
9

10
11

BS_RESULT = (BS_12

(Note that BS_RESUL may be reduced 13
modulo PARAM_P p14

15
PARAM_P|(MS_RESULT/MS_PW_HASH) modulo PARAM_P | ((MS_RESULT/MS_PW_HASH)X) 16

17

Temp AKA key = H0 (0x00000003 | 0x00000120 |BS_PARAM |BS_PARAM) modulo 2128. 18

19
P2 AKA functions f3, f4, and f2 respectively as defined in [16] for GBA_ME. 20

21

4.5.2.3

3.2 BSF C

H0 (0x000000
H0 (0x00000001,0x00000003, H0 (BS_PW)) modulo 2 |

128

H0 (0x00000001,0x00000006, H0 (BS_PW)) modulo 2128 |
H0 (0x00000001,0x00000007, H0 (BS_PW)) modulo 2128 |
H0 (0x00000001,0x00000008, H0 (BS_PW)) modulo 2128 |
H0 (0x00000001,0x00000009, H0 (BS_PW)) modulo 2128.
PW_HASH * PARAM_GX) modulo PARAM_P.

T is 1024 bits or 128 octets. In addition, the BS_PW_HASH
rior to multiplication to simplify implementation.)

BS_PARAM = BS_PW | CRAND | H0 (PARAM_G modulo X

modulo PARAM_P).

CK, IK, and RES128 are computed using the Temp_AKA_Key as the Ki, the AKA_Challenge as the
RAND, and standard 3GP

KS = (CK | IK).

Bootstrapping based on AKA 22

the bootstrapping procedure based on AKA, followed by the step-by-step descriptions. 23

pecifications of the AKA protocol in TS 33.102 [1] and the HTTP 24
FC 3310 [2] are repeated in figure 3 for the convenience of the 25

26
take precedence. 27

Figure 4.6 shows

NOTE 1: The main steps from the s
digest AKA protocol in R
reader. In case of any potential conflict, the specifications in TS 33.102 [1] and RFC 3310 [2]

GBA Framework 26

S.S0109-0 v1.0

 1

1. Request
(user identity)

8 . 200 OK
B-TID, Key lifetime

3. 401 Unauthorized
WWW -Authenticate:
Digest (RAND, AUTN
delivered)

MN HSS/HLR BSF

2. Zh interface:
BSF retrieves AV.

4 Client runs AKA
algorithms, verifies
AUTN, and session
keys derives RES

5. Request
Authorization:
Digest (RES is used)

6. Server checks the
given RES, if it is
correct.

7. Ks=CK||IK

9 . Ks=CK||IK

 2

3

4

5
6

7
8
9

10
11

Figure 4.6: The bootstrapping procedure

1. The MN sends an HTTP request towards the BSF.

2. BSF retrieves one Authentication Vector (AV, AV = RAND||AUTN||XRES||CK||IK) over the
reference point Zh from the HLR (using AUTHREQ as described in [15]) or HSS.

3. Then BSF forwards the RAND and AUTN to the MN in the 401 message (without the CK, IK and
XRES). This is to demand the MN to authenticate itself. The field “qop-options” is set to “auth-int”
to ensure integrity protection of the HTTP Digest message.

4. The MN checks AUTN to verify that the challenge is from an authorised network; the MN also
calculates CK, IK and RES. This will result in session keys IK and CK in both BSF and MN.

GBA Framework 27

S.S0109-0 v1.0

1
2
3

4

5
6
7

8
9

10
11
12

13
14

15
16

17
18

5. The MN sends another HTTP request, containing the Digest AKA response (calculated using RES),
to the BSF. The field “qop-options” is set to “auth-int” to ensure integrity protection of the HTTP
Digest message.

6. The BSF authenticates the MN by verifying the Digest AKA response.

7. The BSF generates key material Ks by concatenating CK and IK. The B-TID value shall be also
generated in format of NAI by taking the base64 encoded [5] RAND value from step 3, and the BSF
server name, i.e. base64encode(RAND)@BSF_servers_domain_name.

8. The BSF shall send a 200 OK message, including a B-TID, to the MN to indicate the success of the
authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks.
The key material Ks is generated in MN by concatenating CK and IK. The server digest response,
“rspauth”, is calculated according to [10] using RES as the password, and is carried in the
Authentication-Info header.

9. The MN verifies rspauth according to [10] using RES as the password. If successful, the server is
authenticated, and the MN sets Ks=CK|IK and the bootstrapping is complete.

Both the MN and the BSF shall use the Ks to derive the key material Ks_NAF during the procedures as
specified in section 4.5.3. Ks_NAF shall be used for securing the reference point Ua.

The MN and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime
of Ks has expired, or until the key Ks is updated.

4.5.3 Procedures using bootstrapped Security Association 19

20
21
22

23
24

25
26
27
28
29
30
31

32
33
34
35
36

37
38

39
40
41

Before communication between the MN and the NAF can start, the MN and the NAF first have to agree
whether to use shared keys obtained by means of the GBA. If the MN does not know whether to use
GBA with this NAF, it uses the Initiation of Bootstrapping procedure described in section 4.5.1.

Once the MN and the NAF have established that they want to use GBA then every time the MN wants
to interact with an NAF the following steps are executed as depicted in figure 4.7.

A Ua protocol may support an key derivation parameter (of at most 48 bytes), which needs to be known
by both the MN and NAF. The key derivation parameter may be used to provide key freshness for the
Ua protocol. For example, it could be a result of the MN and NAF exchanging nonce(s). Ua protocols
that use the key derivation parameter may also support a mechanism to refresh Ks_NAF by changing
the key derivation parameter and calculating a new Ks_NAF (this requires the NAF to request the new
Ks_NAF from the BSF) rather than forcing a new bootstrapping run. The following procedure can also
be used for key refreshing if either MN or NAF decides to create a new Ks_NAF using the same Ks.

Ks_NAF is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, NAI, NAF_Id), where KDF is the key
derivation function as specified in Annex A. RAND is made up from the random challenge used in the
bootstrapping and the key derivation parameter if used by the particular Ua protocol. The NAF_Id
consists of the FQDN of the NAF concatenated with the Ua security protocol identifier as specified in
Annex A of [13]. KDF shall be implemented in the ME for GBA_ME.

NOTE 1: To allow consistent key derivation based on NAF name in MN and BSF, at least one of the three
following prerequisites should be fulfilled:

(1) The NAF is known in DNS under one domain name (FQDN) only, i.e. no two different
domain names point to the IP address of the NAF. This has to be achieved by
administrative means.

GBA Framework 28

S.S0109-0 v1.0

1
2
3
4

5
6
7
8
9

10

11

12
13
14
15
16

17
18

19
20

21
22
23

24
25
26
27
28
29
30

31
32
33
34
35

36
37

38
39

40
41

42

43
44
45
46

(2) Each DNS entry of the NAF points to a different IP address. The NAF responds to all
these IP addresses. Each IP address is tied to the corresponding FQDN by NAF
configuration. The NAF can see from the IP address, which FQDN to use for key
derivation.

(3) Ua uses a protocol which transfers the host name (FQDN of NAF as used by MN) to NAF
(e.g. HTTP/1.1 with mandatory Host request header field). This requires the NAF to
check the validity of the host name, to use this name in all communication with MN
where appropriate, and to transfer this name to BSF to allow for correct derivation of
Ks_NAF. In case of a TLS tunnel this requires either multiple-identities certificates or the
deployment of RFC 3546 [3] or other protocol means with similar purpose.

1. MN starts communication over reference point Ua with the NAF:

- in general, MN and NAF will not yet share the key(s) required to protect the reference point Ua. If
they already do (i.e. if a key Ks_NAF for the corresponding key derivation parameter NAF_Id is
already available), the MN and the NAF can start to securely communicate right away. In the case of
existing valid Ks_NAF, either MN or NAF can also decide to create a new Ks_NAF using the same
Ks. If the MN and the NAF do not yet share a key, the MN proceeds as follows:

- if a key Ks for the selected UIM application is available in the MN, the MN derives the key
Ks_NAF from Ks when needed, as specified in this section;

- if no key Ks for the selected UIM application is available in the MN, the MN first agrees on a new
key Ks with the BSF over the reference point Ub, and then proceeds to derive Ks_NAF;

NOTE 2: If it is not desired by the MN to use the same Ks for the selected UIM application to derive
more than one Ks_NAF then the MN should agree on a new key Ks with the BSF over the
reference point Ub, and then proceed to derive Ks_NAF;

- if the NAF shares a key with the MN, but the NAF requires an update of that key, e.g. because the
key’s lifetime has expired or will expire soon, or the key can not meet the NAF local validity
condition, it shall send a suitable bootstrapping renegotiation request to the MN, see figure 4.7. If
the key's lifetime has expired the protocol used over reference point Ua shall be terminated. The
form of this indication depends on the particular protocol used over reference point Ua. If the MN
receives a bootstrapping renegotiation request, it starts a run of the protocol over reference point Ub,
as specified in section 4.5.2, in order to obtain a new key Ks.

NOTE 3: To allow for consistent key derivation in BSF and MN, both have to use the same NAF_Id
for derivation (see NOTE 2 of section 4.5.2). For each protocol used over Ua it shall be
specified if only cases (1) and (2) of NOTE 2 of section 4.5.2 are allowed for the NAF or if
the protocol used over Ua shall transfer also the FQDN used for key derivation by MN to
NAF.

NOTE 4: If the shared key between MN and NAF is invalid, the NAF can set deletion conditions to the
corresponding security association for subsequent removal.

- the MN supplies the B-TID to the NAF, in the form as specified in section 4.3.2, to allow the NAF
to retrieve the corresponding keys from the BSF;

NOTE 5: The MN can adapt the key material Ks_NAF to the specific needs of the reference point Ua.
This adaptation is outside the scope of this specification.

