OMA-TS-Service_User_Profile_Management-RESTful_Binding-V1_0-20100817
Page 15 V(28)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Service User Profile Management Technical Specification

RESTful binding for SUPM-1 interface

	Draft Version 1.0 – 17 Aug 2010

	Open Mobile Alliance

	OMA-TS-Service_User_Profile_Management-RESTful_Binding-V1_0-20100817

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
9
4.1
Version 1.0
9
5.
SUPM API definition
10
5.1
Binding principles
10
5.2
Resources Summary
11
5.3
SUPM RESTful API Data Structures
13
5.3.1
Type: AttributeValueTupleList
13
5.3.2
Type: AttributeValueTuple
13
5.3.3
Type: DataViews
13
5.3.4
Type: DataView
14
5.3.5
Type: AttributeNameList
14
5.3.6
Values of the Link “rel” attribute
14
5.4
Sequence Diagrams
14
5.4.1
Managing Service User Profile data
14
5.4.1.1
Successful request to SUPM enabler
14
5.4.1.2
Unsuccesful request to SUPM enabler
15
5.5
Resource: Service User Profile data Management
15
5.5.1
Service User Profile Management
15
5.5.2
Request URI variables
16
5.5.3
Response Codes
16
5.5.3.1
Response Codes
16
5.5.3.2
Exception fault codes
16
5.5.3.3
Faults codes values & associated string
17
5.5.4
GET
17

Example 1: Get all User Profile data belonging to a user (Informative)
17
5.5.4.1
17
5.5.4.1.1
Request
17
5.5.4.1.2
Response
17
5.5.4.1.3
XML Fault Response
18
Example 2: Get specific User Profile data belonging to a user
(Informative)
19
5.5.4.1.4
Request
19
5.5.4.1.5
Response
19
5.5.4.1.6
XML Fault Response
19
Example 3: Get User Profile data of a dataview belonging to a user
(Informative)
20
5.5.4.1.7
Request
20
5.5.4.1.8
Response
20
5.5.4.1.9
XML Fault Response
20
Example 4: Get specific User Profile data of a dataview belonging to a user
(Informative)
21
5.5.4.1.10
Request
21
5.5.4.1.11
Response
21
5.5.4.1.12
XML Fault Response
21
Example 5: Get all dataview belonging to a user
(Informative)
22
5.5.4.1.13
Request
22
5.5.4.1.14
Response
22
5.5.4.1.15
XML Fault Response
22
Example 6: Get dataview structure of a given dataview
(Informative)
23
5.5.4.1.16
Request
23
5.5.4.1.17
Response
23
5.5.4.1.18
XML Fault Response
23
Appendix A.
Change History (Informative)
25
A.1
Approved Version History
25
A.2
Draft/Candidate Version 1.0 History
25
Appendix B.
Static Conformance Requirements (Normative)
26
B.1
SCR for SUPM Component.
26
Appendix C.
Application/x-www-form-urlencoded Request Format for Selected REST Operations
27
C.1
[Operation]
27
C.1.1
Example (Informative)
27
C.1.1.1
Request
27
C.1.1.2
Response
27
Appendix D.
JSON examples (Informative)
28
D.1
[Example Title] (section [section number])
28
D.2
[Example Title] (section [section number])
28

Figures

16Figure 1 [Figure caption describing the flow]

Tables

11Table 1: Mapping of part names from abstract to http

1. Scope

The scope of this specification is to specify an HTTP protocol binding for the abstract API as defined in [SUPM-TS] Architecture document, using REST architectural style.

2. References

2.1 Normative References

	
	

	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SUPM-RD]
	“OMA Service User Profile Management Requirements”, Open Mobile Alliance™,

 OMA-RD-Service_User_Profile_Management-V1_0, URL:http://www.openmobilealliance.org/

	[SUPM-AD]
	“OMA Service User Profile Management Architecture”, Open Mobile Alliance™,

 OMA-AD-Service_User_Profile_Management-V1_0, URL:http://www.openmobilealliance.org/

	[SUPM-TS]
	“OMA Service User Profile Management Technical Specification”, Open Mobile Alliance™,

 OMA-TS-Service_User_Profile_Management-V1_0, URL:http://www.openmobilealliance.org/

	[XML]
	"Extensible Markup Language (XML) 1.0 (Second Edition)", W3C Recommendation 6-October-2000. T. Bray, et al, 6-October-2000. URL: http://www.w3.org/TR/REC-xml

