[image: image3.jpg]
OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20040116-D
Page 39 V(42)

	Execution Policy Enforcement and Management Requirements

Draft Version 1.0 – 16 Jan 2004

	

	Open Mobile Alliance
OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20040116-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope (Informative)

82.
References

82.1
Normative References

82.2
Informative References

93.
Terminology and Conventions

93.1
Conventions

93.2
Definitions

103.3
Abbreviations

114.
Introduction (Informative)

114.1
Actors in the context of EPEM

124.1.1
End Users

124.1.2
Network Operators

124.1.3
Third Party Service Providers

124.1.4
Application Developers

124.2
User settings and resource protection

124.3
EPEM, Common Functions and Integration

135.
Use Cases (Informative)

135.1
Typical Flow in an EPEM Use Case

135.2
Enforcing Execution Policies

135.2.1
Short Description

145.2.2
Actors

145.2.3
Pre-conditions

145.2.4
Post-conditions

155.2.5
Normal Flow

155.2.6
Alternative Flow

155.2.7
Operational and Quality of Experience Requirements

165.2.8
Concrete Examples

165.3
Execution Workflow

165.3.1
Short Description

165.3.2
Actors

175.3.3
Pre-conditions

175.3.4
Post-conditions

175.3.5
Normal Flow

175.3.6
Alternative Flow

185.3.7
Operational and Quality of Experience Requirements

185.3.8
Concrete Examples

185.4
Delegation

185.4.1
Short Description

185.4.2
Actors

195.4.3
Pre-conditions

195.4.4
Post-conditions

195.4.5
Normal Flow

195.4.6
Alternative Flow

195.4.7
Operational and Quality of Experience Requirements

205.4.8
Concrete Examples

205.5
Controlled Exposure of Resources

205.6
Execution Policies for terminal-based Resources

215.7
Discovery of Execution Policies

215.8
Defining the Execution Policies

225.9
Debugging the Execution Policies

225.10
Deploying New Resources

225.11
Sources of Execution Policies

225.12
Prioritization of Execution Policies

225.13
EPEM Delegation

235.14
SMS Spam Prevention Policy

235.14.1
Short Description

235.14.2
Actors

235.14.3
Pre-conditions

245.14.4
Post-conditions

245.14.5
Normal Flow

255.14.6
Alternative Flows

255.14.7
Operational and Quality of Experience Requirements

255.15
Charging Control using Execution Policies

255.15.1
Short Description

265.15.2
Actors

265.15.3
Pre-conditions

275.15.4
Post-conditions

275.15.5
Normal Flow

275.15.6
Alternative Flows

275.15.7
Operational and Quality of Experience Requirements

285.16
Handling Changes in Execution Policies

285.16.1
Short Description

285.16.2
Actors

295.16.3
Pre-conditions

295.16.4
Post-conditions

295.16.5
Normal Flow

305.16.6
Alternative Flow

315.16.7
Operational and Quality of Experience Requirements

325.17
Friend-Location-Finder Application

325.17.1. Short Description

325.17.2. Actors

335.17.3. Pre-conditions

335.17.4. Post-conditions

345.17.5. Normal Flow

355.17.6
Alternative Flow

355.17.7
Operational and Quality of Experience Requirements

366.
Requirements (Normative)

366.1
High-Level Functional Requirements

406.1.1
Security

416.1.2
Charging

416.1.3
Administration and configuration

436.1.4
Usability

436.1.5
Interoperability

446.1.6
Privacy

446.2
Overall System Requirements

456.3
System Elements

456.3.1
System Element A

456.3.4
Network interfaces

46Appendix A.
Change History (Informative)

46A.1
Approved Version History

46A.2
Draft/Candidate Version 1.0 History

48Appendix B.
Review of Related Technologies and Standards (Informative)

49Appendix C.
Technologies available to implement Execution Policy Enforcement and Management (Informative)

1. Scope
(Informative)

This document provides use cases and requirements for execution policy enforcement and management within OMA.

An OMA informative technical report [OMA-TR-EPEM] provide a detailed overview of available technologies and deployment models options to support the execution policy enforcement and management use cases.

2. References

Editor’s note: To be done

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

	[ARCH]
	“OMA Architecture Requirements Version 1_0”: http://www.openmobilealliance.org/ftp/PD/OMA-RD_Architecture-V1_0-20031021-A.zip

	[Privacy]
	“Privacy Requirements for Mobile Services V1.0”
http://www.openmobilealliance.org/ftp/PD/OMA-RD_Privacy-V1_0_0-20031104-A.zip

2.2 Informative References

	[OMA-TR-EPEM]
	OMA-TR-Execution_Policy_Enforcement_Management-V1_0-20030927-D

	[RFC 3198]
	Terminology for Policy-Based Management, IETF, URI: http://www.ietf.org/rfc/rfc3198.txt

	[WS-Policy]

	Web Services Policy Framework (WSPolicy), Version 1.1., URI: http://ifr.sap.com/ws-policy/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

Editor’s note: whenever possible the source of the definition will be added to the text.

In particular, a proposal for an appropriate definition of policy in-line with the definitions used in the industry while not confusing the notions of execution policy proposed in this document is encouraged.