- key management for GBA related keys in the ME (i.e. Ks and Ks_NAF keys):

- all GBA related keys shall be deleted from the ME when a different R-UIM is inserted. This
requirement is only applicable to ME supporting R-UIM. Therefore the ME needs to store in non-
volatile memory the last inserted R-UIM-identity to be able to compare that with the used R-UIM-
identity at R-UIM insertion and power on;

GBA Framework 29

S.S0109-0 v1.0

1

2
3
4

5
6
7

8
9

10

11
12
13
14
15

16
17

18
19
20

21
22
23
24
25
26
27
28

29
30

31
32

33
34
35

36
37

38

39
40
41
42
43

- the Key Ks shall be deleted from the ME when the ME is powered down;

- all other GBA related keys may be deleted from the ME when the ME is powered down. If the ME
does not delete the GBA keys at power down then the GBA keys need to be stored in non-volatile
memory.

- when a new Ks is agreed over the reference point Ub and a key Ks_NAF, derived from one NAF_Id,
is updated, the other keys Ks_NAF, derived from different values NAF_Id, stored on the MN shall
not be affected;

NOTE 6: According to the procedures defined in clauses 4.5.2 and 4.5.3, in the MN there is at most
one Ks_NAF key stored per NAF_Id.

2. NAF starts communication over reference point Zn with BSF

- The NAF requests key material corresponding to the B-TID supplied by the MN to the NAF and the
key derivation parameter if used by the particular Ua protocol. If the NAF has several FQDNs,
which may be used in conjunction with this specification, then the NAF shall transfer in the request
over Zn, as part of the NAF_Id, the same FQDN, which was used over Ua (see NOTE 2 on key
derivation in this clause);

- The NAF may also request one or more application-specific USSs for the applications, which the
request received over Ua from MN may access;

- With the key material request, the NAF shall supply NAF_Id (which includes FQDN of the NAF
and the Ua security protocol identifier) to the BSF and the BSF shall be able to verify that the NAF
is authorized to use that NAF_Id;

3. The BSF derives the keys required to protect the protocol used over reference point Ua from the key
Ks and the key derivation parameters, as specified in this section, and supplies to NAF the requested
key Ks_NAF, as well as the lifetime of that key and the bootstrapping time (that is the time that the
bootstrapping occurred between the MN and BSF), and the requested application-specific and
potentially NAF group specific USSs if they are available in subscriber's GUSS and if the NAF is
authorized to receive the requested USSs. If the key identified by the B-TID supplied by the NAF is
not available at the BSF, the BSF shall indicate this in the reply to the NAF. The NAF then indicates
a bootstrapping renegotiation request to the MN.

NOTE 7: The NAF can further set the local validity condition of the Ks_NAF according to the local
policy, for example a limitation of reuse times of a Ks_NAF.

NOTE 8: The NAF shall adapt the key material Ks_NAF to the specific needs of the reference point Ua
in the same way as the MN did. This adaptation is outside the scope of this specification.

- The BSF may require that one or more application-specific and potentially NAF group specific
USSs shall be present in subscriber's GUSS for the NAF (see section 4.4.5). If one or more of these
required settings are missing from the GUSS, the BSF shall indicate this in the reply to the NAF.

- The BSF may also send the private user identity (IMPI) and requested USSs to NAF according to
the BSF's policy;

4. NAF continues with the protocol used over the reference point Ua with the MN.

- The NAF stores the session key Ks_NAF. Although the GBA Function will not handle more than
one Ks_NAF per NAF_Id at a time, the Ua application may handle multiple Ks_NAF keys
associated with a particular NAF_Id. In particular, when the key derivation parameter is used, the
MN and the NAF can identify different Ks_NAF keys for a particular NAF by associating them to
the key derivation parameter.

GBA Framework 30

S.S0109-0 v1.0

1
2

Once the run of the protocol used over reference point Ua is completed the purpose of bootstrapping is
fulfilled as it enabled MN and NAF to use reference point Ua in a secure way.

 MN BSF

B-TID, Ks, Prof

1. Application Request
(B-TID, msg)

NAF Ua Zn

2. Authentication Request

(B-TID, NAF_Id, Profile request)
3. Authentication Answer

(Ks_NAF, Prof, Key lifetime,
Bootstrapping time)

4. Application Answer

msg is appl. specific dataset
Prof is application specific part of user profile

 The Server
 stores Ks_NAF,
Prof and Key lifetime

B-TID, Ks

 3

4

5
6

7

Figure 4.7: The bootstrapping usage procedure

Note: Transport of the key derivation parameter information is not shown in this diagram, but could
happen in messages 1 or 4 or other Ua protocol messages.

1. Request

2. Bootstrapping
Renegotiation Request

MN NAF

 8

9 Figure 4.8: Bootstrapping renegotiation request

GBA Framework 31

S.S0109-0 v1.0

4.5.4 Procedure related to service discovery 1

2

3

The address of the BSF should be preconfigured in the MN.

5 UIM-based enhancements to Generic
Bootstrapping Architecture (GBA_U) 4

5
6
7

8

It is assumed that the UIM and the BSF involved in the procedures specified in this section are capable
of handling the GBA_U specific enhancements. The procedures specified in this section also apply if
NAF is not GBA_U aware.

5.1 Architecture and reference points for bootstrapping with UIM-
based enhancements 9

10
11
12

13

The text from section 4.3 of this specification applies also here, with the addition that the interface
between the ME and the UIM needs to be enhanced with GBA_U specific commands. The requirements
on these commands can be found in section 5.2.1, details on the procedures are in section 5.3.

5.2 Requirements and principles for bootstrapping with UIM-
based enhancements 14

15 The requirements and principles from section 4.4 also apply here with the following addition:

5.2.1 Requirements on MN 16

17
18
19

20
21

22
23

24
25

26
27

The AAA key material (MN-AAA Authenticator) for CDMA1x EV-DO systems or the AKA key
material (CK and IK) resulting from a run of the protocol over the Ub reference point shall not leave the
UIM.

The UIM shall be able to distinguish between authentication requests for GBA_U, and authentication
requests for other authentication domains.

Upon an authentication request from the ME, which the UIM recognizes as related to GBA_U, the UIM
shall derive the bootstrapping key.

Upon request from the ME, the UIM shall be able to derive further NAF-specific keys from the derived
bootstrapping key stored on the UIM.

All GBA-aware MEs, shall support both GBA_U and GBA_ME bootstrapping procedures. The decision
on running one or the other shall be based on the UIM capabilities.

5.2.2 Requirements on BSF 28

29
30

31
32

BSF shall support both GBA_U and GBA_ME bootstrapping procedures. The decision on running one
or the other shall be based on subscription information (i.e. UIM capabilities).

The BSF shall be able to acquire the UIM capabilities related to GBA as part of the GBA user security
settings received from the HSS/HLR/AAA.

GBA Framework 32

S.S0109-0 v1.0

5.3 Procedures for bootstrapping with UIM-based enhancements 1

5.3.1 Initiation of bootstrapping 2

3 The text from section 4.5.1 of this document applies also here.

5.3.2 Bootstrapping procedures 4

5
6
7
8
9

10

When a MN wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it
shall first perform a bootstrapping authentication (see figure 5.3). Otherwise, the MN shall perform a
bootstrapping authentication only when it has received bootstrapping initiation required message or a
bootstrapping renegotiation indication from the NAF, or when the lifetime of the key in MN has expired
(see clause 5.3.3). The text from section 4.5.2.1 of this specification also applies here.

The user identity is created as described in section 4.5.2.1.

5.3.2.1 Bootstrapping Procedures for CDMA1x EV-DO Systems 11

12
13
14
15

16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31

This section details the bootstrapping procedures to generate a bootstrapping key (Ks) in the UIM from
the AAA key material (MN-AAA Key) for CDMA1x EV-DO systems. To achieve cryptographic
separation and Perfect Forward Secrecy (PFS) for Ks generation based on MN-AAA Key, Password
Protected Diffie-Hellman (D-H) method is used (see [12]).

The mutual authentication between MN and the BSF is achieved through using the HTTP Digest
authentication. The HTTP Digest authentication mechanism also protects the integrity of information
carried in the payload, including B-TID, lifetime of Ks, etc.

5.3.2.1.1 Bootstrapping Based on MN-AAA Key
In this case, the Mobile IP authentication message exchanges are transported using the HTTP Digest
authentication mechanism as described below. Once the UIM and the BSF possess the MN-AAA
Authenticator, they are ready to perform the key agreement protocol that allows them to securely agree
on a Ks.

A GBA-capable UIM shall prevent the usage of its "Mobile IP authentication" functions for GBA_ME.
Therefore, the BSF and ME derive MS_CHALLENGE* and BS_CHALLENGE* by concatenating the
exchanged MS_CHALLENGE and BS_CHALLENGE (i.e. MS_CHALLENGE* =
BS_CHALLENGE* = MS_CHALLENGE || BS_CHALLENGE). The BSF will send
MS_CHALLENGE* and BS_CHALLENGE* to the H-AAA, which retrieves the MN-AAA Key for
the user and computes a MN-AAA Authenticator. The UIM will similarly compute the MN_AAA
authenticator, which will not leave the UIM. Instead, the UIM will return the hash of MN-AAA
Authenticator to the ME.

GBA Framework 33

S.S0109-0 v1.0

1
2
3

4
5
6
7

8
9

10
11

Furthermore, a GBA_U capable UIM shall not respond to an ordinary MN-AAA challenge if Hash
(MIP-RRQ) = Hash (BS_CHALLENGE). An R-UIM shall not complete the "Compute IP
Authentication command", which is defined in [9]), when Hash (MIP-RRQ) = Hash (Challenge).