	
	

	
	

	
	

	
	

	
	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_ParlayREST_API_specifications, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	Application
	See [OMADICT]

	Authorized Principal
	See [OMADICT]

	Principal
	See [OMADICT]

	Resource
	See [OMADICT]

	Service
	See [OMADICT]

	Service Provider
	See [OMADICT]

	Service User Profile
	See [SUPM-RD]

	User Profile
	See [OMADICT]

	User
	See [OMADICT]

	User’s Characteristic Description Information
	See [SUPM-RD]

	SUPM Data View
	See [SUPM-AD]

3.3
Abbreviations
	AD
	Architecture Document

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	PX
	Parlay X

	RD
	Requirement Document

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SUPM
	Service User Profile Management

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Service User Profile Management (SUPM) enabler allows an authorised principal to manipulate Services User Profile data, i.e. any element or group of element belonging to a managed set of information related to a User that may be used to create personalized and contextualized services. The set of information may include both static and dynamic information. The SUPM enabler supports requests to read/update/create/delete Service User Profile data.
This Technical Specification contains the HTTP protocol binding for the Service User Profile Management abstract technical specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
.

4.1 Version 1.0

This document covers all requirements [SUPM-RD] of SUPM V 1.0.
Version 1.0 of SUPM REST API specification supports the following operations:

· Management (i.e. create, read, update and delete) of single Service User Profiles
· Management (i.e. create, read, update and delete) of SUPM Data Views
5. SUPM API definition
This section is organized to support a comprehensive understanding of the SUPM API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
The SUPM API will allow applications to manage Service User Profiles and SUPM Data Views.

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

The remaining subsections in section 5 contain the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Note: Throughout this document client and application can be used interchangeably.
5.1 Binding principles

SUPM RESTful API features are mapped to HTTP with the gerneral principles as defined in [REST_WP] and the following additional principles:

·
· Authentication of the Originator – the data consumer - is performed for each HTTP request using specific HTTP header such as digest, login, password or specific HTTPS binding with certificates exchange.
	Abstract
part name
	RESTFul
part name
	Optional
	Description

	Originator
	N/A
	
	The data consumer which requests the creation of a Service User Profile for a specific user. The originator is explicitly identified for each HTTP REQUEST.

	

	
	
	

	
	
	
	

	UserId
	UserId
	No
	Identification of the user profile.

	tbd

	AttributeValueTupleList
	Yes
	List of tuples attribute names and attribute value(s).

	AttributeNames
	AttributeNameList
	Yes
	List of attribute names.

	tbd
	DataView

	Yes
	

	
	
	
	

	
	
	
	

	
	
	
	

Table 1: Mapping of part names from abstract to http
5.2 Resources Summary

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image2.emf]//{serverRoot}/{apiVersion}

/servuserprofmgt

/{userId}

/attributeValueTuples

/[ResourceRelPath]

/{dataviewId}

/attributeValueTuples

/[ResourceRelPath]

/dataviews

/dataviews

/{dataviewId}

/attributeName

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: Service User Profile data Management
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/servuserprofmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	
	

	
	
	
	
	

	
	
	
	
	
	
	

	Attribute value tuples for a user profile
	/{userId}/attributeValueTuples

	AttributeValueTupleList

	Returns all attribute value tuples for a user (No data structure in the GET HTTP Body request)
	Creates the user profile with the given attribute value tuples

	Updates the given attribute value tuples

	Deletes the whole user profile (No data structure in the DELETE HTTP Body request)

	
	
	AttributeNameList
	Returns the given attribute value tuples
	No
	No
	Deletes the given attribute value tuples

	Data Views of a user profile

	/{userId}/dataviews
	No data structure in the HTTP Body request
	Returns all Data Views of a user profile.
	No
	No
	No

	Individual Data View of a user profile

	/{userId}/dataviews/{dataviewId}

	AttributeValueTupleList
	Returns all attribute value tuples of data view applying on this user profile (No data structure in the GET HTTP Body request)
	Create an instance of the given data view
 for this user profile

	No
	Deletes an instance of the given data view
 for this user profile

	
	
	AttributeNameList
	Returns the given attribute value tuples of data view applying on this user profile
	No
	No
	No

	

	

	

	
	
	
	

	
	

	
	
	
	
	

	Management of Data Views
 structure
	/dataviews/{dataviewId}

	DataView (used for GET and DELETE)

AttributeNamesList (used for POST and PUT)
	Returns a particular Data View
	Creates a new Data View with the list of attribute names.
	updates a Data view with the whole list of attribute names (superseeds)
	Removes a Data View.