	Common Functions
	Editor’s Note: Definition to be taken from CF WI

	Delegate
	A delegate is a designated system or resource that performs specified tasks or functions on behalf of (one or more) other systems.

	Delegation
	The act of designating a delegate.

	Fact
	A basic piece of information that a requestor exposes to a resource or service capability, e.g., security tokens.

	Policy
	A policy is uniquely represented by a logical combination of conditions and actions.

	Policy Enforcement
	The act of applying or implementing the actions of a policy or policies.

	Policy Enforcer
	A logical entity that enforces the actions of a policy or policies; also known as a Policy Enforcement Point (PEP).

	Policy Engine
	A logical entity that evaluates a policy or policies; also know as execution policy decision point (PDP).

	Principal
	An entity that has an identity that can be expressed as a fact or facts associated with the entity. Examples of principals include an individual user, a group of individuals, a corporation, services, applications, system entities and other legal entities.

	Request
	An articulation of the need to access a resource or to invoke a function. A request may include zero, one or more facts.

	Requestor
	Any entity that issues a request to a resource.

	Request Processing
	A logical sequence of steps that includes the interpretation, validation and processing of a response to a request. Information within a request is used to identify policies that are relevant to the request.

	Responder
	Resource that is the target of a request.

	Resource
	Any component, function or application that can receive and process requests.

3.3 Abbreviations

	EPEM
	Execution Policy Enforcement and Management

	PDP
	Policy Decision Point

	PEP
	Policy Enforcement Point

	SLA
	Service Level Agreement

4. Introduction
(Informative)

Mobile service environments where different entities, e.g. enterprise networks, mobile operators and 3rd party service providers collaborate to provide highly personalised services to mobile subscribers presents new opportunities and benefits to the mobile value chain. Execution policy enforcement and management is driven by the need to reduce management complexity whilst maintaining time to market and consistent new subscriber services.

Execution Policy Enforcement and Management (EPEM) is a formal specification of ways to convey and enforce execution policies. EPEM mediates and manage access to resources. The aim of this document is to collect requirements on EPEM.

Execution policy enforcement and management also enables delegation of functionalities to other resources (e.g. common functions or enablers):

· This can help reduce the silos and duplications of functionalities and components often met in the mobile industry.

· This is expected to be an efficient mechanism to exploit common functions by providing a systematic way to express and implement the delegation to such other resources.

This reduction of silos and duplications in particular through delegation of common functions is at the heart of the OMA service environment specified by OMA through its enabler releases.

Whenever requests can be made to a resource, execution policies can be associated to the resource and enforced by an execution policy enforcement mechanism on the request and on the associated response.

The present requirement document is expected to be neutral in terms of the technologies and to cover the different deployments model that can be considered. However, the requirements presented in this document may help in the technology solution and understand the suitability of different deployment models. A detailed review of use cases and illustration on how they can be supported with available technologies and different deployment models can be found in [OMA-TR-EPEM]. This document is also expected to help guide the specification work.

4.1 Actors in the context of EPEM

Figure 1 illustrates the main stakeholders in the context of EPEM.

[image: image1.wmf]EPEM

Operator

Controlled

Service

provider

Resources

Common

Functions

Service Provider

Requestor

Figure 1: Actors in the context of EPEM

EPEM invokes relevant policies to process the request and if successful it passes the request to the target resource.

The following discusses further the various roles and use of EPEM.

4.1.1 End Users

The mobile user wants to personalise her services and express her preferences at a high level utilising some personalization application (e.g. web-based forms with tables, pull-down menus, etc) to map those preferences across available services. These preferences are expressed at the level of the service provider in terms of execution policies that applies to calls that are affected by these preferences settings.

4.1.2 Network Operators
The network operator wants flexible service management to manage requests to resources and to and protect the integrity of its network resources across trust boundaries. Being able to expose resources in a manageable, secure, billable
, auditable and automatable manner is a key requirement. EPEM allows network operators to enhance their service portfolio and encourage the uptake of mobile services by other providers.

4.1.3 Third Party Service Providers
Service providers want to develop trust between the users of their services and themselves and thereby access and manage their preferences regardless of modality or device used. Being able to expose resources in a manageable, secure, billable, auditable and automatable manner is a key requirement of service providers. EPEM allows third party service providers to enhance their service portfolio and encourage the uptake of mobile services, e.g. enterprise.
4.1.4 Application Developers

Applications can be developed tailored to specific end-users using network hosted policies. They will also exploit mobile features by accessing resources exposed in the network. Therefore, the ability to request resources in a secure and automatable way is a key requirement for application developers who want to add mobile features to their applications.

4.2 User settings and resource protection

It is important to note that the EPEM enabler can be used to:

· Protect a resource by ensuring that execution policies are enforced and validated for any message to and from the resource.

· Allow enforcement of preferences or settings established by the user that are expressed and enforced as execution policies (e.g. called by enablers).

· Simplify implementation of resources by allowing delegation to other resources.

4.3 EPEM, Common Functions and Integration

By providing mechanisms to implement delegation of functionalities, the EPEM enabler provide technology options to:

· Use common functions

· Facilitate integration of resources that can share or reuse other resources

Because delegation to common function is be definition common across most use cases, the EPEM enabler can itself be considered as a key common function.