The Diffie-Hellman key agreement is used to ensure cryptographic separation between the MN-AAA
Key and the Ks. The hash of the MN-AAA Authenticator is used as the password for authenticating the
Diffie-Hellman key agreement between the UIM and the BSF. Although the DH calculations are done
in the ME, the DH result and the MN-AAA Authenticator are used by the UIM to calculate the Ks.

The Diffie-Hellman parameters (i.e. MS_RESULT and BS_RESULT), B-TID, and lifetime of Ks are all
carried in the HTTP payloads, which are integrity protected by setting “qop” equals to auth-int.

Figure 5.1 shows the bootstrapping procedure based on MN-AAA Key, followed by step-by-step
descriptions.

GBA Framework 34

S.S0109-0 v1.0

 M N
G BA-enabled

U IM
GBA–enabled

M E BSF H-AAA

1. G ET / HTTP/1.1
Authorization: D igest usernam e=IM SI@ realm .com , [M S_CH ALLENG E]

2. G enerate AKA_Challenge, BS_C hallenge, gx

6. HTTP/1.1 401 Unauthorized
W W W -Authenticate: D igest nonce=”<AKA_Challenge,
BS_Challenge>”, qop=”auth-int”, BS_RESU LT

10. AKA_Challenge, H0(gx,gy, gxy)

12. R eturn C RAN D, R ES128

9. Calculate M S_PW _HASH, BS_PW _HASH, gy, gxy

13. G ET /HTTP/1.1
Authorization: D igest … (R ES 128 used as password),
cnonce, qop=”auth-int”, [M S_R ESU LT]

3. RADIU S Access Request

4. Calculate M N-AAA
Authenticator

5. RADIU S Access Accept
[M N-AAA Authenticator]

14. C alcu late gxy,
Tem p AKA key, R ES 128, Ks
Verifies D igest response.

16. Verifty D igest

15. HTTP/1.1 200 OK
Authentication-Info: D igest … (RES128 used as password)
[B-T ID , key lifetim e]

17. Stores B-T ID
and key lifetim e

11. G enerate CR AND;
Calu late Tem p AKA key,
RES 128 & Ks

7. BS_C hallenge*, M S_Challenge*

8. H0(M N-AAA authenticator)

GBA Framework 35

1

2
3
4

Figure 5.1: Bootstrapping procedure based on MN-AAA Key

1. The MN sends an HTTP GET request towards the BSF. The user’s identity, in the form of
“IMSI@realm.com”, is included as the username in the Authorization header. The MN creates a
16-bytes random number, MS_CHALLENGE, and also sends it in the payload.

S.S0109-0 v1.0

2. The BSF generates a random 128 bit AKA Challenge and a 16-bytes random number,
BS_CHALLENGE. It also generates x and calculates g

1
2

3
4
5

6
7

8

9
10
11
12

13
14
15
16

17
18
19
20

21
22
23
24
25

26

27
28
29
30
31

32

33
34
35
36
37

38
39
40
41
42
43
44
45

x mod p.

3. The BSF computes MS_CHALLENGE* = BS_CHALLENGE* = MS_ CHALLENGE || BS_
CHALLENGE. The BSF, acting as a RADIUS client, sends an Access Request message to the H-
AAA requesting the MN-AAA Authenticator associated with the MN.

4. The MN-AAA algorithm uses the MS_CHALLENGE* (as MIP-RRQ) and BS_CHALLENGE* (as
Mobile_IP Challenge) to calculate the MN-AAA Authenticator.

5. The H-AAA responds with an Access Accept message containing the MN-AAA Authenticator

6. The BSF sets BS_PW = MS_PW = MN-AAA Authenticator. The BSF sends a HTTP 401 response
to the MN. The AKA_Challenge and BS_CHALLENGE are base64-encoded and carried in the
nonce field of the WWW-Authenticate header. The field “qop-options” is set to “auth-int”. The
payload carries BS_RESULT (as defined in section 4.5.2.2.3).

7. The GBA Function in the ME verifies that BS_RESULT is not zero. The GBA Function in the ME
computes MS_ CHALLENGE * = BS_ CHALLENGE * = MS_ CHALLENGE || BS_
CHALLENGE. The MS_ CHALLENGE * and BS_ CHALLENGE * values are sent to the GBA-
enabled UIM as part of GBA bootstrapping procedures.

8. The UIM derives and stores the 16-byte MN-AAA Authenticator using the MN-AAA Key, the
MS_CHALLENGE* (as MIP-RRQ), and the BS_CHALLENGE* (as Mobile_IP Challenge)
values. To preserve security of computed keys, the MN-AAA Authenticator is retained in the UIM.
Instead, the UIM returns H0(MN-AAA Authenticator) to the GBA Function.

9. The GBA function in the ME uses H0(MN-AAA Authenticator) to calculate BS_PW_HASH as
defined in section 4.5.2.2.3; this is used to get gx mod p. It generates a secret random number “y”
for the Diffie-Hellman method and calculates gy mod p and gxy mod p. It also calculates
MS_PW_HASH using H0(MN-AAA Authenticator) as defined in section 4.5.2.2.3 which is used to
create MS_RESULT (as defined in section 4.5.2.2.3).

10. The GBA Function sends the AKA_Challenge and the hash H0(gx,gy,gxy) to the UIM.

11. The UIM generates the 128-bit random number, CRAND. The UIM uses CRAND, the received
hash and the stored MN-AAA Authenticator to calculate the Temp AKA key as defined in section
4.5.2.2.3. It then uses Temp_AKA_key and AKA_Challenge in the either the standard 3GPP2 [16]
or operator chosen AKA functions f3, f4, and f2 to generate CK, IK and a 128 bits RES128
respectively.

12. The UIM returns CRAND and RES128 to the GBA Function in the ME.

13. The MN sends another HTTP GET request to the BSF with an appropriate Authorization header.
The Digest response is computed in accordance to [10] using RES128 as the password. A 128 bit
CRAND is base64-encoded and carried in the cnonce field. The HTTP payload contains the
MS_RESULT (as defined in section 4.5.2.2.3). The format of the HTTP payload is specified in
Annex B.

14. The BSF verifies that the received MS_RESULT is not zero. The BSF uses MS_PW to get gy
mod p. From this it calculates gxy mod p and Temp_AKA_key as defined in section 4.5.2.2.3. It
then uses Temp_AKA_key and AKA_Challenge in the either the standard 3GPP2 [16] or operator
chosen AKA functions f3, f4, and f2 to generate CK, IK and a 128 bits RES128 respectively. The
BSF authenticates the UIM by verifying the Digest response using RES128 as the password. If
successful, the BSF sets Ks= CK|IK. The BSF generates the B-TID value by taking the base64
encoded AKA_Challengevalue from step 2, and the BSF server name, i.e.
base64encode(AKA_Challenge)@BSF_servers_domain_name.

GBA Framework 36

S.S0109-0 v1.0

15. The BSF sends a 200 OK response to the MN. The server digest response, “rspauth”, is calculated
according to [10] using RES

1
2
3
4

5

6
7

128 as the password, and is carried in the Authentication-Info header.
The payload of the 200 OK response also contains the B-TID, and the lifetime of the key Ks. The
format of the HTTP payload is specified in Annex B.

16. The GBA Function verifies rspauth according to [10] using RES as the password.

17. If the server is authenticated then the ME stores B-TID and the lifetime of Ks in the UIM. The key
Ks shall never leave the UIM.

5.3.2.2 Bootstrapping procedures based on AKA 8

9
10
11

12

13
14
15
16

17

The procedure specified in this section differs from the procedure specified section 4.5.2.3 in the local
handling of keys and Authentication Vectors in the MN and the BSF. The messages exchanged over the
Ub reference point are identical for both procedures.

Figure 5.3 shows the bootstrapping procedure based on AKA, followed by step by step descriptions.

NOTE: The main steps from the specifications of the AKA protocol in TS 33.102 [1] and the HTTP
digest AKA protocol in RFC 3310 [2] are repeated in figure 5.2 for the convenience of the
reader. In case of any potential conflict, the specifications in TS 33.102 [1] and RFC 3310 [2]
take precedence.

GBA Framework 37

S.S0109-0 v1.0

1. Request
(user identity)

10 200 OK
B-TID, Key lifetime

3. 401 Unauthorized
WWW -Authenticate:
Digest (RAND, AUTN*
delivered)

MN
GBA
Enabled ME

HSS/HLR BSF

2. Zh interface:
BSF retrieves AV

 5. UIM runs AKA
algorithms, verifies
AUTN*, and derives

ikeys and RES

7. Request
Authorization:
Digest (RES is used)

8. Server checks the
given Digest, if it is
correct.

9. Ks=CK||IK

11. Stores B-TID
and Key lifetime

GBA-enabled
UIM

6. returns RES

4. sends
(RAND, AUTN*)

Figure 5.2: The bootstrapping procedure with UIM-based enhancements 1

2

3
4
5
6

7

8
9

10

11
12

itself. The field “qop-options” is set to “auth-int” to ensure integrity protection of the HTTP Digest 13
message. 14

1. The ME sends an HTTP request towards the BSF.

2. The BSF retrieves one Authentication Vector (AV, AV = RAND||AUTN||XRES||CK||IK) over the
Zh reference point from the HLR (using AUTHREQ as described in [15]) or HSS. The BSF can then
decide to perform GBA_U, based on the user security settings (USSs). In this case, the BSF
proceeds in the following way:

- BSF computes MAC* = MAC⊕ Trunc(SHA-1(IK))

NOTE: Trunc denotes that from the 160 bit output of SHA-1 [6], the 64 bits numbered as [0] to [63]
are used within the * operation to MAC.

