OMA-TS-Smartcard-Web-Server-V1_0-20060519-D
Page 12  V(56)


	[image: image1.jpg]«“+OMa

Open Mobile Alliance




	

	Smartcard-Web-Server

	Draft Version 1.0 – 19 May 2006

	Open Mobile Alliance

	OMA-TS-Smartcard-Web-Server-V1_0-20060519-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope


62.
References


62.1
Normative References


72.2
Informative References


83.
Terminology and Conventions


83.1
Conventions


83.2
Definitions


83.3
Abbreviations


104.
Introduction


115.
Smart Card Web Server URL


126.
Support for dynamic content


137.
IP Address and Port Numbers for local communication


137.1
Using the BIP transport protocol


137.1.1
Port Numbers


137.1.2
Sample URLs


137.2
Using the TCP/IP protocol


147.2.1
Port Numbers


147.2.2
Sample URLs


147.3
Remote connection to the SCWS


158.
Local transport protocols


158.1
The BIP transport protocol


158.1.1
SCWS usage of BIP


188.2
TCP/IP transport Protocol


199.
SCWS HTTP Profile


199.1
Request-URI


199.2
HTTP Methods


199.3
General headers


209.4
Request headers


219.5
Status-Code and Reason-Phrase


219.6
Response Headers


229.7
Entity headers


2410.
User or principal authentication to the SCWS


2511.
Security Protocols


2511.1
Transport Layer Security (TLS)


2511.1.1
PSK-TLS


2511.1.2
Public Key Pair and device certificate


2511.1.3
Supported TLS extensions


2612.
Access Control Policy (ACP)


2612.1
ACP retrieval


2712.2
ACP data objects


2913.
SCWS remote administration


2913.1
Administration commands


2913.1.1
PUT


2913.1.2
DELETE


3013.1.3
POST


3013.1.4
GET


3113.1.5
Special admin commands that are used within a POST request


3313.2
SCWS Responses to Administration commands


3313.2.1
Responses to HTTP commands


3313.2.2
Responses to admin commands within the POST command


3413.3
Administration protocols


3413.3.1
Lightweight Administration Protocol


3513.3.2
Full Administration Protocol


50Appendix A.
Change History (Informative)


50A.1
Approved Version History


50A.2
Draft/Candidate Version <current version> History


51Appendix B.
Static Conformance Requirements (Normative)


51B.1
SCR for XYZ Client


51B.2
SCR for XYZ Server


52Appendix C.
Bearer Independent protocol (BIP) - Informative


54Appendix D.
Overview of Transport Protocols - Informative




Figures

36Figure 1: Remote SCWS administration using BIP


52Figure 2: Usage of BIP in client mode




Tables

36Figure 1: Remote SCWS administration using BIP


52Figure 2: Usage of BIP in client mode




1. Scope

<< Define as it relates to Open Mobile Alliance Activity.  If it adds clarity, define what is not in the scope.  DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced.  Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package).  In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use


[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/ 


[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/ 

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[SCWS-RD]
	“SCWS Requirements”, Open Mobile Alliance, OMA-RD_Smartcard_Web_Server-V1_0-20050715-D, URL: http://www.openmobilealliance.org/ 

	[HTTP/1.1]
	“Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616, June 1999

URL: http://www.ietf.org/rfc/rfc2616.txt

	[HTTP over TLS]


	“Hypertext Transfer Protocol over TLS protocol”, RFC 2818, May 2000

URL: http://www.ietf.org/rfc/rfc2818.txt

	[TLS]
	“Security Transport Protcol”, RFC 2246, January 1999

URL: http://www.ietf.org/rfc/rfc2246.txt

	[OMA-TLS-Profile]
	“OMA TLS-Profile”, Open Mobile Alliance, OMA-Draft-TS-TLS-V1_0-20051017-D, URL: http://www.openmobilealliance.org/

	[ISO7816-4]
	“Information technology -Identification cards -Integrated circuit(s) cards with contacts Part 4: Interindustry commands for interchange”

	[TS102223]
	“TS102223 Technical Specification Smart cards; Card Application Toolkit (CAT)”, R7 or higher, URL: http://www.etsi.org

	[RFC2617]
	“HTTP Authentication: Basic and Digest Access Authentication”, URL: http://www.ietf.org/rfc/rfc2617.txt?number=2617

	[TS31102]
	“TS31102 Technical Specification Smart cards; Characteristics of the Universal Subscriber Identity Module (USIM) application”, URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.102/

	[TS102221]
	 “TS102221 Smart Cards; UICC-Terminal interface; Physical and logical characteristics” URL: http://www.etsi.org

	[RFC 2396]  
	“Uniform Resource Locators (URL)” URL: 
http://www.ietf.org/rfc/rfc2396.txt

	[RFC 1630]
	“Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression of Names and Addresses of Objects on the Network as used in the World-Wide Web” URL: http://www.ietf.org/rfc/rfc1630.txt

	[PSK-TLS]
	“Pre-Shared Key Cipher suites for Transport Layer Security (TLS)”, IETF Work in Progress, draft-ietf-tls-psk-09.txt

	[RFC 3546]
	“Transport Layer Security (TLS) Extensions”, URL:
http://www.ietf.org/rfc/rfc2119.txt

	[TS 31.115]
	3GPP TS 31.115: Secured packet structure for (U)SIM Toolkit applications, URL:
http://www.3gpp.org/ftp/Specs/archive/31_series/31.115/

	[TS 31.116]
	3GPP TS 31.116: Remote APDU Structure for (U)SIM Toolkit applications, URL:
http://www.3gpp.org/ftp/Specs/archive/31_series/31.116/

	[HTML 4.0.1]
	HyperText Markup Language, HTML 4.01 Specification W3C Recommendation, URL:
http://www.w3.org/TR/1999/REC-html401-19991224/ 

	[RFC 3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, URL:
http://www.ietf.org/rfc/rfc3986.txt

	[C.S0078]
	

	[C.S0079]
	


2.2 Informative References

	[OMA-DICT]
	“OMA Dictionary”, OMA-Dictionary-V2_1,URL: http://www.openmobilealliance.org/

	[SCWS WID]
	Smartcard web server work item (WID 92)

	[WAPWAE]
	Wireless Application Environment Specification, Open Mobile Alliance™, 

OMA-WAP-WAESpec-V2_3-20040815 {‑Candidate}, URL: http://www.openmobilealliance.org/

	[WP HTTP]
	Wireless Profiled HTTP

WAP-229-HTTP-20010329-a

URL: http://www.openmobilealliance.org/


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Terminal (or device)
	A voice and/or data terminal that uses a Wireless Bearer for data transfer.  Terminal types may include (but are not limited to): mobile phones (GSM, CDMA, 3GSM, etc.), data-only terminals, PDAs, laptop computers, PCMCIA cards for data communication and unattended data-only terminals (e.g., vending machines).

	Smart card
	This is a portable tamper resistant device with an embedded microprocessor chip. A smart card is used for storing data (e.g. access codes, user subscription information, secret keys etc.) and performing typically security related operations like encryption and authentication. A smart card may contain one or more network authentication applications like the SIM (Subscriber Identification Module), USIM, R-UIM (Removable – User Identification Module), CSIM (CDMA SIM).

	Network Operator
	An entity that is licensed and allocated frequency to operate a public mobile wireless telecommunications network for the purpose of providing publicly available commercial services.

	Smart card issuer
	The entity that gives/sales the smart card to the user (e.g. network operator for a SIM card)

	UICC
	UICC is the smart card defined for the ETSI standard [TS102221]

	URI
	Uniform Resource Identifiers (URI, see [RFC1630]) provides a simple and extensible means for identifying a resource. URI syntax is widely used to address Internet resources over the web but is also adapted to local resources over a wide variety of protocols and interfaces.

	URL
	The specification is derived from concepts introduced by the World-Wide Web global information initiative, whose use of such objects dates from 1990 and is described in "Universal Resource Identifiers in WWW", RFC 1630. The specification of URLs (see [RFC1738]) is designed to meet the requirements laid out in "Functional Requirements for Internet Resource Locators".

	BIP
	Bearer Independent Protocol as defined in ETSI [TS102223]

	User
	Person who interacts with a user agent to view, hear or otherwise use a resource

	Web Page
	A document viewable by using a web browser or client application which is connected to the page server 

	Web server
	A server process running on a processor, which sends out web pages in response to HTTP requests from browsers.

	Smart card application
	An application that executes in the smart card

	Browser
	A program used to view (x) HTML or other media type documents.

	HTTPS
	A short term for HTTP over TLS

	BIP gateway
	BIP implementation in the terminal as defined in [TS102223]

	Application authentication
	An application that is invoked by the SCWS and that may generate dynamic content can implement its own user or principal authentication scheme. We call this authentication “Application authentication”.


3.3 Abbreviations

	OMA
	Open Mobile Alliance

	SCWS
	Smart Card Web Server

	(U)SIM
	(Universal) Subscriber Identity Module

	R-UIM
	Removable User Identity Module

	IP
	Internet Protocol

	APDU
	Application Protocol Data Units

	TCP
	Transmission Control Protocol

	TLS
	Transport Layer Security

	PSK-TLS
	Pre-Shared Key TLS

	CSIM
	CDMA SIM

	
	

	
	

	
	

	
	


4. Introduction

<< From a market perspective...  

What can you do with this specification?

What problem does this solve?

How can this specification be applied?

Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

A Smart Card Web Server (SCWS) is an HTTP server that is implemented in a smart card, embedded in the mobile device (e.g. SIM, (U)SIM, UICC, R-UIM, CSIM). It allows network operators to offer state of the art smart card based services to their customers by using the widely deployed [HTTP/1.1] protocol.

This solution integrates well in the Internet and the OMA architecture. The main scope of the specification is to allow a local communication between a WEB browser running in the terminal and a Web Server running in the smart card. It also covers remote administration of the smart card web server by authorized entities (i.e. card issuer or a delegated entity). This new HTTP interface is a logically separated communication channel from those that already exist today between the terminal and the smart card (e.g. using protocols that are defined in [ISO7616-4], [TS102221] and [TS102223]). It enables HTTP applications in the terminal to communicate with the smart card independently from the current telecom based communication between these two entities.