5. Use Cases
(Informative)

5.1 Typical Flow in an EPEM Use Case

This section provides an overview of the typical flow associated to the use of the EPEM enabler.

· Owner of a resource protects the resource with a EPEM enabler using a particular valid implementation and deployment model of the EPEM enabler. Examples are discussed in [OMA-TR-EPEM]

· Owner of a resource establishes the execution policy associated to it [Execution Policy Management]:

· For execution policy enforceer

· Subset of conditions exposed to the requestor

· Owner publishes / register execution policy somewhere [Execution Policy Management]

· Requestor discovers (or knows) resource

· Requestor knows the conditions it must satisfy (e.g. via Service Level Agreement (SLA))

· (Requestor may take prior steps to satisfy the conditions that he/she knows for using the resource)

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.

· Request is logically processed by the Execution Policy Enforcer (logical entity / mechanism).

· Request is passed to resource for action (assuming successful validation of all the steps)
.

· (If specified by execution policy, response may be similarly processed before being passed to requestor.

· In such a case, the requestor may also add an execution policy to apply on the response before letting it reach it (e.g. authentication of the source – i.e. the original responder).

Editor’s note: The rest of the section will describe, in details and as prescribed in the template, the use cases enumerated above.

5.2 Enforcing Execution Policies

5.2.1 ASK * MERGEFORMAT Short Description

A set of execution policies (static or dynamic) has been set up in advance by the owner of a resource. They must be satisfied by a requestor before it can access or use the resource.

In this use case we assume that the owner of the resource also enforces the execution policies. Other sections will consider the use cases where these are different parties or in different domains.

5.2.2 Actors

· Owner of the resource:

· It has set up execution policies on the resource that it controls.

· Enforces the execution policies on requests to the resource.

· Requestor:

· Any issuer of request to access and use the resource.

· Provide necessary credentials to use the resource as it has been informed of.

5.2.2.1 Actor Specific Issues

· Owner of the resource:

· Enforcing the execution policies.

· Providing access to its resource

· Requestor:

· Providing necessary credentials to access the resource.

· Using the resource

5.2.2.2 Actor Specific Benefits

· Owner of the resource:

· Can offer access to resource and its use while enforcing conditions of usage expressed in execution policies

· Knows that resource is appropriately protected

· Requestor:

· Can access resources to use within its applications

· Can simplify and automate the way to satisfy the conditions to use a resource while requesting the resource: need on ly to know what credential to pass and how.

5.2.3 Pre-conditions

· Owner of the resource:

· It has set up execution policies on the resource that it controls.

· It has communicated what and how credentials must be passed in a request to the resource to potential requestors:

· E.g. via SLA or a priori agreements / communications.

· Requestor knows resource

· Requestor knows the conditions it must satisfy (e.g. via Service Level Agreement (SLA)):

· E.g. what credentials and how they must be passed with a request.

5.2.4 Post-conditions

· The request from requestor reaches the resource and is executed by or on the resource.

· The response may be treated through additional execution policy steps if imposed by:

· Execution policies of the target resource:

· E.g. a charging event is logged after successful or failed access of the resource

· Or as a repeat of the present use case where the responder becomes the requestor and vice-versa.

5.2.5 Normal Flow

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.

· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials
 are passed to other resources for action and / or validation of the results as specified by the execution policies (*):

· E.g. The requestor is first authenticated based on credentials then it is checked for authorization to access the request and then it is passed to a charging systems that generates a billing event.

· These may be checked to be up-to-date execution policies. They may or may not depend on the nature of the request and on the requestor.

· Request is passed to resource for action (assuming successful validation of all the steps).

· The action is executed on or by the resource (see post conditions).

· Response is returned to the requestor (see post conditions)

5.2.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the resource fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.2.7 Operational and Quality of Experience Requirements

· The EPEM enabler of the owner of the resource is aware of the execution policies associated to the resource.

· The resource and network is logically setup such that any request to the resource is processed by the EPEM enabler.

· Note that this can be done in numerous manners that may not impose a single EPEM entity.

· Several technology approaches can be considered to provide execution policy enforcement and management. The following list is not exhaustive.

· Pre-composition of the target resource with the delegation mechanisms of the EPEM enabler and the resources to whom functions are delegated as specified by the associated execution policy.

· Possible description of the conditions exposed to the requestor through the resulting composed interface

· Possible description of the conditions exposed to the requestor through meta-data (e.g. a la WS-Policy [WS-Policy] in the case of Web Services)

· Composition at discovery or request of the target resource with the delegation mechanisms of the EPEM enabler and the resources to whom functions are delegated as specified by the associated execution policy.

· Interception of all messages by a single entity (proxy / gateway):

· Trusted client provisioning

· Single point of access any resources in the network

· Pre-composition or dynamic composition through the entity

· Interface with address that is actually the address of the entity

· In addition, the above can be realized with:

· Distributed execution policy enforcement and management functionalities

· Execution policy enforcement and management implemented in front of each resource

· Execution policy enforcement and management implemented within / as part of each resource

· Implementation of the execution policy enforcement and management as a combination of policy engines (PDP and PEP a la [WS-Policy]) and Workflow engines

· Combinations of some of the above.