	
	
	
	
	
	
	

5.3 SUPM RESTful API Data Structures
The namespace for the SUPM data types is:
 urn:oma:xml:rest: servuserprof:1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.
5.3.1 Type: AttributeValueTupleList
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	attributeValueTuple
	AttributeValueTuple
[0..unbounded]
	Yes
	{name}
	Contains a list of attribute value tuples. The sub-element “name” of the type AttributeValueTuple SHALL NOT be altered when this element is accessed as a light-weight resource.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL

A root element named attributeValueTupleList of type AttributeValueTupleList is allowed in request and/or response bodies.

Column [ResourceRelPath] includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure. A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath]..

5.3.2 Type: AttributeValueTuple
	Element
	Type
	Optional
	Description

	attributeName
	xsd:string
	No
	Name of the attribute

	attributeValue
	xsd:string

[1..unbounded]
	No
	Value(s) of the attribute

A root element named attributeValueTuple of type AttributeValueTuple is allowed in request and/or response bodies.

5.3.3

	
	
	
	

	
	
	
	

	

5.3.4
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

5.3.5
	
	
	
	

	
	
	
	

	
	
	
	

5.3.6 Type: DataViews
	Element
	Type
	Optional
	Description

	dataViews
	DataView
[0..unbounded]
	Yes
	Contains a list of data views.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named DataViews of type DataViews is allowed in response bodies.
5.3.7 Type: DataView
	Element
	Type
	Optional
	Description

	dataViewID
	xsd:string
	No
	Contains an identifier of a single Data View.

The element is mandatory when used inside ‘DataViews’ type

	attributeValueTupleList
	AttributeNameList
	Yes
	Contains a list of attribute names related to a DataView.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named DataView of type DataView is allowed in request and/or response bodies.

5.3.8 Type: AttributeNameList
	Element
	Type
	Optional
	Description

	attributeName
	xsd:string
[1..unbounded]
	No
	Name of the attribute

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL

A root element named attributeNameList of type AttributeNameList is allowed in request and/or response bodies.

5.3.9 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· AttributeNamesList
· AttributeValueTuple
· AttributeValueTupleList

· DataView
· DataViews
These values indicate the kind of resource that the link points to.
5.3.10
	
	

	
	

	

5.3.11

5.4 Sequence Diagrams

5.4.1 Managing Service User Profile data

1)
2)

·
·
·
5.4.2 Successful request to SUPM enabler
This figure below shows a scenario for any successful create, read, update or delete request.

[image: image5.emf]Application Server

1. POST/PUT/DELETE with XMLREST QUERY

Response with [description of data]

2. GET with user profile version URI

Response with [description of data]

Action occurring

at Server

Action occurring

at Application

Figure 1 [successful XML REST request]

5.4.3 Unsuccesful request to SUPM enabler
This figure below shows a scenario for an unsuccessful create, read, update or delete request.

[image: image6.emf]Application Server

1. GET/POST/PUT/DELETE with wrong XMLREST QUERY syntax

XML Fault Response

2. GET with unknown user profile version URI

XML Fault Response

Action occurring

at Server

Action occurring

at Application

5.5 Resource: Service User Profile data Management
5.6 Service User Profile Management

This section describes the SUPM operations.

A data consumer is able to initiate the following operations:

a) Create service user profile information through XML request using HTTP Post

b) Retrieve service user profile information using HTTP Get

c) Update service user profile information through XML request using HTTP Put

d) Delete service user profile information through XML request using HTTP Delete

All operations are request/response - for every initiated message, there is a response back to the data consumer (initiator of the request).

The resource used is:
http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}

5.6.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/SUPM

	apiVersion
	version of the SUPM API clients want to use (e.g. 1 for version 1.x)

	userId
	Id of the user profile

	

	dataViewId
	Id of the data view

5.6.2 Response Codes

5.6.2.1 Response Codes

Any HTTP response codes as RESTFull responses codes, see [REST_TS_Common].
5.6.2.2 Exception fault codes

In error cases, to give extra informations with HTTP error codes, an XML fault is returned in body of the HTTP response.

The XML faults are used to convey processing exceptions.