A Smart card-URI is used in order to communicate with the web server that is embedded in the smartcard (SCWS). We limit our discussion to smart card platforms such as (U)SIM (Subscriber Identification Module), UICC and R-UIM (Removable – User Identification Module), CSIM in a mobile phone.

5. Smart Card Web Server URL

The SCWS URL SHALL take the form of an HTTP URL as defined in [HTTP/1.1]:

http_URL = "http:" "//" host [ ":" port ] [ abs_path [ "?" query ]]
The optional <query> is a sequence of one or more <name>=<value> pairs separated by a ‘&’ character. The SCWS SHALL support URLs with a length of at least 1024 characters.

6. Support for dynamic content

Applications in the smart card, that are registered to the SCWS and are identified by the URL, can be triggered by the SCWS. An application performs a specific task and may dynamically create content and return it to the SCWS. It SHALL be possible to register a smart card application to the SCWS by using a path defined by the card issuer. Parameters for the application can be passed in the URL or in the request body. It SHALL be possible to apply any syntax in the data part of the URL as long as it conforms to the URI specification [RFC2396]. For example, the parameters in the URL start with the ‘?’ character and are being formatted as a series of name=value pairs, separated by the ‘&’ character. 

When invoked, an application that is registered to the SCWS, should have access to the following data:
· Request URI

· HTTP-version (e.g. HTTP 1.0 or HTTP 1.1)
· Method (e.g. GET, POST)
· Headers fields (e.g. request headers fields, general headers fields etc.)

· Message body
· 
· 
· 
· 
· 
· 
· 
· 
· 
The application should be able to return the following data to the SCWS:

· 
· 
· 
· Status-code

· Headers

· Message body
The SCWS SHALL integrate this data in the response to the HTTP client.

7. IP Address and Port Numbers for local communication

This section deals with the IP addresses that a local HTTP application, running in the terminal, uses in order to connect to the SCWS. The IP address depends on the local transport protocol as described in the following sections. Two protocols are specified: The Bearer Independent protocol (BIP) or directly native TCP/IP if the smart card implements a TCP/IP stack.

7.1 Using the BIP transport protocol 

If the smart card does not have its own IP address and does not directly support TCP/IP, the BIP gateway in the terminal is used as a protocol converter. Then, the TCP/IP protocol is used between the HTTP application in the terminal and the BIP gateway, and the BIP protocol is used between the BIP gateway and the smart card.

The loopback IP Address 127.0.0.1 SHALL be used by the HTTP application in the terminal to address the BIP gateway. This address is also named “localhost” on some systems. Mnemonic names may be used if the implementation can apply adequate security measures on the association of the mnemonic and the IP address, otherwise the IP address 127.0.0.1 should be used. 

7.1.1 Port Numbers

The BIP gateway SHALL listen on two dedicated ports for incoming requests from HTTP applications in the terminal: one for HTTP requests and one for HTTP over TLS requests.  

HTTP and HTTP over TLS already have default TCP port numbers reserved (80 and 443) and it must remain possible for the hosting device to run its own HTTP services using these ports. 
For the SCWS, HTTP SHALL be addressed using the TCP port number 3516 and HTTP over TLS SHALL be addressed using the TCP port number 4116. Both ports are already reserved by IANA. Port 3516 is reserved as “smartcard Port” and port 4116 as “smartcard-TLS”.

7.1.2 Sample URLs 

It SHALL be possible to address any SCWS resource with URLs. Such resources may be an xHTML file, an image file or any other content as a static file or dynamically generated on-the-fly.
As an example, a resource called "foobar.xhtml" with the path "/pub/files" corresponds to these URLs: 

    http://127.0.0.1:3516/pub/files/foobar.xhtml

    https://127.0.0.1:4116/pub/files/foobar.xhtml

The following URLs may trigger an application and contain parameters, which are specific for the addressed application:

http://127.0.0.1:3516/cgi/start?launch

http://127.0.0.1:3516/cgi/SSO?account=username&otherparam=123 

https://127.0.0.1:4116/apps/display?df=7F01&ef=3F01&record=01&offset=50&length=10

http://127.0.0.1:3516/apps/show?title=This%20is%20the%20front%20page
7.2 Using the TCP/IP protocol

If the smart card has its own IP address and directly supports TCP/IP and the terminal supports direct IP addressing of the smart card, then the TCP/IP protocol SHALL be used between the HTTP application in the terminal and the SCWS on the smart card.

7.2.1 Port Numbers

The port numbers for accessing the SCWS shall be the default HTTP ports: 80 for HTTP and 443 for HTTP over TLS.

7.2.2 Sample URLs 

Same as the examples above in [7.1.2] but the smart card now has an IP address allocated to it, e. g.
http://<smart card IP address>/pub/files/foobar.xhtml

https:// <smart card IP address>/cgi/display?df=7F01&ef=3F01&record=01&offset=50&length=10

Where <smart card IP address> is the IP address that is given to the smart card.

7.3 Remote connection to the SCWS

Connection to the SCWS from remote applications (i.e. not running in the terminal) is not supported in this version.

8. Local transport protocols

The SCWS responds to HTTP requests from HTTP applications (e.g. browsers) in the terminal. The HTTP requests and responses are exchanged over a local transport protocol between the smart card and the terminal. The local transport protocol provides the basic functionality of data exchange between the SCWS and the terminal.

8.1 The BIP transport protocol

The BIP protocol is specified by ETSI SCP  [TS102223] and enables the smart card to communicate with external entities over standardised protocols, including TCP/IP. For the SCWS only the TCP/IP protocol is used. Only the related features are described in the next paragraphs.

According to [TS102223] the smart card can open a BIP TCP data channel with the terminal and ask for the following:

· Client mode: A smart card application wants to communicate with a remote server over TCP and the destination server is identified with an IP address. When the BIP channel is opened the terminal behaves as a gateway communicating over TCP/IP with the remote server and locally with BIP commands with the smart card.

· Server mode: The smart card is a server allowing TCP applications in the terminal to connect to it on a TCP port number. When the BIP channel is opened the terminal shall listen on the localhost IP address (e.g. 127.0.0.1 for IPv4) at the TCP port given in the command and forward incoming / outgoing data on this port to / from the UICC.

The two above features are used to implement the SCWS. The Client mode is used for SCWS remote administration while the Server mode is used for the operation of the SCWS itself (browsing the SCWS).

The BIP functionality, used in the SCWS specification, can be depicted in the figures in Appendix C and is described for information only. The detailed functionality is specified in [TS 102223].

8.1.1 SCWS usage of BIP

When the SCWS starts, it may open several BIP channels in “TCP, UICC in server mode”. The terminal MUST support at least two opened BIP channels in “TCP, UICC in server mode”. One BIP channel is for HTTP and another is for HTTP over TLS. The terminal MAY support additional opened BIP channels “TCP, UICC in server mode”. The Terminal MUST automatically enable the BIP channel “TCP, UICC in server mode”, independently of network connection and without the need for special configuration by the user.

The SCWS may also open an additional BIP channel “TCP, UICC in client mode” for administration as defined in chapter [13]. The terminal MUST thus support an additional opened BIP channel “TCP, UICC in client mode” besides the BIP channels for “TCP UICC in server mode” as defined above. In this specification we call “BIP Gateway” the BIP implementation in the terminal as defined in [TS102223].

Each BIP channel in UICC server mode SHALL be opened by sending the “Open channel related to UICC server mode” command to the terminal as described in [TS102223]. The HTTP BIP channel shall be opened to listen on TCP port 3516. The HTTP over TLS BIP channel shall be opened to listen on TCP port 4116.

As a result the BIP gateway in the terminal shall listen on the indicated TCP ports and shall inform the SCWS when a client connects to these TCP ports. The BIP gateway shall manage the exchange of data between the SCWS and the connecting HTTP application as described in [TS102223].

When an HTTP application in the terminal connects to the SCWS (via the BIP gateway) and data is exchanged, the SCWS MAY open an additional BIP channel on either ports (i.e. 3516 or 4116), in order to allow another HTTP application in the terminal to connect to the SCWS (via the BIP gateway) on the same TCP port number. This will allow the SCWS to communicate with several terminal HTTP applications at the same time, since each BIP channel is used to communicate with only one application at a time.

The SCWS SHALL implement HTTP and HTTP over TLS. The SCWS SHALL be able to communicate over HTTP and HTTP over TLS at the same time. 

8.1.1.1 SCWS and other CAT applications concurrency

A “Proactive UICC session” is a sequence of related CAT commands and responses which start with the status response '91XX' (proactive command pending) and ends with a status response of '90 00' (normal ending of command) after Terminal Response (according to [TS 102 223]).

A ProactiveHandler is the card entity that is in charge of managing Proactive UICC sessions. Only one Proactive UICC session can be active at a given time. 

A “SCWS proactive session” is a proactive UICC session that has been opened by a SCWS and is maintained by a SCWS. A SCWS proactive session consists of a sequence of the following APDU commands:

FETCH ( ‘90 00’

TERMINAL RESPONSE ( ‘91 XX‘
A SCWS proactive session can use either “TCP, UICC in Client Mode” or “TCP, UICC in Server Mode”.

A SCWS proactive session, where the SCWS uses the ProactiveHandler, SHALL be interruptible by another proactive UICC session upon the following conditions:

· An event has been sent by the terminal to the UICC (e.g. ENVELOPE Data Download, ENVELOPE Menu Selection, etc.) in order to trigger another CAT application (e.g. Java CardTM Toolkit applet)

AND

· the other addressed CAT application has been successfully triggered by this event

AND

· the triggered CAT application has registered itself to the EVENT_PROACTIVE_HANDLER_AVAILABLE event, because at this point in time the ProactiveHandler is occupied by the SCWS proactive session and therefore not available for this CAT application

AND

· the TERMINAL RESPONSE which belongs to the FETCH command of the SCWS proactive session has been sent by the terminal to the UICC

AND

· the triggered CAT application has a higher priority than the SCWS application.