5.2.8 Concrete Examples

Concrete examples include a location based service exposed by a service provider provided that appropriate authentication, authorization, charging and logging is taking place.

5.3 Execution Workflow

5.3.1 ASK * MERGEFORMAT Short Description

The execution policies setup by the resource owner implement a set of steps that must be performed by different resources that it owns to provide a particular function or application.

The flows associated to these steps remain the same and do not need to be expanded in this section. The present section focuses solely on the steps that implement a particular function or application, acknowledging that these may include enforcement and validation steps as discussed above.

5.3.2 Actors

· Owner of the function or application:

· It has set up execution policies for calls to a particular resource in order to implement the application or function.

· It provides the function or application by executing the prescribed workflow on requests to the function or application.

· Requestor:

· Any issuer of request to access and use the function or application.

· It still provides the necessary credentials to use the resource as it has been informed of.

5.3.2.1 Actor Specific Issues

· Owner of the function or application:

· Execution the execution workflow on calls to the function or application in order to implement it.

· Requestor:

· Using the function or service

5.3.2.2 Actor Specific Benefits

· Owner of the function or application:

· Can easily implement services through the execution workflow specified in the execution policies

· Plus all the benefits enumerated in previous use cases.

· Requestor:

· Can use the service

· Plus all the benefits enumerated in previous use cases.

5.3.3 Pre-conditions

· Owner of the function or application:

· It has set up execution workflow to implement the function or application

· Plus same steps as in previous use cases.

· Requestor knows function or application

· Requestor knows the conditions it must satisfy if any as in the previous use cases.

5.3.4 Post-conditions

· The request from requestor reaches the function or application and the request is executed.

· The response may be treated through additional execution policy steps as for use cases above. These may enforce usage conditions or be additional execution workflow steps to implement the full functionality of the service:

5.3.5 Normal Flow

· Requestor prepares request to function or application and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the service.

· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials are passed to other resources for action and / or validation of the results as specified by the execution policies (*) to implement the steps of the execution workflow.

· Response is returned to the requestor (see post conditions)

5.3.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the function or application fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.3.7 Operational and Quality of Experience Requirements

· Same as for previous use cases.

5.3.8 Concrete Examples

Editor’s note: to be done.

5.4 Delegation

5.4.1 ASK * MERGEFORMAT Short Description

The owner of a resource deploys it by delegating some of the functions (e.g. authentication, charging, logging, …) to other resources. Alternatively, the implementer of a resource implements it by delegating some of the functions to other resources. The delegation is expressed as execution policies enforced in any messages to and from the resource.

.The flows associated to these steps remain the same and do not need to be expanded in this section. The present section focuses solely on the steps that perform delegation of functions, acknowledging that these may include enforcement and validation steps and execution workflow as discussed above.

5.4.2 Actors

· Owner (or implementer) of the resource:

· It deploys or implements the resource by delegating some functions to other resources and expresses these via execution policies.

· Enforces the execution policies on requests to the resource.

· Requestor:

· Any issuer of request to access and use the resource.

· Provide necessary credentials to use the resource as it has been informed of.

5.4.2.1 Actor Specific Issues

· Owner (or implementer) of the resource:

· Resource deployment or implementation by delegation

· Same as in use cases above.

· Requestor:

· Using the resource

· Same as in use cases above

5.4.2.2 Actor Specific Benefits

· Owner (or implementer) of the resource:

· Can simplify implementation or deployment by relying on other resources to provide the delegated functions

· Re-use resources

· Avoid silos

· Simplifies integration:

· Re-use resources through EPEM and execution policies.

· Same as for use cases above.

· Requestor:

· Can access resources to use within its applications

· Same as for use case above.

5.4.3 Pre-conditions

· Owner (or implementer) of the resource:

· It has implemented or deployed resources by relying on a set of execution policies for the resource that it controls.

· Same as for use cases above.

· Same as for use cases above for the requestor.

5.4.4 Post-conditions

· Same as for use cases above.

5.4.5 Normal Flow

· Requestor prepares request to resource and provides information / meta-data / credentials to be able to satisfy the conditions that he/she knows for using the resource.

· Request is logically processed by the EPEM enabler (logical entity / mechanism):

· Request and / or credentials are passed to other resources that perform in particular the delegated functions for action and / or validation of the results as specified by the execution policies (*):

· Request is passed to resource for action (assuming successful validation of all the steps).

· The action is executed on or by the resource (see post conditions).

· Response is returned to the requestor (see post conditions)

5.4.6 Alternative Flow

· At step (*) above, it is possible that some of the validation fail. In such a case, the following cases may take place:

· The request to the resource fails and an error message is returned to the requestor

· A dialog may be established between the requestor and one of the involved intermediate resource:

· e.g. please provide a new credential or answer the following challenge.

· Other alternative steps are discussed in the use case sections below.

5.4.7 Operational and Quality of Experience Requirements

· Delegation may be implemented:

· Directly by the target resource:

· EPEM functionality built in the resource

· By another logical mechanisms:

· As discussed in section 5.2:

· E.g. as a component in front of the resource that intercepts any request to it.

· Way to provide delegation for legacy system:

· New conditions are enforced in front of it

· Conditions already enforced and not expressed in execution policies.