- The BSF stores the XRES after flipping the least significant bit.

3. Then BSF forwards the RAND and AUTN* (where AUTN* = SQN ⊕ AK || AMF || MAC*) to the
MN in the 401 message (without the CK, IK and XRES). This is to demand the MN to authenticate

GBA Framework 38

S.S0109-0 v1.0

4. 1

5. The UIM calculates IK and MAC (by performing MAC= MAC* ⊕ Trunc(SHA-1(IK))). Then the 2
C) to verify that the challenge is from an 3

authorized network; the UIM also calculates CK and RES. This will result in session keys CK and 4
5
6

6. 7

7. The ME sends another HTTP request, containing the Digest AKA response (calculated using RES), 8
tion of the HTTP 9

Digest message. 10

8. 11

9. The BSF generates the key Ks by concatenating CK and IK. The B-TID value shall be also 12
ue from step 3, and the 13

BSF server name, i.e. base64encode(RAND)@BSF_servers_domain_name. 14

10. 15
the lifetime of the key 16

Ks. The server digest response, “rspauth”, is calculated according to [10] using RES as the 17
18

11. ver is 19
 the UIM. 20

F 21
duri NAF and Ks_int_NAF are 22
used for securing the Ua reference point. 23

24
Ks has expired, or until the key Ks is updated. 25

5.3.3 ecurity Association

The ME sends RAND and AUTN* to the UIM.

UIM checks AUTN (i.e. SQN ⊕ AK || AMF || MA

IK in both BSF and UIM. The UIM stores Ks, which is the concatenation of CK and IK. Ks shall
never leave the UIM.

The UIM then transfers RES (after flipping the least significant bit) to the ME.

to the BSF. The field “qop-options” is set to “auth-int” to ensure integrity protec

The BSF authenticates the MN by verifying the Digest AKA response.

generated in format of NAI by taking the base64 encoded [5] RAND val

The BSF shall send a 200 OK message, including the B-TID, to the MN to indicate the success of
the authentication. In addition, in the 200 OK message, the BSF shall supply

password, and is carried in the Authentication-Info header.

The MN verifies rspauth according to [10] using RES as the password. If successful, the ser
authenticated, the ME stores B-TID and the lifetime of Ks in

Both the UIM and the BSF shall use the Ks to derive NAF-specific keys Ks_ext_NAF and Ks_int_NA
ng the procedures as specified in section 5.3.3, if applicable. Ks_ext_

The UIM and the BSF store the key Ks with the associated B-TID for further use, until the lifetime of

Procedures using bootstrapped S26

Before communication between the MN and the NAF can start, the MN and the NAF first have to agree 27
s not know whether to use 28

GBA with this NAF, it uses the Initiation of Bootstrapping procedure described in section 5.3.2. 29

AF, or 30
, which 31

are GBA_U unaware. If Ks_int_NAF, or ks_ext_NAF or both are to be used, this use has to be agreed 32
33
34
35
36

37
by both the MN and NAF. The key derivation parameter may be used to provide key freshness for the 38
Ua protocol. For example, it could be a result of the MN and NAF exchanging nonce(s). Ua protocols 39

40
41
42

whether to use shared keys obtained by means of the GBA. If the MN doe

Next, the MN and the NAF have to agree, which type of keys to use, Ks_ext_NAF or Ks_int_N
both. The default is the use of Ks_ext_NAF only. This use is also supported by MNs and NAFs

between MN and NAF prior to the execution of the procedure described in the remainder of this section
5.3.3. Any such agreement overrules the default use of the keys. A key selection indication (i.e. which
key, Ks_int_NAF or Ks_ext_NAF, the NAF shall use in the Ua reference point) may be present in the
application specific USS.

A Ua protocol may support a key derivation parameter (of at most 48 bytes), which needs to be known

that use the key derivation parameter may also support a mechanism to refresh Ks_(ext/int_)NAF by
changing the key derivation parameter and calculating a new Ks_(ext/int_)NAF (this requires the NAF
to request the new Ks_(ext/int_)NAF from the BSF) without forcing a new bootstrapping run. The

GBA Framework 39

S.S0109-0 v1.0

following procedure can also be used for key refreshing if either MN or NAF decides to create a new
Ks_(ext/int)_NAF using the same Ks.

Both the UIM and the BSF shall

1
2

use the bootstrapping key Ks to derive NAF-specific keys 3
Ks_ext_NAF and Ks_int_NAF when needed during the procedures below. Ks_ext_NAF and 4

5
6
7
8
9

10
11
12
13

 GBA then every time the MN wants 14
to interact with an NAF the following steps are executed as depicted in figure 5.3. 15

16

- rotect the reference point Ua. If 17
they already do (i.e. if a key Ks_(ext/int)_NAF for the corresponding key derivation parameter 18

19
20
21
22

quired, the ME requests the UIM to derive the key Ks_ext_NAF when needed 23
from Ks, as specified in this section. 24

- if ests the UIM to derive the key Ks_int_NAF when needed 25
from Ks, as specified in this section. 26

- if not available in the MN, the MN agrees on a new key Ks 27
with the BSF over the Ub reference point, as specified in section 5.3.2; 28

NO IM application to derive 29
more than one Ks_ext/int_NAF then the MN should first agree on new key Ks with the BSF 30

31
32

- if the s an update of that key, e.g. because the 33
key’s lifetime has expired or will expire soon, or the key can not meet the NAF local validity 34

 35
rm of 36

37
38
39

NO N, both have to use the same NAF_Id 40
for derivation (see NOTE 1 of section 4.5.3). For each protocol used over Ua it will be 41

42
o 43

44

Ks_int_NAF are used for securing the Ua reference point. Ks_ext_NAF is computed in the UIM as
Ks_ext_NAF = KDF(Ks, "gba-me", RAND, NAI, NAF_Id), and Ks_int_NAF is computed in the UIM
as Ks_int_NAF = KDF(Ks, "gba-u", RAND, NAI, NAF_Id), where KDF is the key derivation function
as specified in Annex A. RAND is made up from the random challenge used in the bootstrapping and
the key derivation parameter if used in the particular Ua protocol. The NAF_Id consists of the FQDN of
the NAF concatenated with the Ua security protocol identifier as specified in Annex A of [13]. The key
derivation parameters used for Ks_ext_NAF derivation must be different from those used for
Ks_int_NAF derivation. This is done by adding a static string “gba-me” in Ks_ext_NAF and “gba-u” in
Ks_int_NAF as an input parameter to the key derivation function.

Once the MN and the NAF have established that they want to use

1. MN starts communication over reference point Ua with the NAF:

 in general, MN and NAF will not yet share the key(s) required to p

NAF_Id is already available), the MN and the NAF can start to securely communicate right away. In
the case of existing valid Ks_(ext/int)_NAF, either MN or NAF can also decide to create a new
Ks_(ext/int)_NAF using the same Ks. If the MN and the NAF do not yet share a key, the MN
proceeds as follows:

- if Ks_ext_NAF is re

 Ks_int_NAF is required, the ME requ

Ks for the selected UIM application is

TE 1: If it is not desired by the MN to use the same Ks for the selected U

over the Ub reference point, as specified in section 5.3.2, and then proceeds to derive
Ks_ext_NAF or Ks_int_NAF, or both, as required.

NAF shares a key with the MN, but the NAF require

condition, it shall send a suitable bootstrapping renegotiation request to the MN, see figure 4.7. If the
key's lifetime has expired the protocol used over reference point Ua shall be terminated. The fo
this indication depends on the particular protocol used over Ua reference point. If the MN receives a
bootstrapping renegotiation request, it starts a run of the protocol over reference point Ub, as
specified in section 5.3.2, in order to obtain a new key Ks.

TE 2: To allow for consistent key derivation in BSF and M

specified if only cases (1) and (2) of NOTE 1 of section 4.5.3 are allowed for the NAF or if
the protocol used over Ua shall transfer also the FQDN used for key derivation by MN t
NAF.

GBA Framework 40

S.S0109-0 v1.0

1
2

3
4

5
6

7

8
9

10
11

12
13
14

15

16
17
18
19

20
21
22

23
24
25

26

27
28
29
30
31
32

33
34

35
36
37

38
39
40
41
42
43
44

NOTE 3: If the shared keys between MN and NAF become invalid, the NAF can set deletion
conditions to the corresponding security association for subsequent removal.

- the MN supplies the B-TID to the NAF, in the form as depicted in figure 5.3, to allow the NAF to
retrieve the corresponding keys from the BSF;

NOTE 4: The MN can adapt the keys Ks_ext_NAF or Ks_int_NAF to the specific needs of the Ua
reference point. This adaptation is outside the scope of this specification.

- key management for GBA related keys in the ME (i.e. Ks_ext_NAF keys):

- all GBA related keys shall be deleted from the ME when a different R-UIM is inserted.
Therefore the ME needs to store in non-volatile memory the last inserted R-UIM identity to
be able to compare that with the used R-UIM identity at R-UIM insertion and power on. This
requirement only applies to R-UIM capable MNs;

- all GBA related keys may be deleted from the ME when the ME is powered down. If the ME
does not delete the GBA keys at power down then the GBA keys need to be stored in non-
volatile memory.

- all GBA related keys in the UIM do not need to be deleted when the ME is powered down.

- when new key Ks is agreed over the Ub reference point and new NAF-specific keys need to
be derived for one NAF_Id, then both, Ks_ext_NAF and Ks_int_NAF (if present), shall be
updated for this NAF_Id, but further keys Ks_ext_NAF or Ks_int_NAF relating to other
NAF_Ids, which may be stored on the MN, shall not be affected.

NOTE 5: According to the procedures defined in clauses 5.3.2 and 5.3.3, in the MN there is at most one
Ks_int_NAF/Ks_ext_NAF key pair stored per NAF_Id. This rule ensures that the keys
Ks_ext_NAF and Ks_int_NAF are always in synch at the MN and the NAF.