In this case the SCWS SHALL suspend its proactive session with the terminal and let the other application take over and start its proactive UICC session . After all other higher prioritiesed proactive UICC sessions are finished the SCWS proactive session is resumed.

The rules for suspending / resuming a SCWS proactive session shall be as follows:

If another CAT application with higher processing priorities is registered to the EVENT_PROACTIVE_HANDLER_AVAILABLE event the SCWS SHALL release the ProactiveHandler and register itself to the EVENT_PROACTIVE_HANDLER_AVAILABLE event. The other CAT application can then get the ProactiveHandler and execute. When this CAT application finishes, the ProactiveHandler is released. The SCWS will get the ProactiveHandler if no other CAT application with higher processing priority is registered to the EVENT_PROACTIVE_HANDLER_AVAILABLE event. Then the SCWS can resume its SCWS proactive session.

NOTE: The processing priorities can be set by applet installation parameters. It is up to the card issuer to decide which processing priority shall be assigned to the SCWS in relation to other CAT applications (e.g. other Java CardTM Toolkit applets). There may be CAT applications on the UICC with higher or lower processing priorities with respect to the SCWS processing priority.

Example:

During an active SCWS BIP session an ENVELOPE (SMS PP Data Download) is sent by the terminal to the UICC. The incoming ENVELOPE command contains instructions to display a notification message on the terminal screen. This notification message should be displayed as soon as possible by the terminal. Waiting for the end of the SCWS BIP session may not be acceptable for displaying this notification message.

	ME
	
	UICC

	ENV (Data available)
	(
	91 XX

	FETCH (Receive data)
	(
	90 00

	TR (a HTTP request to the UICC)
	(
	91 XX

	
	
	SCWS computes the HTML response

	FETCH (Send data)
	(
	Data (1st part of huge HTML response)

90 00

	TR (Send data ok)
	(
	91 XX

	FETCH (Send data)
	(
	Data (2nd part of huge HTML response)

90 00

	TR (Send data ok)
	(
	91 XX

	...
	...
	...

	FETCH (Send data)
	(
	Data (Nth part of huge HTML response)

90 00

	ENV (SMS PP Data Download)
	(
	90 00, because the SMS PP DD cannot be processed immediately. However the SCWS makes the Proactive Handler available for the other CAT application after the next TR. Then the SMS PP DD can be processed by the UICC actually without significant delay.

	TR (Send data ok)
	(
	91 YY

	FETCH (Display Text)
	(
	90 00

	TR (Display Text ok)
	(
	91 XX (the BIP data transfer continues)

	FETCH (Send data)
	(
	Data ((N+1)th part of huge HTML response)

90 00

	TR (Send data ok)
	(
	91 XX

	...
	...
	...

	FETCH (Send data)
	(
	Data (Last part of huge HTML response)

90 00

	TR (Send data ok)
	(
	90 00


8.2 TCP/IP transport Protocol

If the smart card supports TCP/IP then the HTTP application in the terminal SHALL directly communicate with the SCWS without a BIP gateway. In this case the SCWS SHALL listen on the default port 80 for incoming HTTP requests and on port 443 for incoming HTTP over TLS requests.

9. SCWS HTTP Profile

In order to ensure interoperability of the SCWS the HTTP features that the SCWS need to implement must be defined. The following subsections define the HTTP profile that need to be implemented by the Web server in the smart card. The SCWS HTTP profile is defined as a subset of HTTP 1.1. 

The following restrictions apply:

9.1 Request-URI

The Request-URI is a Uniform Resource Identifier and identifies the resource upon which to apply the request according to RFC 2616. The URI field SHALL be in absolute form (e.g. http://127.0.0.1:3516/12A1) according to the rules for SCWS URIs defined in this document (see [5]).

9.2 HTTP Methods

The following table lists optional and mandatory HTTP methods for the SCWS:

	Method
	Supported
	Additional comments

	OPTIONS
	Optional
	

	GET
	Mandatory
	Mandated for HTTP 1.1 server implementations

	HEAD
	Mandatory
	Mandated for HTTP 1.1 server implementations

	POST
	Mandatory
	Support for forms in user interface

	PUT
	Mandatory
	Support for remote administration

	DELETE
	Mandatory
	Support for remote administration

	TRACE
	Optional
	

	CONNECT
	Optional
	


Specific actions on reception:

When receiving an incoming request that is not supported, the SCWS shall respond with an HTTP response message with Status-Code  = 405 (Method not allowed).

If the SCWS does not support conditional and partial GET commands it SHALL return the whole page.

9.3 General headers

The following table lists the optional and mandatory general headers for the SCWS:

	Field
	Supported
	Additional comments

	Cache-Control
	Optional
	

	Connection
	Mandatory
	Need to put argumentation

	Date
	Optional
	

	Pragma
	Mandatory
	Used by administration commands

	Trailer
	Optional
	

	Transfer-Encoding
	Optional
	

	Upgrade
	Optional
	

	Via
	Optional
	

	Warning
	Optional
	


Specific actions on reception:

The SCWS shall ignore non-supported fields.

9.4 Request headers

The following table lists the optional and mandatory general request header fields for the SCWS:

	Field
	Supported
	Additional comments

	Accept
	Optional
	

	Accept-Charset
	Optional
	

	Accept-Encoding
	Optional
	

	Accept-Language
	Optional
	

	Authorization
	Mandatory
	Used to enable authentication of a user or a principal

	Expect
	Optional
	

	From
	Optional
	

	Host
	Optional
	

	If-Match
	Optional
	Should be mandatory (for optimisation in conditional GET)?

	If-Modified-Since
	Optional
	Should be mandatory (for optimisation in conditional GET)?

	If-None-Match
	Optional
	Should be mandatory (for optimisation in conditional GET)?

	If-Range
	Optional
	Should be mandatory (for optimisation in conditional GET)?

	If-Unmodified-Since
	Optional
	Should be mandatory (for optimisation in conditional GET)?

	Max-Forwards
	Optional
	

	Proxy-Authorization
	Optional
	

	Range
	Optional
	Should be mandatory (for optimisation in partial GET)?

	Referer
	Optional
	

	TE
	Optional
	

	User-Agent
	Optional
	


-“Authorization” field is described under chapter [10] in this document.

9.5 Status-Code and Reason-Phrase

The SCWS shall support the following status codes:

      Successful Status-Code    = 

           200 OK

           201 Created

           204 No Content

           205 Reset Content

Redirection Status-Code    =

302 Found

      Client Error Status-Code    = 

           401 Unauthorized

           403 Forbidden

           404 Not Found

           405 Method Not Allowed

           413 Request Entity Too Large

           414 Request-URI Too Large

      Server Error Status-Code    = 

          500 Internal Server Error

          505 HTTP Version not supported

9.6 Response Headers

The following table lists the optional and mandatory general response headers fields for the SCWS:

	FIELD
	IB
	Additional comments

	Accept-Ranges
	Optional
	

	Age
	Optional
	

	Etag
	Optional
	

	Location
	Optional
	

	Proxy-Authenticate      
	Optional
	

	Retry-After
	Optional
	

	Server
	Optional
	

	Vary
	Optional
	

	WWW-Authenticate
	Mandatory
	Needed in a server reply to an authentication request


9.7 Entity headers

The smart card web server shall support the following ENTITY headers fields for each of the HTTP request messages:

	FIELD
	ID
	Additional comments

	Allow
	Optional
	

	Content-Encoding         
	Optional
	Mandatory in HTTP 1.1 ?

	Content-Language         
	Optional
	

	Content-Length
	Mandatory
	Mandatory in HTTP 1.1 ?

	Content-Location
	Optional
	

	Content-MD5
	Optional
	For digest authentication

	Content-Range
	Optional
	

	Content-Type
	Mandatory
	Mandatory in HTTP 1.1 ?

	Expires
	Optional
	

	Last-Modified
	Optional
	

	Extension-header
	Optional
	


Specific actions on sending entities:

The 'Content-Type' HTTP header field MAY be included by the SCWS depending on the resource being transferred within the HTTP response.

10. User or principal authentication to the SCWS

If the SCWS requires an access condition which has not been fulfilled it shall provide means to fulfill this security conditions (e.g. it may perform a request to the user, or principal to enter a user name and password). 

The authentication is performed between the client application and the SCWS and MAY use standard HTTP authorization exchange mechanisms specified in IETF [RFC 2617]. The SCWS MUST support Basic authentication and MAY support Digest authentication as defined in IETF [RFC 2617].

An application that is invoked by the SCWS can also implement its own authentication scheme. This authentication may be based on user name and password or other means. As an example the invoked card application can display a form that asks for a user name and password and then captures the entered data.

11. Security Protocols

11.1 Transport Layer Security (TLS)

TLS (Transport Layer Security) [TLS] provides a secure and reliable transport mechanism between two communicating parties. It provides confidentiality and integrity protection for the transport used. It can also provide unilateral or mutual authentication depending on the implementations. TLS works in a client-server model, where the initiator is called the Client and the responder is called the Server. In most cases, a TLS client can authenticate a TLS server using a public key certificate.  Mutual authentication is possible using public key certificates or with pre-shared keys using PSK-TLS.

The SCWS SHALL implement TLS as described in [OMA-TLS-Profile] and HTTPS as defined in [HTTP over TLS].

11.1.1 PSK-TLS

PSK-TLS is used when a symmetric key is shared between the SCWS and the connecting principal (e.g. a remote administration server). The [OMA-TLS-Profile] specification specifies also the PSK-TLS profile and the supported cipher suites for pre-shared keys. How shared keys are provisioned in the smart card and the connecting principle is beyond the scope of this specification. The SCWS SHALL implement PSK-TLS as defined in [OMA-TLS-Profile].

11.1.2 Public Key Pair and device certificate

The SCWS SHOULD use a public key pair, stored in a secure area, and SHALL allow the usage of these keys only to the TLS implementation or to authorized card applications, as defined by the card issuer internal security policy. The SCWS SHOULD also embed a device certificate for the public key. The device certificate shall be provisioned by the card issuer and be signed by a trusted authority of the card issuer. The public key pair and device certificate SHALL be used for server authentication in TLS (i.e. TLS class 2 authentication).