· Same as for use cases above.

Editor’s note: Figure shsoudl be added to illustrates the different options. Contributions are encouraged.

5.4.8 Concrete Examples

Editor’s note: to be done.

5.5 Controlled Exposure of Resources

For all the use cases above, the requestor may be:

· Part of the same domain or system as the resource:

· To simplify enforcement of execution policies on any request or to implement delegation and execution workflows.

· E.g. another resource within the domain etc…

· A third party requestor part of a system and domain different from the target resource:

· To implement services or resources and to enforce that the service or resource is securely exposed only to authorized parties

· To implement delegation and execution workflows and enforce steps like billing, logging.

· E.g. another resource in another domain etc..

In all cases, actors and flows remain the same as above and below. Accordingly the other use case sub-sections are skipped.

Note that as already mentioned, the goal is to expose enabler in a controlled manner. It should not be assumed that authentication, authorization, enbcription or charging is always to be enforced or that these are the only conditions that can be enforced.

5.6 Execution Policies for terminal-based Resources

For all the use cases above, the resources may be:

· In the network of the owner domain but not as a terminal.

· On the terminal:

· When among the technology options covered in section 5.2, an explicit EPEM entity is present this can be:

· On the terminal:

· Actors and flows remain the same as above.

· Accordingly the other use case sub-sections are skipped for this use case.

· In the network, processing (by EPEM enabler) any message to and from the terminal including:

· Within home network

· While roaming etc…

· The only differences with respect to all use cases considered before are at the level of the Operational and Quality of Experience Requirements:

· How does the EPEM enabler determines the execution policies to enforce

· Where are the execution policies enforced:

· Within visited network

· Within the home network, after intercept and redirect to the EPEM enabler:

· From the terminal

· From the visited network

Editor’s note: the above discussions points should be addressed. Contributions are welcome.

5.7 Discovery of Execution Policies

For all the use cases above, what credentials must be provided and how may be explicitly discovered by the requestor instead of being known from the resource owner through a separate channel.

The pre-conditions do not require any more that the requestor be aware of these conditions. Instead during the normal flow, the requestor can discover this meta-data prior to preparing and generating the request. This typically also involves a registration of the conditions.

The actual execution policies may be similarly discovered by the EPEM enabler:

· In advance for static execution policies

· Prior to any enforcement in all the other cases (or before final validation in the case of section 5.4).

· Again this typically involves registration of the execution policies.

5.8 Defining the Execution Policies

For all the use cases above, the execution policies may be:

· Specific to the target resource:

· Set or derived by user’s settings (e.g. derived from privacy considerations).

· Set or derived by owner’s settings

· Limited to the delegatable functions that are not performed by the resource

· Global across all the resources controlled by its owner

· The result of a combination of execution policies that are global across all the resources controlled by the owner and execution policies proper to the target resource.

Using the management interface of the EPEM enabler, the owner of the resource can manage these different execution policies. The combined execution policy associated to a resource can be:

· Generated

· Communicated to requestor as discussed above (in advance or via discovery)

· Communicated to EPEM enabler as discussed above (in advance, via discovery or via update events)

5.9 Debugging the Execution Policies

For all the use cases above, the execution policies may be debugged:

· For execution policy expression or logic errors

· For execution errors:

· E.g. by checking dependencies on other resources and availability of these resources.

· For conflicting execution policies.

5.10 Deploying New Resources

For all the use cases above, in order to satisfy the pre-conditions, the owner of the resource is able to:

· Express / generate the execution policies as discussed in section 5.8
· Communicate these executions policies, when needed (as discussed above) to the the EPEM enabler

· Communicate the appropriate subset of conditions to the requestor, when needed (as discussed above).

5.11 Sources of Execution Policies

For all the use cases above, the execution policies may be:

· Defined by the owner of the resources

· Derived from settings by others (user’s terminal, owner)

· See for example use case in section 5.14
· Defined by a third party:

· E.g. An enterprise may want to establish particular execution policies for access of certain resources by its employees or a person wants to let others perform actions on its behalf.

5.12 Prioritization of Execution Policies

Section 5.11 indicates that there may be multiple sources of execution policies. The owner of the EPEM enabler can provide prioritizations rules between these execution policies.

5.13 EPEM Delegation

For all the use cases above, it is possible that the EPEM that processes messages to and from a resource be provided by a different actor:

· E.g. a resource is made available (e.g. exposed through the Operator’s network or uploaded) by a third party on an operator’s network. EPEM is provided by the operator. Execution policies are provided by the third party, possibly combined with the global execution policies of the operator as discussed in section 5.8.

5.3 SMS Spam Prevention Policy

5.3.1 ASK * MERGEFORMAT Short Description

The Short Message Center (SMSc), the network element managing short message delivery, is augmented with an Execution Policy Enforcement (PEP) functionality.