NOTE 6: After each run of the protocol over the Ub reference point, a new key Ks, associated with a
new B-TID, are derived in the MN according to section 5.3.2, so that it can never happen,
that key Ks with different B-TIDs simultaneously exist in the MN.

2. NAF starts communication over reference point Zn with BSF

- The NAF requests from the BSF key material corresponding to the B-TID supplied by the MN to
the NAF and the key derivation parameter if used by the Ua protocol. If the NAF is GBA_U
aware it indicates this by including a corresponding flag in the request. If the NAF has several
FQDNs, which may be used in conjunction with this specification, then the NAF shall transfer in
the request over Zn, as part of the NAF_Id, the same FQDN, which was used over Ua (see
section 5.3.5);

- The NAF may also request one or more application-specific USSs for the applications, which the
request received over Ua from MN may access;

- With the key material request the NAF shall supply NAF_Id (which includes FQDN of the NAF
and the Ua security protocol identifier) to the BSF, and the BSF shall be able to verify that the
NAF is authorized to use that NAF_Id.

3. The BSF derives the keys Ks_ext_NAF, and Ks_int_NAF (if additionally required), as specified in
section 5.3.5. If the NAF indicated in its request that it is GBA_U aware, the BSF supplies to NAF
both keys, Ks_ext_NAF, and Ks_int_NAF, otherwise the BSF supplies only Ks_ext_NAF. In
addition, the BSF supplies the bootstrapping time and the lifetime time of these keys, and the
requested application-specific and potentially NAF group specific USSs if they are available in
subscriber's GUSS and if the NAF is authorized to receive the requested USSs. If the key identified
by the B-TID supplied by the NAF is not available at the BSF, the BSF shall indicate this in the

GBA Framework 41

S.S0109-0 v1.0

1
2

3
4

5
6

7

8
9

10
11
12
13

14
15

16

reply to the NAF. The NAF then indicates a bootstrapping renegotiation request (See figure 4.5) to
the MN.

NOTE 7: The NAF can further set the local validity condition of the Ks_(ext/int)_NAF according to
the local policy, for example a limitation of reuse times of a Ks_(ext/int)_NAF.

NOTE 8: The NAF may adapt the keys Ks_ext_NAF and Ks_int_NAF to the specific needs of the Ua
reference point. This adaptation is outside the scope of this specification.

4. NAF continues with the protocol used over the reference point Ua with the MN.

- The NAF stores the session keys Ks_int_NAF and Ks_ext_NAF. Although the GBA Function
will not handle more than one (Ks_ext_NAF; Ks_int_NAF) pair per NAF_Id at a time, the Ua
application may handle multiple (Ks_int_NAF and Ks_ext_NAF) key pairs associated with a
particular NAF_Id. In particular, when the key derivation parameter is used, the MN and the
NAF can identify different (Ks_ext_NAF; Ks_int_NAF) key pairs for a particular NAF by
associating them to the key derivation parameter.

Once the run of the protocol used over Ua reference point is completed the purpose of bootstrapping is
fulfilled as it enabled the MN and NAF to use Ua reference point in a secure way.

 MN BSF

B-TID, Ks, Prof

1. Application Request
(B-TID, msg)

NAF Ua Zn

2. Authentication Request

(B-TID, NAF_Id, Profile requests)
3. Authentication Answer
(Ks_ext/int_NAF, Prof, Key lifetime,
bootstrapping time)

4. Application Answer

msg is appl. specific dataset
Prof is application specific part of user profile

 The Server stores
Ks_ext/int_NAF,
Prof and Key lifetime

B-TID, Ks

 17

18 Figure 5.3: The bootstrapping usage procedure

GBA Framework 42

S.S0109-0 v1.0

1
2

Note: Transport of the key derivation parameter information is not shown in this diagram, but could
happen in messages 1 or 4 or other Ua protocol messages.

5.3.4 Procedure related to service discovery 3

4

5

The text from section 4.5.4 of this document applies also here.

5.4 UIM-ME interface description
5.4.1 Introduction 6

7
8
9

10

11

This section describes the UIM-ME interface to be used when a GBA aware UIM is present and the ME
is involved in a GBA bootstrapping procedure. When the UIM is not GBA aware, the ME uses the UIM
legacy functions to derive the MN-AAA Authenticator or the AKA key material (CK and IK) as defined
in [9].

5.4.2 GBA_U Bootstrapping procedure
5.4.2.1 Bootstrapping Based on MN-AAA Key 12

13

14
15
16

17
18
19

20
21
22

23
24
25

26
27

28
29

This procedure is part of the Bootstrapping procedure as described in section 5.3.2.1.

The ME sends BS_Challenge* and MS_Challenge* to the UIM, which performs the H0(MN-AAA
Authenticator) derivation as described in section 5.3.2.1. The UIM sends this value to the ME and stores
MN-AAA Authenticator for future use.

The ME sends AKA_Challenge and H0(gx,gy,gxy) to the UIM. Using these, the stored MN-AAA
Authenticator and a generated random number CRAND, the UIM calculates Ks=CK|IK and RES as
described in section 5.3.2.1. The UIM stores Ks and sends RES and CRAND to the ME.

If the bootstrapping procedure was completed successfully the ME notifies the UIM, which
subsequently stores Ks. The UIM also stores the used BS_Challenge* to identify the current
bootstrapped values. BS_Challenge* value in the UIM shall be further accessible by the ME.

The ME then finalizes the bootstrapping procedure and stores in the UIM the Transaction Identifier (B-
TID) and Key Life Time associated with the previous bootstrapped keys (i.e. Ks). Transaction Identifier
and Key Life Time values in the UIM shall be further accessible by the ME.

At the end of the GBA_U bootstrapping procedure the UIM stores Ks, Transaction Identifier, Key Life
Time and the BS_Challenge*.

A new bootstrapping procedure replaces Ks, B-TID, Key Life Time and BS_Challenge* values of the
previous bootstrapping procedure.

GBA Framework 43

S.S0109-0 v1.0

UIM ME

GBA_U Procedure (Bootstrap-1)
BS_Challenge*, MS_Challenge*

User authentication response
RES, CRAND

Storage of
B-TID, Key Life Time

Notification of a successful bootstrapping procedure

GBA_U Procedure (Bootstrap-2)
AKA_Challenge, H0(gx, gy, gxy)

D-H Password
H0(MN-AAA Authenticator)

 1
2 Figure 5.4: GBA_U Bootstrap Procedure

5.4.2.2 Bootstrapping procedures based on AKA 3

4

5
6

7
8

9
10
11

12
13

14
15

This procedure is part of the Bootstrapping procedure as described in section 5.3.2.2.

The ME sends RAND and AUTN* to the UIM, which performs the Ks derivation as described in
section 5.3.2.2.

The UIM then stores Ks. The UIM also stores the used RAND to identify the current bootstrapped
values. RAND value in the UIM shall be further accessible by the ME. The UIM sends RES to the ME.

The ME then finalizes the Bootstrapping procedure and stores in the UIM the Transaction Identifier (B-
TID) and Key Life Time associated with the previous bootstrapped keys (i.e. Ks). Transaction Identifier
and Key Life Time values in the UIM shall be further accessible by the ME.

At the end of the GBA_U bootstrapping procedure the UIM stores Ks, Transaction Identifier, Key Life
Time and the RAND.

A new bootstrapping procedure replaces Ks, B-TID, Key Life Time and RAND values of the previous
bootstrapping procedure.

GBA Framework 44

S.S0109-0 v1.0

UIM ME
GBA_U Procedure (Bootstrap)

RAND || AUTN*

User authentication response
RES

User authentication reject
CAUSE

Storage of
B-TID, Key Life Time

 1
2 Figure 5.5: GBA_U Bootstrap Procedure

5.4.3 GBA_U NAF Derivation procedure 3

4
5

6
7
8
9

10
11

12
13

14

This procedure is part of the Procedures using bootstrapped Security Association as described in section
5.3.3

The ME sends NAF_Id, NAI and optionally the Key Derivation Parameter (KDP) to the UIM. The UIM
then performs Ks_ext_NAF and Ks_int_NAF derivation as described in section 5.3.3. The UIM uses the
RAND and Ks values stored from the previous bootstrapping procedure. The UIM returns Ks_ext_NAF
to the ME and stores Ks_int_NAF and associated B-TID together with NAF_Id.

NOTE: A previous GBA_U Bootstrap needs to be undertaken before. If Ks is not available in the
UIM, the command will answer with the appropriate error message.

The input parameters NAI and the FQDN part of NAF_Id shall be encoded to octet strings using UTF-8
encoding rules as specified in IETF RFC 3629 [14].

UIM ME

GBA_U Procedure (NAF derivation)
NAF_ID, NAI, KDP (optional)

GBA_U Procedure response
Ks_ext_NAF

 15
16

17

18

19

Figure 5.6: GBA_U NAF derivation procedure

GBA Framework 45

S.S0109-0 v1.0

Annex A (normative): Specification of the key
derivation function KDF

1

2

A.1 Introduction 3

4
5
6

7
8

9

This annex specifies the key derivation function (KDF) that is used in the NAF specific key derivation
in both GBA (i.e. GBA_ME) and GBA_U. The key derivation function defined in the annex takes the
following assumptions:

1. the input parameters to the key derivation functions are octet strings - not bit strings of arbitrary
length:

2. a single input parameter will have lengths no greater than 65535 octets.