11.1.3 Supported TLS extensions 

It may be desirable for the SCWS to negotiate a smaller maximum fragment length due to memory limitations or bandwidth limitations. This extension enables the usage of the following fragment length (when the default value is 2^14):

   2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)

· The card administration agent MAY use the Maximum Fragment Length Negotiation as defined in [RFC 3546].

· The administration server SHALL support the Maximum Fragment Length Negotiation as defined in [RFC 3546] and SHALL accept fragment length down to the minimum of 512 bytes. 

· A HTTP client connecting to the SCWS MAY use the Maximum Fragment Length Negotiation as defined in [RFC 3546].

· The SCWS SHALL support Maximum Fragment Length Negotiation as defined in [RFC 3546] and SHALL accept fragment length down to the minimum of 512 bytes. If the client does not negotiate, the SCWS SHALL accept TLS fragment length with the predefined length of 16 KB.

12. Access Control Policy (ACP) 

This section defines a complementary and yet optional security feature that adds an additional access control to the SCWS from within the terminal itself. It is called the ACP Enforcer (Access Control Policy Enforcer) and is aimed to control the access to the SCWS for terminal applications. Its main purpose is to provide protection against denial of service attacks on the SCWS and the misuse of the SCWS by malicious terminal applications. The ACP Enforcer is especially useful in terminals that allow the user to freely download and install applications in the terminal (e.g. terminals with so-called open operating systems). For example the user may download and install a malicious application in the terminal that could try to block access to the SCWS or potentially ask the user for sensitive information such as passwords or secrets required to access personal information in the SCWS.

The Access Control Policy (ACP) is a data object that the device, implementing an ACP Enforcer, can retrieve from the smart card. An ACP Enforcer MAY be implemented by terminals that implement a trusted execution environment (as defined by external standardization fora). The ACP data object defines the following possible access rights:

· Allow access to the SCWS to terminal applications that are trusted by the handset manufacturer

· Allow access to the SCWS for terminal applications that belong to the operator trust level, if supported by the terminal.

· Allow access to the SCWS for terminal applications that belong to an enterprise trust level, if supported by the terminal.

· Allow access to the SCWS to all trusted terminal applications in the handset

· Allow access to the SCWS to some trusted terminal applications in the handset that are identified by the hash of the signing certificate

· Allow access to all terminal applications

The Access Control Policy Enforcer may enforce access restrictions to the SCWS by blocking access to the relevant TCP ports (i.e. used by the SCWS) for certain local terminal applications within the terminal. If no ACP can be retrieved from the smart card then all terminal applications can access the SCWS.

12.1 ACP retrieval

Since the ACP is not confidential it can be accessed via the HTTP protocol itself. The device SHALL retrieve the ACP by sending the following HTTP GET command:

	Get /config/acp HTTP/1.1 CRLF
Host: <hostname or IP address> CRLF

[Content-Type: application/octet-stream CRLF]
[Content-Length: xxxx CRLF] or [Transfert-Encoding: chunked CRLF]
CRLF


If the terminal supports ACP enforcement it SHALL retrieve and apply the ACP immediately after the initialization phase of the SCWS transport protocol with the smart card. The terminal MUST block access to the SCWS for all terminal applications before the retrieval and enforcement of the ACP rules that are described in it. After the retrieval of the ACP from the SCWS the terminal MUST apply the rules and MUST block access to the SCWS for all non-authorized terminal applications. If the terminal is not able to interpret the ACP (e.g. ACP is malformed) it MUST block access to the SCWS for all terminal applications.

12.2 ACP data objects

The ACP ASN.1 [ref…] data objects are described below. A description of the role of each data object follows afterwards. 

--Access Control Policy
ACP ::= SEQUENCE {


trustedAppInformation  
 TrustInformation,


SelectedTrustedApplications
 CertHashList     OPTIONAL

}

TrustInformation ::= BIT STRING {


allApplications

(0),


allTrustedApplications

(1),


trustedByManufacturer

(2),


trustedByOperator

(3),


trustedByEnterprise

(4),


selectedTrustedApps

(5),


... -- for future extensions

}

CertHashList  ::=  SEQUENCE SIZE (1..MAX) OF CertHash

CertHash ::= OCTET STRING  --SHA1 Hash of Entire Certificate 
Trusted certificates that indicate various levels and granularity of trusted terminal applications may already be present in the device. If the smart card contains additional certificates they MUST be read as described in [SCProv] and added to the list of existing trusted certificates. 

The bits in the TrustInformation type indicate which terminal applications are allowed to access the SCWS and are defined as follows:  

· The allApplications bit is asserted when access to the SCWS is allowed by all terminal applications without restriction.  

· The allTrustedApplications bit is asserted when access to the SCWS is allowed by signed terminal applications that have been properly validated to any one of the trusted certificates.

· The trustedByManufacturer bit is asserted when access to the SCWS is allowed to terminal applications trusted by the terminal manufacturer (e.g. signed applications that have been properly validated to trusted certificate(s) associated with the manufacturer, or by other means).  . 

· The trustedByOperator bit is asserted when access to the SCWS is allowed to signed terminal applications that have been properly validated to trusted certificate(s) associated with the operator trust level, if this trust level is supported by the terminal. 

· The trustedByEnterprise bit is asserted when access to the SCWS is allowed to signed terminal applications that have been properly validated to trusted certificate(s) associated with the "Enterprise trust level", if this trust level is defined and supported by the application's runtime environment of the terminal .

· The selectedTrustedApps bit is asserted to indicate that access to the SCWS is allowed by signed terminal applications that have been properly validated to a trusted certificate (or certificates) as indicated in the SelectedTrustedApplications structure.  
The SelectedTrustedApplications type indicates that access to the SCWS is allowed by signed terminal applications that have been properly validated to one of the trusted certificates whose hash is explicitly indicated in this structure. If a trusted certificate corresponding to the indicated hash cannot be found, the signed terminal application SHALL not have access to the SCWS.

The certificate hash is a SHA-1 hash calculated over the DER encoding of the complete certificate. 

13. SCWS remote administration

The SCWS administration is the ability to upload new data (e.g. xHTML pages), delete data and change configuration parameters for the SCWS. The commands are sent using the “Administration protocols” that are described below. All these protocols implement end-to-end authentication, integrity and confidentiality. Only an authorized administration entity can administrate the SCWS.

The SCWS SHALL NOT terminate an HTTP request response session with a terminal HTTP client application upon receiving an HTTP administration command.

13.1 Administration commands

The SCWS administration commands are HTTP commands as described below. These commands are sent to the smart card with the administration protocols as described in [13.3]. This chapter describes the commands only and does not deal with how they are sent to the SCWS. The following chapters describe the administration protocols themselves.

The following HTTP requests are used for administrating the SCWS:

	PUT
	Is used to install or update a page on the SCWS

	DELETE
	Is used to delete a page from the SCWS

	POST
	Is used to send special administration commands to the SCWS

	GET
	Is used by the admin server to read information from the SCWS , e.g. “GET /config/content_version”


The URIs in PUT-requests, DELETE-requests and GET-requests must be an absolute path, i. e. start with “/”. The POST requests contain special commands, which are parsed by a special admin-component within the SCWS.

13.1.1 PUT

The PUT HTTP request is used to install or update a page on the SCWS. 

· The URL to be installed/updated must be an absolute path (starting with the root of the SCWS)

· The entity-header-field “Content-Type” must be used. 

· The entity-header-field “Content-Length” must be used. The value is the length of the message-body in bytes as a decimal number.

Example:


PUT /faq/abc HTTP/1.1  CRLF
Content-Type: text/html; charset=utf-8   CRLF
Content-Length: 16 CRLF
Host: anything CRLF
CRLF
<html>xxx</html>

13.1.2 DELETE

The DELETE request is used to delete a page from the SCWS. The URL to be deleted must be an absolute path (starting with the root of the SCWS). 

Example:


DELETE /faq/abc HTTP/1.1  CRLF
Host: anything CRLF

13.1.3 POST

The POST request is used to send special administration commands to the SCWS as described below.

· The URL must be “/SCWS/admin”

· The entity-header-field “Content-Type” must be used. The value is “application/x-www-form-urlencoded".

· The entity-header-field “Content-Length” must be used. The value is the length of the message-body in bytes as a decimal number

· The message-body, in this case called “admin-body”, contains data that is interpreted by the admin-component of the SCWS. See below for the definition of the admin-body.

Example:


POST /SCWS/admin HTTP/1.1  CRLF
Content-Type: application/x-www-form-urlencoded CRLF
Content-Length: xx CRLF
Host: anything CRLF
CRLF
admin-body 
;the message-body of the POST request is called admin-body and

;contains one or several admin commands

The POST command MAY also be used to send HTTP commands that pass some parameters to applications that are invoked by the SCWS. In this case the POST request shall include the URL of the invoked application and contain the parameters in the POST command body:

· The URL must be the URL of the invoked application

· The entity-header-field “Content-Type” must be used. The value is “application/x-www-form-urlencoded".

· The entity-header-field “Content-Length” must be used. The value is the length of the message-body in bytes as a decimal number

· The message-body contains data that is interpreted by the invoked application.

 Example:


POST /myApplication HTTP/1.1  CRLF
Content-Type: application/x-www-form-urlencoded CRLF
Content-Length: xx CRLF
Host: anything
CRLF
data1=abc&data2=xyz

13.1.4  GET

The GET request is used by the Admin Server to read a page of the SCWS. The URL to be read must be an absolute path (starting with the root of the SCWS). 

Example:


GET /config/content-version   HTTP/1.1    CRLF
Host: anything CRLF CRLF
13.1.5 Special admin commands that are used within a POST request

Special Admin-Commands are transported within the message-body of POST-requests. The SCWS must be able to process an admin-body with a length of at least 1024 Bytes. If more than 1024 bytes are needed for administration, the Admin Server in the network should transport the admin commands within several POST requests. The admin commands are handled by the admin server application, to which only authorized principals can have access (as provisioned by the card issuer).