The XML schema of fault code

<xs:element name="Fault" type="Fault"/>

<xs:complexType name="Fault">

 <xs:annotation> <xs:documentation>Fault reporting structure</xs:documentation></xs:annotation>

 <xs:sequence>

 <xs:element name="faultcode"
type="xs:string"/>

 <xs:element name="faultstring"
type="xs:string"/>

 <xs:element name="faultactor"
type="xs:anyURI" minOccurs="0"/>

 <xs:element name="detail"
type="detail" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>
<xs:complexType name="detail">

 <xs:sequence>

 <xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any"/>
</xs:complexType>
5.6.3 Faults codes values & associated string

	Type
	FaultCodeValue
	Associated FaultString

	string
	SUPM_Fault_code_xml_syntax_error
	RESTRequest syntax error

	string
	SUPM_Fault_code_create_failed
	Unable_to_create_user_profile

	string
	SUPM_Fault_code_query_failed
	Unable_to_query_user_profile

	string
	SUPM_Fault_code_modify_failed
	Unable_to_modify_user_profile

	string
	SUPM_Fault_code_delete_failed
	Unable_to_delete_user_profile

	string
	SUPM_Fault_code_create_view_failed
	Unable_to_create_view

	string
	SUPM_Fault_code_query_view_failed
	Unable_to_query_view

	string
	SUPM_Fault_code_modify_view_failed
	Unable_to_modify_view

	string
	SUPM_Fault_code_delete_view_failed
	Unable_to_delete_view

	string
	SUPM_Fault_code_query_all_views_failed
	Unable_to_get_all_views_user_profile

	string
	SUPM_Fault_code_query_user_view_failed
	Unable_to_get_user_view

5.6.4 GET

This operation is used for retrieval Service User Profile data for a given user identity.

	
	
	
	

	
	
	
	

	

Note: ParlayX SOAP equivalent is getOwnersGroups

Example 1: Get all User Profile data belonging to a user
(Informative)
5.6.4.1.1 Request
	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}/attributeValueTuples HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.4.1.2 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<supm:attributeValueTupleList>
 <supm:attributeValueTuple>

 <supm:attributeName>atributename1</supm:attributeName>

 <supm:attributeValue>firstvalueofattributename1</supm: attributeValue >

 <supm:attributeValue>secondvalueofattributename1</supm: attributeValue >
 </supm:attributeValueTuple>
 <supm:attributeValueTuple>

 <supm:attributeName>atributename2</supm:attributeName>

 <supm: attributeValue >singlevalueofattributename2</supm: attributeValue >

 </supm:attributeValueTuple>
 …

</supm: attributeValueTupleList>

5.6.4.1.3 XML Fault Response

	See Exception fault codes

Example 2: Get specific User Profile data belonging to a user
(Informative)
5.6.4.1.4 Request

	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}/attributeValueTuples HTTP/1.1
Accept: application/xml

Host: example.com:80
<supm:attributeNameList>

 <supm:attributeName>attributenameX</supm:attributeName>

 <supm:attributeName>attributenameY</supm: attributeName>

</supm:attributeNameList>

5.6.4.1.5 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<supm:attributeValueTupleList>

 <supm:attributeValueTuple>

 <supm:attributeName>attributenameX</supm:attributeName>

 <supm:attributeValue>valueofattributenameX</supm: attributeValue >

 </supm:attributeValueTuple>

 <supm:attributeValueTuple>

 <supm:attributeName>attributenameY</supm:attributeName>

 <supm: attributeValue >firstvalueofattributenameY</supm: attributeValue >
 <supm: attributeValue >secondvalueofattributenameY</supm: attributeValue >

 <supm: attributeValue >thirdvalueofattributenameY</supm: attributeValue >
 </supm:attributeValueTuple>

</supm: attributeValueTupleList>

5.6.4.1.6 XML Fault Response

	See Exception fault codes

Example 3: Get User Profile data of a dataview belonging to a user
(Informative)
5.6.4.1.7 Request

	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}/dataviews/{dataviewId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.4.1.8 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<supm:attributeValueTupleList>
 <supm:attributeValueTuple>

 <supm:attributeName>attributenameX</supm:attributeName>

 <supm:attributeValue>valueofattributenameX</supm: attributeValue >

 </supm:attributeValueTuple>

 <supm:attributeValueTuple>

 <supm:attributeName>attributenameY</supm:attributeName>

 <supm: attributeValue >valueofattributenameY</supm: attributeValue >

 <supm: attributeValue >anothervalueofattributenameY</supm: attributeValue >

 </supm:attributeValueTuple>

</supm: attributeValueTupleList>

5.6.4.1.9 XML Fault Response

	See Exception fault codes

Example 4: Get specific User Profile data of a dataview belonging to a user
(Informative)
5.6.4.1.10 Request