A.2 Generic key derivation function 10

11

12

13

14
15
16

17

18

19

20

21

22

23

24

25

26
27

28

The input parameters and their lengths shall be concatenated into a string S as follows:

1. The length of each input parameter in octets shall be encoded into two-octet string:

a) express the number of octets in input parameter Pi as a number l in the range [0, 65535].

b) Li is then a two-octet representation of the number l, with the most significant bit of the first
octet of Li equal to the most significant bit of l, and the least significant bit of the second octet of
Li equal to the least significant bit of l,

EXAMPLE: If Pi contains 258 octets then Li will be the two-octet string 0x01 0x02.

2. String S shall be constructed from n input parameters as follows:

S = FC || P0 || L0 || P1 || L1 || P2 || L2 || P3 || L3 ||... || Pn || Ln

where

FC is single octet used to distinguish between different instances of the algorithm,

P0 is a static ASCII-encoded string,

L0 is the two octet representation of the length of the P0,

P1 ... Pn are the n input parameters, and

L1 ... Ln are the two-octet representations of the corresponding input parameters.

3. The final output, i.e. the derived key is equal to HMAC-SHA-256 (as specified in [7] and [8])
computed on the string S using the key Key:

derived key = HMAC-SHA-256 (Key , S)

GBA Framework 46

S.S0109-0 v1.0

A.3 Input parameter encoding 1

2
3

A character string shall be encoded to an octet string according to UTF-8 encoding rules as specified in
IETF RFC 3629 [14].

A.4 NAF specific key derivation in GBA and GBA_U 4

5

6

7

8
9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25
26
27
28

In GBA and GBA_U, the input parameters for the key derivation function shall be the following:

- FC = 0x01,

- P1 = RAND,

RAND is formed by concatenating the 128-bit random number used to form B-TID used in the
bootstrapping and the key derivation parameter if used with the bootstrapping random
challenge first.

 - L1 = length of RAND is 16 to 64 octets (e.g. 0x00 0x10),

- P2 = NAI encoded to an octet string using UTF-8 encoding (see clause B.2.1),

- L2 = length of NAI is variable (not greater that 65535),

- P3 = NAF_Id with the FQDN of the NAF encoded to an octet string using UTF-8 encoding (see
clause B.2.1), and

- L3 = length of NAF_Id is variable (not greater that 65535).

In the key derivation of Ks_NAF as specified in clause 4 and Ks_ext_NAF as specified in clause 5,

- P0 = "gba-me" (i.e. 0x67 0x62 0x61 0x2d 0x6d 0x65), and

- L0 = length of P0 is 6 octets (i.e., 0x00 0x06).

In the key derivation of Ks_int_NAF as specified in clause 5,

- P0 = "gba-u" (i.e. 0x67 0x62 0x61 0x2d 0x75), and

- L0 = length of P0 is 5 octets (i.e., 0x00 0x05).

The Key to be used in key derivation shall be:

- Ks (e.g. CK || IK concatenated) as specified in clauses 4 and 5,

NOTE: In the specification this function is denoted as:
 Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id),
 Ks_ext_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), and
 Ks_int_NAF = KDF (Ks, "gba-u", RAND, IMPI, NAF_Id).

GBA Framework 47

S.S0109-0 v1.0

Annex B (normative): XML Schema Definition 1

B.1 Introduction 2

3
4
5
6

7

8

9

10

11

12

13

14
15

16
17

This annex contains the XML schema definition for an XML document carrying the bootstrapping
transaction identifier (B-TID), the key lifetime, the AUTHR when bootstrapping based on CAVE, the
password protected Diffie-Hellman parameters (MS_RESULT and BS_RESULT), and possibly other
server specific data.

The attributes shall indicate the following:

btid: B-TID

lifetime: key lifetime

esn: ESN value when bootstrapping based on CAVE

ms_chall: MS_Challenge when bootstrapping based on MN-AAA

ms_result: MS_RESULT, i.e. H1(MS_PW)•gy mod p

bs_result: BS_RESULT, i.e. H1(BS_PW)•gx mod p

auth_list: The list of supported bootstrapping mechanisms (in the “method” element), together with the
corresponding identities (in the “clientid” element)

auth The chosen bootstrapping mechanism (in the “method” element), together with the
corresponding identity (in the “clientid” element).

<?xml version="1.0" encoding="UTF-8"?> 18
<xs:schema targetNamespace="uri:3gpp2-gba" 19
 xmlns:gba="uri:3gpp2-gba" 20
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 21
 22
 <!-- definition of the root element containing B-TID, key lifetime, and other parameters --> 23
 <xs:complexType name="bootstrappingInfoType"> 24
 <xs:sequence> 25
 <xs:element name="btid" type="xs:string" minOccurs="0"/> 26
 <xs:element name="lifetime" type="xs:dateTime" minOccurs="0"/> 27
 <xs:element name="esn" type="xs:base64Binary" minOccurs="0"/> 28
 <xs:element name="ms_chall" type="xs:base64Binary" minOccurs="0"/> 29
 <xs:element name="ms_result" type="xs:base64Binary" minOccurs="0"/> 30
 <xs:element name="bs_result" type="xs:base64Binary" minOccurs="0"/> 31
 <xs:element name="auth_list" minOccurs="0"> 32
 <xs:complexType> 33
 <xs:sequence> 34
 <xs:element name="auth_info" type="gba:authInfo" minOccurs="1"/> 35
 </xs:sequence> 36
 </xs:complexType> 37
 </xs:element> 38
 <xs:element name="auth" type="gba:authInfo" minOccurs="0"/> 39
 </xs:sequence> 40

</xs:complexType> 41
 42

 <xs:complexType name="authInfo"> 43
 <xs:sequence> 44
 <xs:element name="method" type="gba:authType"/> 45

GBA Framework 48

S.S0109-0 v1.0

 <xs:element name="clientid" type="xs:string"/> 1
 </xs:sequence> 2
 </xs:complexType> 3

 4
 <!—definition of authentication and bootstrapping mechanism type--> 5
 <xs:simpleType name="authType"> 6
 <xs:restriction base="xs:string"> 7
 <xs:enumeration value="AKA"/> 8
 <xs:enumeration value="CAVE"/> 9
 <xs:enumeration value="MN-AAA"/> 10
 </xs:restriction> 11
 </xs:simpleType> 12
 13
 <!-- the root element --> 14
 <xs:element name="BootstrappingInfo" type="gba:bootstrappingInfoType"/> 15
 16
</xs:schema> 17

18

GBA Framework 49

S.S0109-0 v1.0

1

2

Annex-C (Informative): Signaling flows of
bootstrapping procedure 3

C.1 Scope of signaling flows 4

5

6

This annex gives examples of signaling flows for bootstrapping procedure.

C.2 Introduction
C.2.1 General 7

8
9

10

11

Bootstrapping procedure is executed in order to establish bootstrapped security association, i.e. bootstrapping
session between an MN and the BSF.

The bootstrapping session is used between a MN and a NAF.

Editor’s note: Signaling flow for bootstrapping session usage between a MN and a NAF will be added.

C.2.2 Rules required to interpret signaling flows 12

13

14

15

16

17

18

19
20

21

22

23

24

25
26

The following key rules are required to interpret the contents of the HTTP based messages during bootstrapping:

a) The HTTP based messaging is always initiated by the client:

- HTTP request is generated by the client (i.e. MN);

- HTTP response is generated by the server as a response to the HTTP request;

- HTTP proxies may be between the client and the server.

b) There is only one single HTTP response to the HTTP request.

c) In order to differentiate between HTTP messages and other protocol messages, the HTTP messages are
marked with simple arrow line, and all non-HTTP messages with block arrows.

d) The flows show the signaling exchanges between the following functional entities:

- Mobile Node (MN);

- Bootstrapping Server Function (BSF);

- Network Application Function (NAF);

e) The "(B-TID)" sequence of characters is used to indicate that the bootstrapping transaction identifier (B-
TID) needs to be filled in.

GBA Framework 50

S.S0109-0 v1.0

C.3 Signaling flows demonstrating a successful bootstrapping
procedure based on AKA

1
2

3
4
5

6
7
8

9

10

11

The overall bootstrapping procedure based on AKA in successful case is presented in figure C.3-1. The
bootstrapping Zh1 interface performs the retrieval of an authentication vector by BSF from the HSS. The
procedure corresponds to the step 2 in figure C.3-1.

This section specifies in detail the format of the bootstrapping procedure that is further utilized by various
applications. It contains the bootstrapping mechanism selection procedure between MN and BSF, the AKA
authentication procedure with BSF, and later the bootstrapping key material generation procedure.

10. Generation of bootstrapping
key material

9. 200 OK

8. Authentication and
generation of bootstrapping key

material

7. GET

6. Generation of response and
session keys

5. 401 Unauthorized

4. Authentication
vector selection

3. Zh1 interface

2. BSF chooses
AKA

1. initial GET

HSS BSF MN

Figure C.3-1: Bootstrapping signaling based on AKA

1. Initial GET request (MN to BSF) - see example in table C.3-1

GBA Framework 51

S.S0109-0 v1.0

1
2
3

4

 The purpose of this message is to initiate bootstrapping procedure between the MN and BSF. The MN
sends an HTTP request containing the private user identity towards its home BSF. The MN also
presents a list of bootstrapping mechanisms that it supports in the payload of the message.