The commands always start with a command attribute (i.e. cmd=commandName) followed by one or several attribute value pairs as parameters. These command pairs are formatted according to the W3C recommendation [HTML 4.0.1]. This means that the attribute name is separated from the attribute value by '=' and attribute name/value pairs are separated from each other by '&'. All unsafe characters in names and values are escaped: Space characters in names and values are replaced by '+', and reserved characters are escaped as described in [RFC 3986]. Non-alphanumeric characters are replaced by '%HH', a percent sign and two hexadecimal digits representing the ASCII code of the character. All attributes names and values are case sensitive and the order of attribute value pairs is not relevant (if not otherwise specified).

If a parameter name in a command is not known or if a parameter name has a wrong parameter value the command MUST be aborted. To recognize constants they are written with quotes in this specification, but in the commands themselves they appear without quotes. For example "on" refers to the string "on" but in the command invocation it appears without the quotes:  http=on. 
NOTE TO Editor: Remove all smart quotes
Example:

cmd=set&http=on&cmd=dps&psname=ps1&user=James&pwd=XYZ675

 In this example two commands are sent. The name of the first command name is “set” with the attribute value pair “http=on”. The name of the second command is “dps” with three attribute-value pairs.

Some parameter/value pairs are mandatory in an admin command; others are optional (as indicated in the tables).

13.1.5.1 Configure the SCWS

This command allows the administrator to set parameters in the SCWS. Command name is: set

	Parameter name
	Value
	mandatory/
optional

	http
	“on” – turn the HTTP server operational mode on

“off” – turn the HTTP server operational mode off
	o

	https
	“on” – turn the HTTPS server operational mode on

“off” – turn the HTTPS server operational mode off
	o


Operational mode is distinguished from administration mode. The communication with remote administration application is always enabled and is done on an authenticated secure channel as described in [13].

· If HTTP or HTTPS is set to Off, the SCWS SHALL abort current communication and stop listening on the relevant TCP port

· If HTTP or HTTPS is set to On the SCWS SHALL start listening on the relevant TCP port. 

The following error codes can be used (see 13.2.2):

· 0002 wrong parameter

· 0003 wrong value

· 0005 missing parameter or value

Example:
cmd=set&https=off&http=on
13.1.5.2 Define a protection set for basic or digest authentication

This command is used to define or change a protection set for basic or digest authentication. A protection set is a pair of user name and password.

Command name is: dps

	Parameter name
	Value
	mandatory/
optional

	psname
	A unique name that identifies this protection set
	m

	user
	Name of the user
	m

	pwd
	Password.
	m


Only one user and password can be set in one DPS command. An example is:

cmd=dps&psname=ps1&user=James&pwd=XYZ675

Note: Deleting a protection set requires that no existing page in the SCWS does reference it. To ease implementation a "Delete protection set" command is not supported in this version of the specification. Instead the no longer needed protection, which does not consume much memory, simply remains (unused) in the web server. 
The following error codes can be used (see 13.2.2):

· “0002 wrong parameter”

· 
· “0003 wrong value”

·  “0005 missing parameter or value”
13.1.5.3 Define a resource publishing set

Pages can be protected with HTTPS, or with basic or digest authentication or with both. This command is used to protect a subtree with an existing protection set and/or with HTTPS or to change the current protection for a subtree. This means that access to this sub-tree is granted only if authentication succeeded and/or if the correct protocol is being used.

Command name is: pr

	Parameter name
	Value

	mandatory/
optional

	uri
	The URI that indicates the sub-tree to protect
	m

	protocol
	“http” – HTTP protocol 

“https” – HTTPS protocol
	m

	psname
	Name of a protection set if basic or digest authentication is being used
	o

	auth
	“basic” – use Basic authentication to authenticate the connecting principal 

“digest” – use Digest authentication to authenticate the connecting principal
	conditional: must be used if the parameter psname is present


The SCWS MUST support that this command can be sent even before the resource (referenced by uri) is uploaded to the card.

In this command the order of parameters is relevant: each psname parameter must be followed by an auth parameter. The sequence of the two parameters,  psname and auth, can appear several times in the command. 
If the SCWS does not implement Digest Authentication the returned error code shall be 
“wrong value: auth=digest”.

The following error codes can be used (see 13.2.2):

· “0002 wrong parameter”

·  “0004 referenced data not found” (e.g. psname is not defined)
·  “0003 wrong value”

·  “0005 missing parameter or value”

Examples:


1. cmd=pr&uri=/mypages&protocol=http&psname=userPrivatePages&auth=basic

2. cmd=pr&uri=/secureArea&protocol=https

3. cmd=pr&uri=/MoreSecurePages&protocol=https&psname=userPrivatePages&auth=basic

The first example defines (or changes) a “resource publishing set” for resources in the subtree /mypages. The protocol to be used is HTTP and basic authentication with the protection set “userPrivatePages” must be used for user authetication. 

The second example defines (or changes) a “resource publishing set” using HTTPS with server authentication (no user authentication). 

 The third example defines (or changes) a “resource publishing set” using HTTPS with user authentication.

13.2 SCWS Responses to Administration commands

This chapter describes the responses of the SCWS to the received administration commands. Responses are sent using the “Administration protocols” that are described below. There are two categories of responses, as described in the sub-chapters below.

13.2.1 Responses to HTTP commands

As described above, HTTP commands are used for the administration of the SCWS. These commands are: PUT, DELETE, POST, and GET. These commands MUST NOT be pipelined when delivered to the SCWS in an administration session. The SCWS SHALL reply with an HTTP Response for each HTTP Request that was sent by the remote administration application.

13.2.2 Responses to admin commands within the POST command

Special administration commands are sent within the post command as described in [13.1.5]. In the body of the POST command several admin commands can be sent. In order to indicate to the remote administration application which command was successfully executed the Pragma Header MUST be used.

The Pragma Header field in the response SHALL contain the number of the last command that was successfully executed by the SCWS. If a command was not successfully executed all commands after it SHALL be ignored and not executed by the SCWS. The Pragma header field SHALL be the following:

Pragma: cmd=CmdNum

where CmdNum is the last command number, encoded as a decimal integer, that was successfully executed by the SCWS.

If, for example, the POST command contains 14 admin commands and the 13th command was rejected by the SCWS, the SCWS would include the Pragma: cmd=12 in the HTTP response and ignore the commands that appear after the rejected command. The remote administration application will thus be able to detect that only the first twelve admin commands were successfully executed and resend a new HTTP POST command with some new admin commands. If no admin command was executed, the SCWS SHALL include Pragma: cmd=0 in the HTTP response.
If the HTTP POST request itself failed the SCWS SHALL return the relevant error code (for example malformed HTTP request). 

If all internal admin commands were executed successfully then the HTTP response status code SHALL be “204”. 

If at least one of the internal admin commands was not executed the HTTP response status code SHALL be “403” and the Pragma: cmd=CmdNum SHALL be included in the response as defined above. The body of the response SHALL be the MIME type text/plain containing the error string (without the quotes) of the command that could not be executed. The following result-strings are defined. For some cases the erroneous parameter must be included in the result string, (see examples).

The error result string shall have following format: <error_code> [<error_text>[: <error context>]]

· <error_code>: decimal integer with four digits. (Mandatory)

· <error_text>: error explicit description (optional)

· <error_context>: error textual context (optional, but can be present only if <error_text> is present)

The following errors are defined:

	Error code
	Error text

	Error Context
	Description

	“0001”
	“command not supported”
	“<cmd>”
	An unknown <cmd> command .

(example: “0001 command not supported: xyz”)

	“0002”
	“wrong parameter”
	“<param>”
	An unknown parameter <param> related to the given command.

(example: “0002 wrong parameter: xyz”)

	“0003”
	“wrong value”
	“<param>=<val>”
	A parameter value given in the command is not supported.

(example: “0003 wrong value: http=xyz”)

	“0004”
	“referenced data not found”
	“<param>=<val>”
	A parameter <param> value <val> reference an entity which does not exist.

(example: “0004 referenced data not found: psname=xyz”)

	“0005”
	“missing parameter or value”
	“<param>”

“<value>”

“<cmd>”
	A mandatory parameter/value <param><value> for the command is missing

(example: “0005 missing parameter or value: psname”)

	“00FF”
	“unknown error”
	“<cmd and parmeters>”
	Any other error not covered by previous codes (e.g.: Internal error or malformed command)

(example; “00FF unknown error: <cmd and parmeters>”)


The following example shows the response when all admin commands in the HTTP POST request were successfully executed:

	HTTP/1.1 204 No Content CRLF
CRLF


The following example shows the response when only part of the admin commands in the HTTP POST request were successfully executed (in this example only the 12 first commands):

	HTTP/1.1 403 Forbidden CRLF
Content-Type: text/plain CRLF
Content-Length: 20 CRLF
Pragma: cmd=12
CRLF CRLF

0001 command not supported: sett


13.3 Administration protocols

13.3.1 Lightweight Administration Protocol

The lightweight administration protocol can be used for sending short administration commands for setting or changing a small number of configuration parameters for the SCWS. It is suitable for the exchange of a small amount of data between the administration application and the SCWS. For example a “DPS” command (for setting a protection set) may be sent with only one SMS. These commands are sent via SMS as described below.

The SCWS can be administered via current OTA protocols. The OTA message that contains an administration command is formatted according to [TS 31.115] and [TS 31.116] (or [C.S0078] and [C.S0079] for 3GPP2) with authentication, integrity protection and sequence numbering (i.e. card shall reorder each part of Concatenated SMS if needed). 

The data payload of the envelope SMS PP Data Download command SHALL be the administration command(s) as described in [13.1]. The TAR of the envelope SMS PP Data Download command must be the TAR of the SCWS card application. 
The SCWS application SHALL respond with a proof of receipt, if demanded in the received message as defined in [TS 31.115] (or [C.S0078] for 3GPP2), to indicate that the message was well received, well formatted and was correctly secured.  
After executing the administration commands the SCWS application shall respond with a “proof of execution”, as a response packet formatted according to [TS 31.116] (or [C.S0079] for 3GPP2). The response data shall contain the HTTP response for the sent HTTP administration commands.