	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}/dataviews/{dataviewId} HTTP/1.1
Accept: application/xml

Host: example.com:80
<supm:attributeNameList>

 <supm:attributeName>attributenameY</supm: attributeName>

</supm:attributeNameList>

5.6.4.1.11 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<supm:attributeValueTupleList>

 <supm:attributeValueTuple>

 <supm:attributeName>attributenameY</supm:attributeName>

 <supm: attributeValue >valueofattributenameY</supm: attributeValue >

 <supm: attributeValue >anothervalueofattributenameY</supm: attributeValue >

 </supm:attributeValueTuple>

</supm: attributeValueTupleList>

5.6.4.1.12 XML Fault Response

	See Exception fault codes

Example 5: Get all dataview belonging to a user
(Informative)
5.6.4.1.13 Request

	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/{userId}/dataviews HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.4.1.14 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<supm:dataViews>
 <supm:dataView>

 <supm:dataViewID>dataviewidZ</supm:dataViewName>

 <supm:attributeNameList>

 <supm:attributeName>attributenameY</supm: attributeName>

 </supm:attributeNameList>
 </supm:dataView>
 <supm:dataView>

 <supm:dataViewID>dataviewidX</supm:dataViewName>
 <supm:attributeNameList>

 <supm:attributeName>attributenameW</supm: attributeName>

 <supm:attributeName>attributenameT</supm: attributeName>

 </supm:attributeNameList>

 </supm:dataView>

<supm:dataViews>

5.6.4.1.15 XML Fault Response

	See Exception fault codes

Example 6: Get dataview structure of a given dataview
(Informative)
5.6.4.1.16 Request

	GET http://{serverRoot}/{apiVersion}/servuserprofmgt/dataviews/{dataviewId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.4.1.17 Response
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn

Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<supm:dataView>

 <supm:dataViewID>dataviewidZ</supm:dataViewName>

 <supm:attributeNameList>

 <supm:attributeName>attributenameY</supm: attributeName>

 <supm:attributeName>attributenameW</supm: attributeName>

 <supm:attributeName>attributenameT</supm: attributeName>

 </supm:attributeNameList>

</supm:dataView>

5.6.4.1.18 XML Fault Response

	See Exception fault codes

5.6.4.1.19
	

5.6.4.1.20
	

5.6.5

5.6.5.1

5.6.5.1.1
	

5.6.5.1.2
	

5.6.5.2

5.6.5.2.1
	

5.6.5.2.2
	

5.6.6

5.6.6.1

5.6.6.1.1
	

5.6.6.1.2
	

5.6.6.2

5.6.6.2.1
	

5.6.6.2.2
	

5.6.7

5.6.7.1

5.6.7.1.1
	

5.6.7.1.2
	

5.6.7.2

5.6.7.2.1
	

5.6.7.2.2
	

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA- TS-Service_User_Profile_Management_RESTful_Binding-V1_0
	12 May 2010
	All
	Baseline document agreed in:

OMA-ARC-SUPM-2010-0070R02-INP_draft_version_TSs_for_REST_and_SOAP_uses_on_SUPM_1.zip

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for SUPM Component.

	Item

	Function

	Reference

	Status

	Requirement

	SUPM-SOAP-S-001

	Create Submission

			
	SUPM- SOAP-S-002

	Read Submission

			
	SUPM- SOAP-S-003

	Update Submission

			
	SUPM- SOAP-S-004

	Delete Submission

			

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Item
	Function
	Reference
	Status
	Requirement

	SUPM-RESTFul-S-001
	Create Submission
	
	
	

	SUPM- RESTFul-S-002
	Read Submission
	
	
	

	SUPM- RESTFul-S-003
	Update Submission
	
	
	

	SUPM- RESTFul-S-004
	Delete Submission
	
	
	

Appendix C. Application/x-www-form-urlencoded Request Format for Selected REST Operations

This section defines a format for SMS REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server.

The following SUPM REST operations are defined in this section:

<< List the operations for which url-encoded is supported.

NOTE: For ParlayREST v1 these were the OneAPI Profile operations. For ParlayREST v2, there may not be such equivalents >>

C.1 [Operation]
This operation is used to create an outgoing message request.