Table C.3-1: Initial GET request (MN to BSF)

GET / HTTP/1.1 5
Host: registrar.home1.net:9999 6
User-Agent: Bootstrapping Client Agent 7
Date: Mon, 24 Oct 2005 10:13:17 GMT 8
Accept: */* 9
Referer: http://pki-portal.home1.net:2311/pkip/enroll 10
Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",
nonce="", uri="/", response=""

11
12

Content-Type: application/vnd.3gpp2.bsf+xml 13
Content-Length: (...) 14
 15
<?xml version="1.0" encoding="UTF-8"?> 16
<BootstrappingInfo xmlns="uri:3gpp2-gba"> 17
 <auth_list> 18
 <auth_info> 19
 <method> AKA </method> 20
 <clientid> user1_private@home1.net </clientid> 21
 </auth_info> 22
 <auth_info> 23
 <method> CAVE </method> 24
 <clientid> 234150999999999@15.234.imsi.3ggp2network.org </clientid> 25
 </auth_info> 26
 <auth_info> 27
 <method> MN-AAA </method> 28
 <clientid> foo@example.com </clientid> 29
 </auth_info> 30
 </auth_list> 31
</BootstrappingInfo> 32

33

34
35

36
37

38

39

40

41
42

43
44
45
46
47
48
49
50

51

52

Request-URI: The Request-URI (the URI that follows the method name, "GET", in the first line) indicates
the resource indication of this GET request. For bootstrapping server, this is by default "/".

Host: Specifies the Internet host and port number of the BSF server, obtained from the original
URI given by referring resource.

User-Agent: Contains information about the user agent originating the request.

Date: Represents the date and time at which the message was originated.

Accept: Media types which are acceptable for the response.

Referer: Allows the user agent to specify the address (URI) of the resource from which the
bootstrapping procedure was initiated.

Authorization: It carries authentication information. The private user identity (user1_private@home1.net)
is carried in the username field of the Digest AKA protocol. The “uri” parameter (directive)
contains the same value as the Request-URI. The “realm” parameter (directive) contains the
network name where the username is authenticated. The Request-URI and the “realm”
parameter (directive) value are obtained from the same field in the R-UIM and therefore,
are identical. In this example, it is assumed that a new R-UIM card was just inserted into
the terminal, and there is no other cached information to send. Therefore, “nonce” and
“response” parameters (directives) are empty.

Content-Type: Contains the media type of the entity body.

Content-Length: Indicates the size of the entity-body, in decimal number of octets, sent to the recipient.

GBA Framework 52

mailto:user1_private@home1.net

S.S0109-0 v1.0

Payload: The payload contains an xml document with an “auth_list” element to contain the list of
bootstrapping mechanisms supported by the MN. In this example, the MN supports all
AKA, CAVE, and bootstrapping based on MN-AAA Key.

1
2
3

4
5

6

7

8

2. BSF chooses AKA as the bootstrapping mechanism. From this point onward, the bootstrapping procedure
will be based on AKA.

3. Zh1: Authentication procedure

 BSF retrieves the corresponding AVs from the HSS.

Table C.3-2: BSF authentication information procedure (BSF to HSS)

Message source and
destination

Zh Information element
name

Information Source
in GET

Description

BSF to HSS Private User Identity Authorization: The Private User Identity is encoded in
the username field according to the
Authorization protocol.

9

10

11
12

13
14

15

16
17

18
19

20

21

22

23

24
25
26

27

4. Authentication vector selection

 The BSF selects an authentication vector for use in the authentication challenge. For detailed
description of the authentication vector, see [22].

NOTE 1: The authentication vector can be of the form as in [22] (if IMS AKA is the selected authentication
scheme):

- AV = RANDn||AUTNn||XRESn||CKn||IKn where:

• RAND: random number used to generate the XRES, CK, IK, and part of the AUTN. It is
also used to generate the RES at the MN.

• AUTN: Authentication token (including MAC and SQN); 128 bit value generated by the
HSS.

• XRES: Expected (correct) result from the MN.

• CK: Cipher key (optional).

• IK: Integrity key.

5. 401 Unauthorized response (BSF to MN) - see example in table C.3-3

 BSF forwards the challenge to the MN in HTTP 401 Unauthorized response (without the CK, IK and
XRES). This is to demand the MN to authenticate itself. The challenge contains RAND and AUTN
that are populated in nonce field according to RFC 3310 [2].

Table C.3-3: 401 Unauthorized response (BSF to MN)

HTTP/1.1 401 Unauthorized 28
Server: Bootstrapping Server 29
Date: Mon, 24 Oct 2005 10:13:17 GMT 30
WWW-Authenticate: Digest realm="registrar.home1.net", nonce= base64(RAND + AUTN + server
specific data), algorithm=AKAv1-MD5, qop=auth-int

31
32

Content-Type: application/vnd.3gpp2.bsf+xml 33
Content-Length: (...) 34
 35
<?xml version="1.0" encoding="UTF-8"?> 36
<BootstrappingInfo xmlns="uri:3gpp2-gba"> 37
 <auth > 38
 <method> AKA </method> 39

GBA Framework 53

S.S0109-0 v1.0

 <clientid> user1_private@home1.net </clientid> 1
 </auth> 2
</BootstrappingInfo> 3

4

5

6

7
8

9
10

11
12

13

14
15
16
17
18
19
20
21

22

23
24

25

Server: Contains information about the software used by the origin server (BSF).

Date: Represents the date and time at which the message was originated.

WWW-Authenticate: The BSF challenges the user. The nonce includes the quoted string, base64 encoded
value of the concatenation of the AKA RAND, AKA AUTN and server specific data.

Payload: The payload contains an xml document with an “auth” element to convey the choice of
bootstrapping mechanism made by the BSF. In this example, the BSF chose AKA.

NOTE 2: The actual nonce value in the WWW-Authenticate header field is encoded in base64, and it can
look like: nonce="A34Cm+Fva37UYWpGNB34JP".

6. Generation of response and session keys at MN

 Upon receiving the Unauthorized response, the MN checks the bootstrapping mechanism chosen by the
BSF, as indicated in the payload. In this example, the chosen mechanism is AKA, and from this point on,
the MN continues the bootstrapping procedure based on AKA. The MN extracts the MAC and the SQN
from the AUTN. The MN calculates the XMAC and checks that XMAC matches the received MAC and
that the SQN is in the correct range. If both these checks are successful the MN calculates the
authentication challenge response (using RES and other parameters as defined in RFC 3310 [2]), and also
computes the session keys IK and CK. The authentication challenge response is put into the Authorization
header and sent back to the BSF in the GET request.

7. GET request (MN to BSF) - see example in table C.3-4

 The MN sends an HTTP GET request again, with the RES, which is used for response calculation, to
the BSF.

Table C.3-4: GET request (MN to BSF)

GET / HTTP/1.1 26
Host: registrar.home1.net:9999 27
User-Agent: Bootstrapping Client Agent 28
Date: Mon, 24 Oct 2005 10:13:18 GMT 29
Accept: */* 30
Referer: http://pki-portal.home1.net:2311/pkip/enroll 31
Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",
nonce=base64(RAND + AUTN + server specific data), uri="/", qop=auth-int, nc=00000001,
cnonce="6629fae49393a05397450978507c4ef1", response="6629fae49393a05397450978507c4ef1",
opaque="5ccc069c403ebaf9f0171e9517f30e41", algorithm=AKAv1-MD5

32
33
34
35

Content-Type: application/vnd.3gpp2.bsf+xml 36
Content-Length: (...) 37
 38
<?xml version="1.0" encoding="UTF-8"?> 39
<BootstrappingInfo xmlns="uri:3gpp2-gba"> 40
 <auth_list> 41
 <auth_info> 42
 <method> AKA </method> 43
 <clientid> user1_private@home1.net </clientid> 44
 </auth_info> 45
 <auth_info> 46
 <method> CAVE </method> 47
 <clientid> 234150999999999@15.234.imsi.3ggp2network.org </clientid> 48
 </auth_info> 49
 <auth_info> 50
 <method> MN-AAA </method> 51
 <clientid> foo@example.com </clientid> 52
 </auth_info> 53

GBA Framework 54

mailto:user1_private@home1.net
mailto:user1_private@home1.net

S.S0109-0 v1.0

 </auth_list> 1
</BootstrappingInfo> 2

3

4
5
6

7
8

9

10
11
12

13
14
15

16
17

18

19

20

Authorization: This carries the response to the authentication challenge received in step 4 along with the
private user identity, the realm, the nonce, the URI, the qop, the NC, the cnonce, the
response, the opaque, and the algorithm.

Payload: The payload contains the same xml document in step 1, which contains an “auth_list”
element with the list of bootstrapping mechanisms supported by the MN.

8. Authentication and generation of key material at BSF

 Upon receiving an integrity protected GET request carrying the authentication challenge response, the
BSF checks the “auth_list” contains in the payload to be the same as that received in step 1. If not, the
BSF aborts the bootstrapping procedure.

If successful, the BSF checks that the expected response (calculated by the BSF using XRES and other
parameter as defined in RFC 3310 [2]) matches the received challenge response. If the check is
successful then the user has been authenticated and the private user identity is registered in the BSF.

 The BSF generates the bootstrapping transaction identifier (B-TID) for the IMPI and stores the tuple
<B-TID, IMPI, CK, IK>.

9. 200 OK response (BSF to MN) - see example in table C.3-5

 The BSF sends 200 OK response to the MN to indicate the success of the authentication.

Table C.3-5: 200 OK response (BSF to MN)

HTTP/1.1 200 OK 21
Server: Bootstrapping Server 22
Authentication-Info: qop=auth-int, rspauth="6629fae49394a05397450978507c4ef1",
cnonce="6629fae49393a05397450978507c4ef1", nc=00000001

23
24

Date: 25
Expires: Mon, 24 Oct 2005 10:23:17 GMT 26
Content-Type: application/vnd.3gpp.bsf+xml 27
Content-Length: (...) 28
 29
<?xml version="1.0" encoding="UTF-8"?> 30
<BootstrappingInfo xmlns="uri:3gpp-gba"> 31
 <auth> 32
 <method> AKA </method> 33
 <clientid> user1_private@home1.net </clientid> 34
 </auth> 35
 <btid>bmFtYXJ0bHUgc2F5cyBoaQ==@bsf.operator.com</btid> 36
 <lifetime>2005-11-21T13:20:00-05:00</lifetime> 37
</BootstrappingInfo> 38

39

40

41

42
43
44

45

46
47

Content-Type: Contains the media type of the entity body.