The total internal allocated size for incoming OTA messages, that contain administration commands, SHALL be at least 512 bytes. The total internal allocated size of outgoing OTA messages that contain the response to the administration commands SHALL be at least 512 bytes.

13.3.2 Full Administration Protocol

The full administration protocol is used for doing a full blown administration of the SCWS which may include uploading new pages, deleting pages and changing configuration parameters for the SCWS. It is suitable for the exchange of a large amount of data between the administration application and the SCWS.

The full administration protocol enables the use of a standard web server as the remote administration server implementation. The full administration protocol (and its card administration agent) has the following characteristics:

· Based on a reliable and efficient end to end connected transport protocol: TCP/IP (eventually over BIP)

· Based on an industry standard security layer: TLS

· Card administration agent is a real HTTP Client and is in charge to manage connection establishment between the remote administration server and the SCWS.

· Card administration agent is able to encapsulate and transparently transport any HTTP exchange between the two servers.

· Card administration agent is responsible of retry and reconnection management in case of communication break down.


[image: image2.wmf]BIP Gateway

TCP/IP Protocol 

Stack

Terminal

BIP Commands

TCP/IP

Smart card

Remote 

Admin 

Server

SCWS

Admin 

Agent


Figure 1: Remote SCWS administration using BIP

13.3.2.1 Administration session flow and behaviour using BIP

The Full Administration Protocol SHALL be implemented with BIP client mode as defined in [TS102223]. For this purpose the smart card SHALL include an administration agent that SHALL connect to the remote administration server by opening a BIP TCP channel in client mode, as defined in [TS102223]. The administration agent SHALL perform the following tasks:

1. Open a BIP channel in TCP client mode with the remote administration server

2. Use PSK-TLS over this TCP channel to enable mutual authentication, confidentiality and integrity (using one of the cipher suites that are defined in [OMA-TLS-Profile]). How shared keys are provisioned in both sides is beyond the scope of this specification.

3. After the TLS communication channel is established the card administration agent SHALL send an HTTP POST command (as defined in [13.3.2.5])  in order to get the first admin command (as defined in [13.1]):
4. When receiving the HTTP POST from the card administration agent the remote administration server SHALL send an HTTP response (as defined in [13.3.2.6]) which encapsulates an HTTP administration command dedicated to the SCWS itself (as defined in [13.1]).

5. When receiving the HTTP response for the above HTTP POST command the card administration agent SHALL forward it to the SCWS

6. The SCWS SHALL consider this channel as authenticated by the card administration agent and SHALL process the delivered administration command. 

7. After processing the delivered administration command the SCWS SHALL deliver the HTTP response back to the card administration agent

8. The card administration agent SHALL submit the HTTP response from the SCWS in a new POST request to the remote administration server over the TLS secure channel

9. The remote administration server SHALL send the next administration command to the card administration agent over the TLS secure channel or  send a final response requesting the end of the remote administration session in the POST response.

10. If the card administration agent receives a final response from the remote administration server, it SHALL close the TLS channel and afterwards close the BIP channel


[image: image3.emf]Smart Card

(client)

Card administration agent

HTTP Protocol

Remote 

administration 

server

SCWS

Open connection/session (1)

HTTP POST Response (admin commands) (4)

HTTP POST (first)(3)

admin responses (7)

admin commands (5)

HTTP POST (responses to previous admin commands) (8)

HTTP POST Resp (final) (9)

Start TLS session (2)

(6)

Close TLS and connection/session (10)

client client

server

server

…

(next)

(9)


Figure 2: Administration session flow

13.3.2.2 Administration session flow and behaviour using TCP/IP

If the smart card implements a TCP/IP stack and can establish a direct TCP/IP connection to the remote administration server (without using BIP) the session flow and behaviour is the same as described in [13.3.2.1] but with a direct TCP/IP connection.

13.3.2.3 Admin-Server Settings

To connect to the admin server the smart card Admin Agent can retrieve needed parameters from a resource (e.g. a file or data object), accessible via a URL, and managed by the card issuer (or delegated authorized entity). 

A configuration resource shall have the following characteristics: 

· The resource “Content-type” SHALL be “application/oma-scws-config”

· The resource body SHALL be an octet stream with a complete “Admin Agent configuration parameters” structure (see 13.3.2.8.3)
· The resource SHALL be manageable with administrative commands like PUT request.
Several configuration resources could be present in the SCWS but one of them must be set as the default one. 
Aconfiguration resource can be created or overwritten by the admin server with a PUT request. An example for defining this resource URL can be: /config/admin_server_settings

13.3.2.4 Remote triggering of an administration session

To start an administration session the administration agent in the smart card needs to be triggered in order to start the administration session. The remote administration server, or a delegated authorized entity, SHALL trigger the administration session by sending a secure SMS to the smart card to tell the administration agent to start an administration session.

The OTA message that triggers an administration session is formatted according to  [TS 31.115] and [TS 31.116] (or [C.S0078] [C.S0079] for 3GPP2) with authentication, integrity protection and sequence numbering (i.e. card shall reorder each part of Concatenated SMS if needed). The TAR of the envelope SMS PP Data Download command must be the TAR of the administration agent in the smart card.
The administration agent will respond with a proof of receipt, if demanded in the received message as defined in [TS 31.115], (or [C.S0078] for 3GPP2) to indicate that the message was well received, well formatted and was correctly secured.

· The card administration agent SHALL include a Remote Administration Request data structure (see 13.3.2.8.1) in the data payload of the envelope SMS PP Data Download.

If a parameter is present in the configuration resource  and also in the data payload of the envelope SMS PP Data Download then the parameter in the SMS SHALL be used.
If a needed parameter is not present in the data payload of the envelope SMS PP Data Download the card Admin Agent must use the parameter value from the indicated configuration resource. If it is not present in the indicated configuration resource then the Admin Agent must use the parameter value in the default configuration resource.
Upon the reception of the above triggering command the administration agent SHALL start the administration session as described in [13.3.2.1].

The following are examples for the payload of a triggering SMS.: 
Use default configuration resource:

	81 00 //Remote Administration Request


Use default configuration resource but with a different admin URI: “/otherurl”

	81 0E //Remote Administration Request
83 0C //Admin Agent configuration parameters
88 0A 8B 09 2F 6F 74 68 65 72 75 72 6C  //Administration URI parameter


Use configuration resource “/config/admin_settings2” but with a different admin URI: “/otherurl”

	81 25 //Remote Administration Request

82 16 63 6F 6E 66 69 67 2F 61 64 6D 69 6E 5F 73 65 74 74 69 6E 67 73 32 
            // Configuration resource URL: “/config/admin_settings2”
83 0B //Admin Agent configuration parameters
8C 09 2F 6F 74 68 65 72 75 72 6C  //Administration URI parameter: “/otherurl”


13.3.2.5 HTTP POST request of card administration agent
The POST request is used by the card administration agent to fetch administrative commands for the SCWS and to transmit the result from the preceding administrative commands.

13.3.2.5.1 Request Format

The POST request SHALL have the following format:

	POST <URI> HTTP/1.1 CRLF
Host: <Administration Host> CRLF
User-Agent: oma-scws-admin-agent/1.0 CRLF
From: <Agent From 
(as defined in triggering event)> CRLF
[SCWS-Resume: true]
[Content-Type: application/oma-scws-http-responses CRLF]
[Content-Length: xxxx CRLF] or [Transfer-Encoding: chunked CRLF]
CRLF
[body-with-previous-scws-commands-responses]


· If a Next-URI response field is present in the previous response (see description in [13.3.2.6]) then the card administration agent SHALL use it. Otherwise the last used URI MUST be used. The First URI to be used is defined by the triggering event. The card administration agent MUST be able to handle URI with a length of 1024 bytes. The remote administration server MAY use query parameters in the URI for session management purpose. 

· The “Host” value SHALL be the Administration Host parameter defined by the triggering event (see 0).

· The card administration agent SHALL use the “User-Agent” request headers with the given version to enable backward compatibility with evolution of this standard.

· The card administration agent SHALL use the “From” request headers with the “Agent From” defined by the triggering event (see 13.3.2.8.11).

· If this session is resumed from a previous interrupted session, the card administration agent SHALL use the “SCWS-Resume” extension-header with the value “true” in the first POST request of the resumed session. The “SCWS-Resume” extension-header MUST not be used in the following POST requests.
· If  a  response from a previous admin command is to be sent, the card administration agent SHALL forward the SCWS response  using:

·  “Content-Type” entity header with the value “oma-application/scws-http-response”.

· “Content-Length” entity header with the exact length of the body in bytes or “Transfer-Encoding” general header with the value “chunked” (see [HTTP/1.1]). The card administration agent may use the chunk encoding if it is not able to compute the total length of the SCWS response.

· A body with the complete response of the previous administration command . The chuncked Transfer-Encoding may be used. 
13.3.2.5.2 Examples:

First request of a new session:

	POST /downloadmanager/meteo?cmd=1 HTTP/1.1 CRLF
Host: 172.96.0.1 CRLF
User-Agent: oma-scws-admin-agent/1.0 CRLF
From: 8939010012751002010 CRLF 
CRLF


Next request with preceding response:

	POST /downloadmanager/meteo?cmd=5 HTTP/1.1 CRLF
Host: 172.96.0.1 CRLF
User-Agent: oma-scws-admin-agent/1.0 CRLF
From: 8949020012751002010 CRLF 
 
Content-Type: application/oma-scws-http-responses CRLF
Content-Length: 27 CRLF
CRLF
HTTP/1.1 204 NO CONTENT CRLF
CRLF


Next request with preceding response with chunk encoding:

	POST /downloadmanager/meteo?cmd=5 HTTP/1.1 CRLF
Host: 172.96.0.1CRLF
User-Agent: oma-scws-admin-agent/1.0 CRLF
From: 8991200012751002010 CRLF 
CRLF
Content-Type: application/oma-scws-http-responses CRLF
Transfer-Encoding: chunked CRLF
CRLF
11 ;chunk size CRLF
HTTP/1.1 20
16 ;chunk size CRLF
4 NO CONTENT CRLF
CRLF
0 ;last chunk CRLF
CRLF


First request of a resumed session:

	POST /downloadmanager/meteo?cmd=12 HTTP/1.1 CRLF
Host: 172.96.0.1 CRLF
User-Agent: oma-scws-admin-agent/1.0 CRLF
From: 8991200012751002010 CRLF 
SCWS-Resume: true CRLF
CRLF


13.3.2.6 HTTP POST response of remote administration server.

The POST response is used by the remote administration server to transmit the next administrative commands to the SCWS through the administration agent and possibly to inform about the next URI that must be used to request the following admin command.