Both the Mobile Operator and subscriber can set rules related to policies. In this case, the subscriber enters data that is used to customize the application of privacy rules (created for short message screening by the Mobile Operator) to meet the subscriber’s needs. At this stage all the necessary ‘facts’ specific to the customer (with respect to the policy-enabled SMS service), are known to the Mobile Operator. So when a ‘request’ is made of the SMSc to send a short message to the subscriber, the request is parsed to extract ‘facts’ and related ‘context information’ that allows the system to classify the request type, (e.g., an urgent SMS etc). This information is used by the PEP/PDP to identify relevant privacy policies that are used to complete the processing of the request.
5.3.2 Actors

· Mobile subscriber who is the subject of the privacy policies

· Originator of SMS messages

· Mobile Operator
5.3.2.1 Actor Specific Issues

Mobile subscriber

· Wants privacy from unsolicited SMS messages

Mobile Operator

· The Mobile Operator wants to offer a feature rich service that can be flexibly applied to address subscriber privacy concerns.

5.3.2.2 Actor Specific Benefits

Mobile subscriber

· Is in control of the short messages it receives

Mobile Operator

· Can execute policies based on user privacy
· Can protect its subscribers from unsolicited SMS messages

· Can implement a flexible service, with enhanced revenue generating potential.
5.3.3 Pre-conditions

· The subscriber has a mobile account with operator and is able to to provide information that is used to customize the application of privacy policies/rules to his needs

· The Mobile Operator provides a means to enter relevant subscriber information. This information along with other data is used to identify, process and enforce relevant privacy policy rules

5.3.4 Post-conditions

SMS messages may be delivered, withheld, re-routed, rejected, etc., based on Mobile Operator policy rules and subscriber specific data.

5.3.5 Normal Flow

The Short Message Center (SMSc), is augmented with PEP functionality. The Mobile Operator and subscriber create and store sets of rules appropriate to the screening of short messages using the Policy Administration Point (Steps 1 & 2 in Figure 2).

Editor’s Note: A generic figure + text must be added to illustrate EPEM and the associated flow. The following text and figure then follows as an illustration of how EPEM can be implemented with PEP and PDP as discussed in Appendices B and C.

Upon receiving notification of a new SMS message (step3) the PEP parses the SMS request and passes along relevant information (such as facts about the identity of the sender and receiver, and context information) to a PDP (step 4) for further processing. The PDP, identifies relevant rules and downloads (step 5) these from the Policy Repository.. The PDP evaluates the rules, (step 6) and determines how the SMS request is to be handled.. It communicates the policy decision (step 7) back to the PEP, which either allows or denies the sending of the SMS.

[image: image2.wmf]PEP

Short Message

Service Center

(SMSc)

1. Subscriber enters customer information

Policy

Administration

Point

Policy Repository

2. Customer information

is collated with Rules

and stored

3. Originator Creates

Short Message and

sends to subscriber

4. Request Decision

5. Download

Applicable Rules

6. Evaluate

Rules

7. Enforce

Decision

(Allow SMS)

PDP

Figure 2: Flow illustrated in the case of an EPEM implementation based on PEP and PDPs

5.3.6 Alternative Flows

None identified.

5.3.7 Operational and Quality of Experience Requirements

The considerations below are for the illustrated PDP/PDP implementation option.

· A policy-enabled service incorporates or has access to PEP capability. A PEP enforces decisions on behalf of the policy-enabled service
· A policy-enabled application or service may use its PEP functionality to invoke functions within network resources to carry out/enforce execution policy decisions.

· A PEP may invoke, if necessary, a PDP (Policy Decision Point) to obtain policy decision requests. The PDP identifies policies relevant to the decision request – it may access a policy repository to obtain these policies. The PDP evaluates these policies to determine the decision request which is then relayed to the PEP

· The “policy repository is a long-term store or database for policies. A PDP may extract relevant policies (for evaluation) from the policy repository as and when needed. Policies that are stored as rules are typically in the form of IF <condition> THEN <action>.

· The mobile subscriber is able to provision his privacy preferences via an appropriate interface to a Policy Administration Point (also known as a policy provisioning point), e.g. through his mobile device or via a web based/GUI

· User experience must be uniform, seamless and consistent whenever the user accesses the system

5.4 Charging Control using Execution Policies

5.4.1 ASK * MERGEFORMAT Short Description

In this use case, a 3rd party Application Service Provider (ASP) delivers services to end-users. In doing so, the ASP uses resources from a Mobile Operator, and gets charged for it. Mobile Operator charges users on behalf of the 3rd party. Policies are being used to protect the third party Application Service Provider (ASP) from being exposed to charges generated by the Mobile Operator's resources consumption (a call to a pre-paid subscriber of the operator in order to deliver a service) when the pre-paid debit limit of the user has been reached and the user has no money then to pay the service delivered by the ASP.
The third party Mobile Operator creates a policy rule to handle subscriber overruns of his/her prepaid balance. The policy rule created for purposes of illustrating this use case is called the “PP_CHECK” policy rule.

5.4.2 Actors

· Third party ASP

· Pre-paid subscriber

· Mobile Operator
5.4.2.1 Actor Specific Issues

Third party ASP

· Wants to set execution policies to implement and enforce service level agreements with Mobile Operator

· Wants specify execution policies whose operational objectives are defined in a SLA.

Pre-paid subscriber

· Wants to be charged according to terms described in his service contract

Mobile Operator

· Wants to enforce Service Level Agreements

· Wants to manage applications across a diverse and distributed set of service providers

· Wants a flexible service management mechanism, e.g., execution policy management, to manage access to and protect the integrity of network services.