Content-Length: Indicates the size of the entity-body, in decimal number of octets, sent to the recipient.

Authentication-Info: This carries the server authentication information. The header includes the "rspauth"
parameter which is calculated as specified in RFC 2617 [10] using RES for response
calculation as specified in RFC 3310 [2].

Expires: Gives the date/time after which the response is considered stale.

Payload: The payload contains an xml document that comprises the same indication of the chosen
bootstrapping mechanism as in step 5, the B-TID, and the associated lifetime.

GBA Framework 55

mailto:user1_private@home1.net

S.S0109-0 v1.0

10. Generation of key material at MN 1

2
3

4
5
6
7

8
9

10

 The MN verifies that the chosen bootstrapping mechanism in the payload is the same as the one
received in step 5.

The key material Ks is generated in MN by concatenating CK and IK. The NAF specific key material
Ks_NAF is derived from Ks in the case of GBA_ME, or Ks_ext_NAF is derived from Ks_ext in the
case of GBA_U, and used for securing the Ua interface. The MN stores the tuple <B-TID,Ks_NAF>
or <B-TID,Ks_ext_NAF>.

 For detailed bootstrapping key material generation procedure for NAF specific key (Ks_NAF or
Ks_ext_NAF) see Section 4.5.

C.4 Signaling flows demonstrating a synchronization failure in the
bootstrapping procedure based on AKA 11

12
13
14

In the case of AKA, if the MN considers the sequence number in the challenge to be not in the
correct range, it sends a synchronization failure indication back to BSF. The parameter AUTS
contains the concealed value of the counter value SQNMS in the MN.

GBA Framework 56

S.S0109-0 v1.0

bootstrapping

9. Authentication
vector selection

8. Zh1 interface

11. Continue with

10. 401 Unauthorized

7. GET

6. SQN invalid, generate AUTS

5. 401 Unauthorized

4. Authentication
vector selection

3. Zh1 interface

2. BSF chooses
AKA

1. initial GET

HSS BSF MN

 1

2
3

4

5
6

7

8
9

10

11

Figure C.4-1: The AKA bootstrapping procedure in sequence number synchronization failure
case.

1-5. Initial bootstrapping steps

 Steps 1 through 5 are described in the corresponding steps in Section C.3. In this example, AKA is being
chosen as the bootstrapping procedure.

6. SQN invalid, generate AUTS at MN

 The MN identifies the sequence number is out of synchronization. The MN generates the AUTS
parameter (112 bit value). The AUTS parameter is populated in Authorization header, as specified in RFC
3310 [2].

7. GET request (MN to BSF) - see example in table C.4-1

GBA Framework 57

S.S0109-0 v1.0

1

2

 The MN sends HTTP GET request, with the AUTS parameter to the BSF.

Table C.4-1: GET request (MN to BSF)

GET / HTTP/1.1 3
Host: registrar.home1.net:9999 4
User-Agent: Bootstrapping Client Agent; Release-6 5
Date: Mon, 24 Oct 2005 10:13:17 GMT 6
Accept: */* 7
Referer: http://pki-portal.home1.net:2311/pkip/enroll 8
Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",
nonce=base64(RAND + AUTN + server specific data), uri="/", qop=auth-int, nc=00000001,
cnonce="6629fae49393a05397450978507c4ef1", response="6629fae49393a05397450978507c4ef1",
opaque="5ccc069c403ebaf9f0171e9517f30e41", algorithm=AKAv1-MD5, auts=base64(AUTS)

9
10
11
12

Content-Type: application/vnd.3gpp2.bsf+xml 13
Content-Length: (...) 14
 15
<?xml version="1.0" encoding="UTF-8"?> 16
<BootstrappingInfo xmlns="uri:3gpp2-gba"> 17
 <auth_list> 18
 <auth_info> 19
 <method> AKA </method> 20
 <clientid> user1_private@home1.net </clientid> 21
 </auth_info> 22
 <auth_info> 23
 <method> CAVE </method> 24
 <clientid> 234150999999999@15.234.imsi.3ggp2network.org </clientid> 25
 </auth_info> 26
 <auth_info> 27
 <method> MN-AAA </method> 28
 <clientid> foo@example.com </clientid> 29
 </auth_info> 30
 </auth_list> 31
</BootstrappingInfo> 32

33

34
35

36

37
38

39

Authorization: This carries the response to the authentication challenge received in step 5 and contains the
AUTS parameter.

8. Zh1: Authentication procedure

 If BSF does not have the corresponding AV indicated by the AUTS, the BSF shall retrieve it from the
HSS.

Table C.4-2: BSF authentication information procedure (BSF to HSS)

Message source and
destination

Zh Information element
name

Information Source
in GET

Description

BSF to HSS Private User Identity Authorization: The Private User Identity is encoded in
the username field according to the
Authorization protocol.

40

41

42
43

44

45

9. Authentication vector selection

 The BSF selects the AV indicated by the AUTS for use in the authentication challenge. For detailed
description of the authentication vector, see [22].

10. 401 Unauthorized response (BSF to MN) - see example in table C.4-3

 The BSF sends another challenge based on new range of sequence number.

GBA Framework 58

mailto:user1_private@home1.net

S.S0109-0 v1.0

GBA Framework 59

1 Table C.4-3: 401 Unauthorized response (BSF to MN)

HTTP/1.1 401 Unauthorized 2
Server: Bootstrapping Server; Release-6 3
Date: Mon, 24 Oct 2005 10:13:17 GMT 4
WWW-Authenticate: Digest realm="registrar.home1.net", nonce= base64(RAND + AUTN + server 5
specific data), algorithm=AKAv1-MD5, qop=auth-int 6
Content-Type: application/vnd.3gpp2.bsf+xml 7
Content-Length: (...) 8
 9
<?xml version="1.0" encoding="UTF-8"?> 10
<BootstrappingInfo xmlns="uri:3gpp2-gba"> 11
 <auth> 12
 <method> AKA </method> 13
 <clientid> user1_private@home1.net </clientid> 14
 </auth> 15
</BootstrappingInfo> 16

17

18
19
20

21

22

23

WWW-Authenticate: The BSF challenges the user with new range of sequence number. The nonce
includes the quoted string, base64 encoded value of the concatenation of the AKA
RAND, AKA AUTN and server specific data.

11. Continue with bootstrapping

 The bootstrapping procedure continues from step 6 of Section C.3.

mailto:user1_private@home1.net

	Introduction and Scope
	References
	Normative References
	Informative References

	Definitions and Abbreviations
	Definitions
	Abbreviations

	Generic Bootstrapping Architecture
	Reference model
	Network elements
	Bootstrapping server function (BSF)
	Network application function (NAF)
	HLR/HSS/AAA
	MN

	Bootstrapping architecture and reference points
	Reference point Ub
	Reference point Ua
	Reference points Zh1, Zh2, Zh3
	Reference point Zn

	Requirements and principles for bootstrapping
	Access Independence
	Authentication methods
	Requirements on reference point Ub
	Requirements on reference points Zh1, Zh2, Zh3
	Requirements on reference point Zn
	Requirements on Bootstrapping Transaction Identifier
	Requirements on selection of UICC application and related keys
	Requirements on reference point Ua

	Procedures
	Initiation of bootstrapping
	Bootstrapping procedures
	4.5.2.1Bootstrapping mechanism selection
	4.5.2.2Bootstrapping Procedures for CDMA1x and CDMA1x EV-DO Systems
	4.5.2.2.1Bootstrapping based on CAVE
	4.5.2.2.2Bootstrapping Based on MN-AAA Key
	4.5.2.2.3Common Calculations
	4.5.2.2.3.1Mobile Station Calculations
	4.5.2.2.3.2BSF Calculations

	4.5.2.3Bootstrapping based on AKA

	Procedures using bootstrapped Security Association
	Procedure related to service discovery

	5UIM-based enhancements to Generic Bootstrapping Architecture (GBA_U)
	5.1Architecture and reference points for bootstrapping with UIM-based enhancements
	5.2Requirements and principles for bootstrapping with UIM-based enhancements
	5.2.1Requirements on MN
	5.2.2Requirements on BSF

	5.3Procedures for bootstrapping with UIM-based enhancements
	5.3.1Initiation of bootstrapping
	5.3.2Bootstrapping procedures
	5.3.2.1Bootstrapping Procedures for CDMA1x EV-DO Systems
	5.3.2.1.1Bootstrapping Based on MN-AAA Key

	5.3.2.2Bootstrapping procedures based on AKA

	5.3.3Procedures using bootstrapped Security Association
	5.3.4Procedure related to service discovery

	5.4UIM-ME interface description
	5.4.1Introduction
	5.4.2GBA_U Bootstrapping procedure
	5.4.2.1Bootstrapping Based on MN-AAA Key
	5.4.2.2Bootstrapping procedures based on AKA

	5.4.3GBA_U NAF Derivation procedure

	Annex A (normative): Specification of the key derivation function KDF
	A.1Introduction
	A.2Generic key derivation function
	A.3Input parameter encoding
	A.4NAF specific key derivation in GBA and GBA_U

	Annex B (normative): XML Schema Definition
	B.1Introduction

	Annex-C (Informative): Signaling flows of bootstrapping procedure
	C.1Scope of signaling flows
	C.2Introduction
	C.2.1General
	C.2.2Rules required to interpret signaling flows

	C.3Signaling flows demonstrating a successful bootstrapping procedure based on AKA
	C.4Signaling flows demonstrating a synchronization failure in the bootstrapping procedure based on AKA