13.3.2.6.1 Response Format

The POST response SHALL have the following format:

	HTTP/1.1 200 OK CRLF [or HTTP/1.1 204 No Content CRLF]
User-Agent: oma-scws-remote-admin/1.0 CRLF
[SCWS-Next-URI: <next-URI> CRLF]
[Content-Type: application/oma-scws-http-request CRLF]
[Content-Length: xxxx CRLF]
CRLF
[body-with-scws-command-request]


· The remote administration server SHALL use a successful status (200 OK) if the response contains a body else it SHALL use the status 204 (No Content) if no entity-body is send.

· The remote administration server SHALL use the “User-Agent” request headers with the given version to enable backward compatibility with evolution of this standard.

· If a “SCWS-Next-URI” extension header is present in the response, the card administration agent SHALL use the given URI in the next POST request. If this header field is present and if the body is empty then the card administration agent SHALL generate a POST request to the given URI without forwarding anything to the SCWS. The URI SHALL respect the same constraints as the  initial triggering URI (abs_path,query,length,…) and SHALL be available on the same server where the connection has been initiated (the session communication channel remains the same).

· If  a  the remote administration server has remaining administration commands to forward to the SCWS it  SHALL use an entity body with:

· “Content-Type” entity header with the value “oma-application/scws-http-request”.

· “Content-Length” entity header with the exact length of the body in bytes.

· A body with HTTP administrative command to forward to the SCWS.

13.3.2.6.2 Examples:

Response with an embedded PUT request for the SCWS:

	HTTP/1.1 200 OK CRLF
User-Agent: oma-scws-remote-admin/1.0 CRLF
Content-Type: application/oma-scws-http-request CRLF
Content-Length: 108 CRLF
CRLF
PUT /index.xhtml HTTP/1.1 CRLF
Host: anything CRLF 
Content-Type: text/html CRLF
Content-Length: 18 CRLF
CRLF
<html>Hello</html>


Response with an embedded GET request for the SCWS and also with a next URI (incrementing query):

	HTTP/1.1 200 OK CRLF
User-Agent: oma-scws-remote-admin/1.0 CRLF
SCWS-Next-URI: /downloadmanager/meteo?cmd=13 CRLF
Content-Type: /application/oma-scws-http-request CRLF
Content-Length: 43 CRLF
CRLF
GET /page1.html HTTP/1.1 CRLF
Host: anything CRLF
CRLF


Response with no body but a next URI:

	HTTP/1.1 204 No Content CRLF
User-Agent: oma-scws-remote-admin/1.0 CRLF
SCWS-Next-URI: /otherdownloadmanager?cmd=1  CRLF
CRLF


Final response which close the administration session:

	HTTP/1.1 204 No Content CRLF
User-Agent: oma-scws-remote-admin/1.0 CRLF
CRLF


13.3.2.7 Retry management.

As soon as an administration session has been triggered and accepted by the card administration agent, this agent is responsible for the connection to the remote administration server and for the accomplishment of the session.

This means that if a communication error occurs during the processing of the administration flow (see description in [13.3.2.1]) the administration agent should try to reconnect according to a card issuer specific retry policy.

The retry policy may include the following:

· An end condition (e.g. number of retries) to be used to avoid network congestion by stale or inconsistent remote administration request.

· A time or counter or an event based retry policy if the BIP or TCP/IP connection attempt fails (like network congestion).

· 

If the TLS session establishment fails for security/authorisation reason the administration session SHALL be immediately discarded.

If a communication breakdown occurs after a valid request have been exchanged between the card administration agent and the remote administration server, the card administration agent SHALL always use the resume mode (see description in [13.3.2.5]).

The overall behaviour SHALL be based on the following rules:

· The Card Administration Agent will make several attempts for resuming the administration session (e.g. BIP or TCP/IP connection and opening an HTTP communication). The waiting period between two attempts and the maximum number of attempt is specified by the retry policy (e.g. triggering event 13.3.2.8.6).

· If the communication is re-established, the Card Administration Agent 
will try to resume the HTTP dialog by navigating to the last URL of this administration session (see hereafter for the detail for this URL navigation).

· At the opposite, if the maximum number of attempts has been reached the administration session request is then abandoned.


The retry scheme is shown in the following figure:


[image: image4.emf]Dec counter

of attempts

Open channel

Negotiate security 

(PSK-TLS)

HTTP POST

Wait retry 

period

Reset counter 

to initial value

OK

OK

KO & counter != 0

/Period elapsed

HTTP Resp. = 2xx

Send Error 

SMS-MO

HTTP Resp. = 5xx

KO & counter == 0

Secu KO

HTTP Resp. != 2xx

AND != 5xx

End of retry algorithm

Perform HTTP Dialog

Begin retry scheme


Where:

· 5xx HTTP responses are considered as errors (the connection is closed), but the retry schema should be applied (this might be a temporary error due to the remote administration server shutting down).

· A 2xx HTTP response received from the administration server means that the admin session is working. Retry counter should be reset to its initial value.

· 
· Other HTTP response codes or errors during the security negotiation are considered to be fatal errors (no retry is performed).
If the administration session is abandoned (fatal error or maximum number of retry attempts is reached) and if the triggering event has required a failure report (see 13.3.2.8.7) than an SMS-MO SHALL be emitted. 

The data payload in the failure SMS-MO report SHALL comply to the “Administration Failure report” format (see 13.3.2.8.8)

13.3.2.8 Tag descriptions

All the following Tags are defined using the same coding as the [TS 101 220] COMPREHENSION-TLV data objects.

13.3.2.8.1 Remote Administration request

The Remote administration request TLV is present in an SMS that triggers a remote administration session 
	Description
	M/O/C
	Length

	Remote administration request tag
	M
	1

	Length (A+B)
	M
	1,2 or 3

	Configuration Resource URL
	O
	A

	Admin Agent configuration parameters
	O
	B


· Configuration Resource URL:
If not present the SCWS admin agent shall use default configuration resource defined by the card issuer.

· Admin Agent configuration parameters: 
These parameters have higher priority than the corresponding parameters in the  used configuration resource.
13.3.2.8.2 Configuration Resource URL parameter

The Configuration Resource URL parameter TLV defines the configuration resource to use.

	Description
	M/O/C
	Length

	Configuration Resource URL parameter tag
	M
	1

	Length (A)
	M
	1,2 or 3

	URL
	M
	A


· URL:
Absolute path URL of a configuration resource inside the SCWS (see [13.3.2.3]).
The SCWS agent SHALL support URL Length of at least 1024 bytes.

13.3.2.8.3 Admin Agent configuration parameters
The Admin Agent configuration parameters TLV is used to configure an administration session between the admin agent and a remote administration server.

	Description
	M/O/C
	Length

	Admin Agent configuration parameters tag
	M
	1

	Length (A+B+C+D)
	M
	1,2 or 3

	Connection parameters
	C
	A

	Security parameters
	C
	B

	Retry Policy parameters
	C
	C

	Agent HTTP POST Parameters
	C
	D


This TLV 
can be present in:

· Card issuer default configuration resource: In this case all parameters are mandatory.

· Configuration resource referenced by a configuration resource URL parameter TLV: parameters are optional (missing parameters are read from the default configuration resource)

· Directly in an administration request (e.g. trigger SMS): parameters are optional (missing parameters are searched in the configuration resources)

13.3.2.8.4 Connection parameters

The connection parameters TLV embeds all the needed parameters to establish a point to point TCP connection between the Administration Agent and the Remote administration server.

	Description
	M/O/C
	Length

	Connection parameters tag
	M
	1

	Length (A)
	M
	1 or 2

	Set of any comprehension TLV needed to the OPEN CHANNEL command completion.
	M
	A


If the connection between the Admin Agent and the remote administration server is done over BIP, the data SHALL contain all needed COMPREHENSION-TLV data objects that are defined for OPEN CHANNEL in [TS 102 223].

13.3.2.8.5 Security parameters

The security parameters TLV is used for configuring the TLS layer.

	Description
	M/O/C
	Length

	Security parameters tag
	M
	1

	Length (1+A+1+B)
	M
	1, 2 or 3

	Length of PSK-Identity
	M
	1

	PSK-Identity
	M
	A

	Length of Key-Identifier
	M
	1

	Card Key-Identifier
	M
	B


· PSK-Identity:
The PSK identity is an opaque string defined by [PSK-TLS]. It is used by the remote server to indicate the PSK identity to be used during the TLS session. 
The SCWS admin agent SHALL support a PSK Identity length of at least 32 bytes.

· Card Key-Identifier: 
The Card Key Identifier is an opaque string that is used internally in the smart card to find the key value to be used in the TLS session
The SCWS admin agent SHALL support a Card Key-Identifier length of at least 32 bytes.

13.3.2.8.6 Retry policy parameters

The retry policy parameters TLV is used by the administration agent in case of administration session failure.

	Description
	M/O/C
	Length

	Retry policy tag
	M
	1

	Length (2+1+1+1+A)
	M
	1

	Retry counter 
	M
	2

	Retry waiting delay
	M
	5

	Retry report failure SMS-MO
	O
	A


· Retry counter: 
Unsigned short initial value of the retry counter used by the retry policy. 
· Retry waiting delay:
Definition of the time to wait between two retries. This parameter is in the same format as the “timer” Comprehension TLV definition  in [TS 102 223]. 
Due to the clock-less and removable design of the smart card, the remote administration server shall only consider it as the minimum time the card administration agent has to wait and not the exact time when the session will be resumed. 
13.3.2.8.7 Retry failure report SMS-MO

If this TLV is present then the administration agent SHALL send an SMS-MO in case of an abort of an administration request (as define in section 13.3.2.7).