The request parameters are as follows:

	Parameter
	Optional
	Description

	[Parameter name]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[url-encoded request]

<< For form-urlencoded examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

C.1.1.2 Response

	[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value tuples, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for Parlay REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request or response for various operations using a JSON binding. The examples follow the XML to JSON serialization guidelines in [REST_WP]. A JSON response may be obtained by following the content negotiation guidelines section of [REST_WP].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

D.2 [Example Title] (section [section number])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

<< For JSON examples, use the “listing” style, i.e. Arial narrow with font size 10 >>

Request:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[JSON example generated from the equivalent XML example using the JSON2XML utility]

Editor Note: In the current solution for light-weight resources, when retrieving attributes there might be repetition of elements that appear both as a part of resource URL and the corresponding data structure. It is for FFS to see if this repetition can be avoided.

�as soon as my CR is agreed, there is no base object in the abstract interface amymore. Same for scope, filter and timelimit.

�If SUPM CR 117 is agreed this is the correct mapping

�As for the ldap case it should be better to allow multiple values for a single attribute - so rather than a list of pairs (attribute name - attribute value) a list of tuples (attribute name with [0..n] values) . For instance, a well known issue to handle multiple mails of a single user profile.

�SUPM Data Elements as defined in abstract TS appendix C contain the whole list (or it will contain the whole possible list); a SUPM Data View is a subset of these data elements, identified by a Data View Name (or Id- we need to agree one one of the 2 used terms). A data view name would appear as one attribute value pair of the SUPM request

�yes, but for GET you need the ValuePairList

�we use one resource per raw in the other REST specifications, i.e. I would prefer to keep it consistent

�the user profile is given by the user_id, so you can not create a "sub-user profile"; at least we need to discuss this further

�with PUT you need to provide the whole list of attribe uvalue pairs, i.e. it is a replace the whole list by thihe new list

�ok done, one ressource row format

�we use one resource per raw in the other REST specifications, i.e. I would prefer to keep it consistent

�The userid is created elsewhere. If the userid mentioned in the url ,with the list of attributes in http body,do not exist the user profile is created otherwise an error is throws telling this user profile already exist.

�the user profile is given by the user_id, so you can not create a "sub-user profile"; at least we need to discuss this further

�Full superseeds to replace the whole user profile but also partial update of given attributes. Why avoid partial update ?

�with PUT you need to provide the whole list of attribe uvalue pairs, i.e. it is a replace the whole list by thihe new list

�The userid is created elsewhere. If the userid mentioned in the url ,with the list of attributes in http body,do not exist the user profile is created otherwise an error is throws telling this user profile already exist.

�the user profile is given by the user_id, so you can not create a "sub-user profile"; at least we need to discuss this further

�The userid is created elsewhere. If the userid mentioned in the url ,with the list of attributes in http body,do not exist the user profile is created otherwise an error is throws telling this user profile already exist.

�the user profile is given by the user_id, so you can not create a "sub-user profile"; at least we need to discuss this further

�redundandent, I would not do this

�PUT either creates a list (if not there before) or replaces the whole list.

�This feature should be removed, it allow a dump of the whole user profiles....

this �are generic data view opertions, i.e. not user specific. The created data view can then be assigned to e.g. a user group etc.so it should not be deleted.

�to stick to RESTFull principles the creation should be done through post http request and the modification trough update http request

�for this we need some more .thinking.....

�for this we need some more .thinking.....

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1342601148.ppt

Application

Server

1. POST/PUT/DELETE with XMLREST QUERY

Response with [description of data]

2. GET with user profile version URI

Response with [description of data]

Action occurring

at Server

Action occurring

at Application

_1343464701.ppt

//{serverRoot}/{apiVersion}

/servuserprofmgt

/{userId}

/dataviews

/attributeValueTuples

/[ResourceRelPath]

/{dataviewId}

/attributeValueTuples

/[ResourceRelPath]

/dataviews

/{dataviewId}

/attributeName

_1343480090.ppt

Application

Server

1. GET/POST/PUT/DELETE with wrong XMLREST QUERY syntax

XML Fault Response

2. GET with unknown user profile version URI

XML Fault Response

Action occurring

at Server

Action occurring

at Application

_1342439595.ppt

Application

Server

1. GET / PUT / POST / DELETE [description]

Response with [description of data]

2. GET / PUT / POST / DELETE [description]

Response with [description of data]

Action occurring

at Server

Action occurring

at Application