· Wants to define network service execution policies, e.g., execution policies for capacity management, for service access authorization, service discovery and load balancing

5.4.2.2 Actor Specific Benefits

Third party ASP

· Is protected from unwarranted charges generated by a call to a pre-paid subscriber of the Mobile Operator

Pre-paid subscriber

· Uses services according to the terms of his pre-paid subscription
Mobile Operator

· Can offer a feature rich service, with revenue enhancing potential, that flexibly meets SLA terms negotiated with ASPs’.
5.4.3 Pre-conditions

· The subscriber has a pre-paid account and his subscription allows him to receive services at a certain price directly from the ASP

· The ASP has a SLA in place with the Mobile Operator that allows the ASP to pay the mobile operator for resource usage and which allows the mobile operator to charge the user on behalf of the ASP

· The Mobile Operator has implemented a policy-enabled call management service that incorporates or has access to Policy Enforcement Point (PEP) functionality

5.4.4 Post-conditions

The network detects that the prepaid account of this called party has overrun its lower bound. This results in a notification to the policy-enabled service that uses its PEP capability to process the notification. The PEP recognizes this as an‘alert’ and sends appropriate information to a PDP to process the alert. The PDP identifies the relevant policy, (PP_CHECK), evaluates it and sends the resulting decision to the PEP for enforcement. As a result the call leg to the called party is released

5.4.5 Normal Flow

The Mobile Operator creates the pre-paid balance policy rule, (PP_CHECK) for its call management service. PP_CHECK is associated with a condition (“pre-paid_account.balance <= prepaid_account.lower_bound) and an action (“release.subscriber_call_leg”).

The rule is created via the rule creation facility of the Mobile Operator’s policy engine/Policy Decision Point, (PDP). As part of the creation process the policy-engine/PDP and the call management service PEP are aware of the rule. Both entities, i.e., PDP and PEP are configured to respond appropriately to events associated with the rule.

As part of the normal operation of the call management service , a call leg is created and routed to a certain called party in the network. After some time elapses, the network detects that the prepaid account of this called party has overrun its lower bound. This event triggers a notification to the call management service PEP. The PEP recognizes this as an alert that is to be processed by the PDP. The PEP extracts all ‘facts’ and ‘context’ information and sends these to the PDP for further processing. The PDP applies the policy rule PP_CHECK whose condition is satisfied by the information passed on by the PEP. The PDP informs the PEP of the resulting action which is then enforced by the PEP. As a result the call leg to the called party is released, hence protecting the third party ASP from being exposed to unwarranted charges generated by this call leg.

5.4.6 Alternative Flows

None identified.

5.4.7 Operational and Quality of Experience Requirements

· Execution policies may be defined in high-level service terms consistent with a policy information model.

· The high-level representation of a policy is mapped onto an internal representation that is best suited for computations and evaluation.

· Execution policies are stored in an execution policy repository, e.g. a database or repository server

· A rules engine (i.e. a policy decision point) selects and evaluates policies upon receiving a request for a decision from a PEP that is associated with a ‘policy enabled’ service. The PEP is notified when a pre-defined event is triggered. Note that in some cases a PDP and a PEP may be the same logical entity.

· The policy engine (PDP) may download appropriate execution policies from a policy repository as and when needed.

· The results of an evaluation by a PDP are made available to a PEP which enforces the recommended actions.

· User experience must be uniform, seamless and consistent whenever the user accesses the system.

5.16 Handling Changes in Execution Policies
5.16.1 ASK * MERGEFORMAT Short Description

This use case describes the issues involved with changes of the execution policy associated to a resource protected by EPEM.

5.16.2 Actors

The involved actors are:

· Service provider that owns a resource (e.g. location server) protected by EPEM.

· Requestor that issue request to the resource

In addition:

· The EPEM functionality may or may not be provided by the same service provider.

· The requestor may or may or may not be in the same domain as the resource (e.g. an application developer within the service provider domain or a third party application developer).

5.16.2.1 Actor Specific Issues

The issues for the actors are:

· Requestor:

· Issuing an acceptable request to the resource; independently of the changes of execution policy (that the requestor should in general not be aware of).

· Service Provider:

· Ensuring that EPEM is aware of the updated execution policies

· Ensuring that the authorized requestor know how to issue request to the resource at all time.

5.16.2.2 Actor Specific Benefits

The benefits for the actors are:

· Service provider:

· Being able to manage the execution policies and change them when dictate by any business or technical reasons.
· Being able to accommodate cases where users can dynamically changes their privacy or service preferences and have this reflected in execution policies that can be immediately reflected.

· Requestor:

· Being able to query any resource that the requestor is authorized to query.

5.16.3 Pre-conditions

The required pre-conditions are:

· EPEM protects a resource

· Execution policies are set up for the resource.

· Requestor is known of the service provider for example through existing agreement between the requestor and the SP (e.g. SLA)
· As a result of the agreements above, the equestor is authorized to send requests to the resource

· Requestor knows how to issue requests to the resource.