	Description
	M/O/C
	Length

	Retry failure report SMS-MO tag
	M
	1

	Length (A)
	M
	1

	TP-Destination Address
	O
	A


· TP-Destination Address:
The TP-Destination Address as defined in [TS 23.040]. 
If no TP-Destination Address is present in this TLV, it SHALL be extracted from the TP-Originating Address of the trigger SMS.

All the other parameters (as defined in [TS 23.040] ), which are needed to submit the Retry failure report SMS-MO SHALL be extracted from the trigger SMS.

13.3.2.8.8 Administration failure report

The administration failure report TLV is present in the SMS-MO send to the administration server in case of an abort of an administration request (as define in section 13.3.2.7).

	Description
	M/O/C
	Length

	Admin agent report Tag
	M
	1

	Length (1+1+A)
	M
	1

	Error code
	M
	1

	Contextual message length (A).
	M
	1

	Contextual message.
	O
	A


Error Code specifies the layer where the error occurred when the retry limit was reached (so only the last error is returned):

· 0x01 : Open Channel Error

· 0x02 : TLS Error

· 0x03 : BIP Channel Error

· 0x04 : Remote administration server error

Contextual message gives some additional diagnostic information depending on the type of the error:

· If error code = 0x01 : the Terminal Response of the Open Channel Command

· If error code = 0x02 : None
· If error code = 0x03 : Channel Status

· If error code = 0x04 :  HTTP Error code returned by the remote administration server.

The contextual message SHALL be limited to a length of 127 bytes.

13.3.2.8.9 Agent HTTP POST parameters

The Agent HTTP POST parameters TLV defines all parameters needed to send a POST request to the admin server.

	Description
	M/O/C
	Length

	Agent HTTP POST parameters tag
	M
	1

	Length (A+B+C)
	M
	1,2 or 3

	Administration Host parameter
	O
	A

	Agent From parameter
	O
	B

	Administration URI parameter
	O
	C


13.3.2.8.10 Administration Host parameter

The Administration Host parameter TLV defines the Host header value to be used in the Admin Agent POST request (see 13.3.2.5.1)

	Description
	M/O/C
	Length

	Administration Host parameter Tag
	M
	1

	Length (A)
	M
	1

	Host
	M
	A


· Host:
Host header value (as defined by [RFC 2616]) with the name of the administration server.
The SCWS admin agent SHALL support a Host length of at least 32 bytes.

13.3.2.8.11 Agent Id parameter


The Agent Id parameter TLV defines the value to be used in the ‘From’ header in a POST request to an admin server (see 13.3.2.5.1)

	Description
	M/O/C
	Length

	Agent From parameter  Tag
	M
	1

	Length (A)
	M
	1

	From
	M
	A


· From:
From header value (as defined by [RFC 2616]) with the name of the admin Agent.
The SCWS admin agent SHALL support a Host length of at least 32 bytes.

A good practice is to use the smart card ICCID to allow immediate identification of the card by the remote administration server. If the ICCID is used, it SHALL be formatted as a 19 or 20 byte long string (decimal digits, with check digit, without padding character). Note: the nibbles of the value extracted from the EF-ICCID [TS102221] are swapped)

13.3.2.8.12 Administration URI parameter

The Administration URI parameter TLV defines the URI value to be used in a POST request to an admin server (see 13.3.2.5.1)

	Description
	M/O/C
	Length

	Administration URI parameter Tag
	M
	1

	Length (A)
	M
	1,2 or 3

	URI
	M
	A


· URI:
The URI value to set in the Admin Agent Post request.
This URI SHALL be an absolute path (as defined by [RFC 2616]) and may contain query parameters.
The SCWS admin agent SHALL support a URI length of at least 1024 bytes.

13.3.2.9 Tag values

	BER-TLV TAG
	Description
	Section

	‘01h’ or ‘81h’
	Remote administration request tag
	13.3.2.8.1

	‘02h’ or ‘82h’
	Configuration resource URL parameter tag
	13.3.2.8.2

	‘03h’ or ‘83h’
	Admin agent configuration parameters tag
	13.3.2.8.3

	‘04h’ or ‘84h’
	Connection parameters tag
	13.3.2.8.4

	‘05h’ or ‘85h’
	Security parameters tag
	13.3.2.8.5

	‘06h’ or ‘86h’
	Retry policy parameters tag
	13.3.2.8.6

	‘07h’ or ‘87h’
	Retry failure report SMS-MO tag
	13.3.2.8.7

	‘08h’ or ‘88h’
	Retry failure report SMS-MO tag
	13.3.2.8.8

	‘09h’ or ‘89h’
	Agent HTTP POST parameters tag
	13.3.2.8.9

	‘0Ah’ or ‘8Ah’
	Administration Host parameter tag
	0

	‘0Bh’ or ‘8Bh’
	Agent From parameter tag
	13.3.2.8.11

	‘0Ch’ or ‘8Ch’
	Administration URI parameter tag0
	13.3.2.8.12


Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

   Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

   Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval


A.2 Draft/Candidate Version <current version> History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions.  DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-xxyyz-V1_2
	30 Jun 2003
	3.2, 8.2, 11.4, App A
	Incorporates input to committee:

   OMA-XY-2003-0053-CR_SpellingCorrections

   OMA-XY-2003-0098-CR_AddSectionOnPeanutButter

	
	12 Aug 2003
	9.2.2.2, 11.3
	Incorporates input to committee:

   OMA-XY-2003-0101R2-CR_ImproveJellyReferences

	Candidate Version

OMA-xxyyz-V1_2
	16 Sep 2003
	n/a
	Status changed to Candidate by TP

   TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

	Draft Version

OMA-xxyyz-V1_2
	24 Sep 2003
	6.8
	Status changed to Draft (demoted) to address important class 1 CR

   OMA-XY-2003-0172-CR_AddSectionOnJellyGoesOnTop

	Candidate Versions

OMA-xxyyz-V1_2
	13 Nov 2003
	n/a
	Status changed to Candidate by TP

   TP ref # OMA-TP-2003-0def-CandidateRequest_xxyyz_V1_2_again

	
	21 Dec 2003
	4.2, 6.3
	Minor CR to address interpretation of bread references

   OMA-XY-2003-0205-CR_SlicedBreadClarification

Notice sent to TP of minor update

   TP ref # OMA-TP-2003-0ghi-CandidateUpdateNotice_xxyyz_V1_2

	
	12 Jan 2004
	4.2, 6.6
	Minor CR to cover cases where knife not available

   OMA-XY-2004-0012-CR_SpreadingWithoutKnife

Notice sent to TP of minor update

   TP ref # OMA-TP-2004-0jkl-CandidateUpdateNotice_xxyyz_V1_2


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables.  DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF


B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF


Appendix C. Bearer Independent protocol (BIP) - Informative

The following two figures describe the basic functionality and usage of the Bearer Independent Protocol (BIP). It is depicted here for information only. For more details please refer to the ETSI SCP [TS102223] specification.


[image: image5.wmf]BIP Gateway

TCP/IP Protocol 

Stack

Terminal

BIP Commands

TCP/IP

Smart card

Remote 

Server


Figure 2: Usage of BIP in client mode


[image: image6.wmf]BIP gateway

TCP/IP Protocol Stack

Terminal

BIP commands

Gateway 

è

localhost: port number

Web 

Browser

Socket

API


Figure 2: Usage of BIP in server mode

Appendix D. Overview of Transport Protocols - Informative

	Type
	Usage
	Comments

	High-Speed Interface
	Operational mode
	Can be used for browsing web pages on the SCWS from a client through a direct TCP/IP connection on top of the UICC’s High-Speed Interface.

Please refer to chapter [7.2].

	High-Speed Interface
	Administrative mode
	Can be used to transfer and manage web pages on the SCWS from an Administrative Entity through a direct TLS connection on top of a direct TCP/IP connection over the UICC’s High-Speed Interface.

Please refer to chapter [13.3.2.2].

	BIP transport protocol type “TCP, UICC in server mode”
	Operational mode
	Can be used for browsing web pages on the SCWS from a client through a CAT BIP connection according to TS 102 223.

Please refer to chapter [7.1].

	BIP transport protocol type “TCP, UICC in client mode”
	Administrative mode
	Can be used to transfer and manage web pages on the SCWS from an Administrative Entity through a CAT BIP connection according to TS 102 223.

Please refer to chapter [13.3.2.1].

	Concatenated SMS
	Administrative mode
	Can be used to transfer and manage web pages on the SCWS from an Administrative Entity through an SMS channel. Used also to trigger a Full administration session of the SCWS.

Please refer to chapter [13.3.1] and [13.3.2.4].








�PAGE \# "'Page: '#'�'"  �� name should be changed


�PAGE \# "'Page: '#'�'"  �� Not clear. Why retry if there is a permanent error?


�PAGE \# "'Page: '#'�'"  �� What is an OTA Proxy?


�PAGE \# "'Page: '#'�'"  �� Editor update


�PAGE \# "'Page: '#'�'"  �� What does C (conditional) depend upon?





( 2005 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
( 2005 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

_1200925924.vsd

_1203856249.vsd
Dec counter
of attempts


Open channel


Negotiate security (PSK-TLS)


HTTP POST


Wait retry period


Reset counter to initial value


OK


OK


KO & counter != 0


/Period elapsed


HTTP Resp. = 2xx


Send Error SMS-MO


HTTP Resp. = 5xx


KO & counter == 0


Secu KO


HTTP Resp. != 2xx
AND != 5xx


End of retry algorithm
Perform HTTP Dialog


Begin retry scheme



_1200298689.ppt






BIP Gateway

TCP/IP Protocol Stack

Terminal

BIP Commands

TCP/IP

Smart card

Remote Server




























































































_1200301052.ppt






BIP Gateway

TCP/IP Protocol Stack

Terminal

BIP Commands

TCP/IP

Smart card

Remote Admin Server

SCWS

Admin Agent






















































































_1200298657.ppt






BIP gateway



TCP/IP Protocol Stack

Terminal

BIP commands



Gateway 

localhost: port number

Web Browser



Socket API