5.16.4 Post-conditions

The required post-conditions are:

· Execution policies have been changed

· Requestor has received response to the request that he/she sent to the resource after the change of execution policies

5.16.5 Normal Flow

The normal flow for this use case is:

1. The service provider decides to change the execution policies associated to the resource that he controls

2. He / she generates a new execution policies:

· This can be by editing descriptions of the execution policies

· Or by modifying the execution policies through an execution policy management application.

3. The EPEM is provisioned with the new execution policies

4. The requestor issues a request to the resource

5. The request is processed by EPEM

6. If the execution policies are satisfied the request is passed to the resource

7. The request is executed or acted upon

8. The response is returned to the requestor, possibly further processed by EPEM systems, as defined by the applicable execution policies.

Editor’s Note: The remaining sections of this use case, i.e. 5.16.6 and 5.6.17 have not been agreed and are subject to on-going discussion)

5.16.6 Alternative Flow

Several alternate flows may take place.

5.16.6.1 Requestor notification

· Prior to step 4, the requestor is informed one way or another (typically when the requestor request the type of information that he / she must provide with a request to the resource)
 that the execution policies have been changed and how this may impact the type of request that he/she may have to generate. Depending on how resource interfaces and EPEM is implemented the following alternative exist:

· The interface communicated to the requestor has been modified to reflect the changes that affect the requestor that we call request conditions. This is done in a step 3’ before the step introduced above.

· The interface to the resource is not changed but the requestor is explicitly informed of changes that affect the request that must be issued: the request conditions. No additional step is needed besides the step introduced above

If the changes of execution policies imply that the requestor must provide identity claim, credentials and account information (e.g. for payment) the request conditions must describe the need to pass this information and how it should be passed. This can be provided as part of the description of the interface to the resource or in a side communication (e.g. meta-information associated to the description of that interface)

5.16.6.2 Discovery

· Prior to step 4, the requestor may discover the type of request that he/she may have to generate. Depending on how resource interfaces and EPEM is implemented the following alternative exist:

· The interface registered for the resource and discovered by the requestor reflects the changes of the interface that result from the changes in request conditions. This is done in a step 3’ before step 4.

· The interface registered for the resource and discovered by the requestor is not changed but the requestor also discovers one way or another the request conditions associated to the resource. These request conditions is reflect the changes that affect the request that must be issued. Update of the request conditions, registration and discovery is done in a step 3” before step 4.

5.16.6.3 Change in the middle of a request

· The change of execution policies may take place between steps 3 and 4.

· EPEM may have to reject the request as it may not satisfy the new execution policies any more (e.g. if the request conditions have changed but the request does not take the changes into account).

· EPEM may enter a set of exchanges with the requestor to satisfy the need of the new request conditions if the request does not satisfy the new execution policies any more (e.g. if the request conditions have changed but the request does not take the changes into account).

It is also possible that EPEM does not change its processing of on-going requests and still relies on the older execution policies.

5.16.6.4 EPEM checks

· The change of execution policies may take place between steps 5 and 6.

· The EPEM should check that the execution policies have not changed in a step 5’

· If they have changed, the request may be rejected or enter a set of exchange with the requestor as discussed in the case above.

· Step 3 in general could be replaced by having EPEM checking if the execution policies have changed.

· It is also possible that EPEM does not changes it’s processing of on-going requests and still relies on the older execution policies.

5.16.7 Operational and Quality of Experience Requirements

· The EPEM enabler should support:

· Dynamic changes of execution policies and be able to immediately enforce the changes including on on-going requests.

· The EPEM should be compatible with mechanisms to inform the requestor when the type of requests that must be provided to a resource has changed.

· This can be because the resource changes (e.g. upgrade) and therefore it has a new interface

· Or because the execution policies result into new request conditions.

· These changes can be communicated with the interface or as additional information besides the interfaces. These are technology choices that can both support these requirements on EPEM.

· It should be possible to derive (deterministically) the request conditions from the execution policies

· They are in general a subset of the execution policies or derived from a subset of the execution policies assertions that they contain (e.g. only the charging, authentication and authentication assertions).

· It should be possible to satisfy the requirements above automatically (i.e. by machine).

· The service provider must be able to express the execution policies, change them and provision them into the EPEM system.

5.17 Friend-Location-Finder Application

5.17.1. ASK * MERGEFORMAT Short Description

This use-case describes the Friend-Location-Finder Application that when requested to do so first checks that end-user A and end-user B are subscribed to the Application, determines if the requesting end-user (end-user A) is a member of end-user B's friend list, retrieves the location of end-user B and then informs end-user A of end-user's B location.

5.17.2. Actors

· Third Party Service Provider;

· Third Party Service Provider Application (generically called Application);

· End-User A;

· End-User B;

· Mobile Operator.

5.17.2.1.
Actor Specific Issues

· The Mobile Operator is the Service Provider for end-user A and end-user B;

· The Mobile Operator is the owner of the resource:

· Enforcing the execution policies;

· Providing access to its resource;

· Enforcing the SLA between the Third Party Service Provider and itself;

· Negotiates (possibly as part of SLA) billing and interconnect charges between the Third Party Service Provider and itself;

· Coordinates with the Third Party Service Provider the correct charging of events.

· The Third Party Service Provider is the owner of the Friend-Location-Finder Application;

· Acts as the Requestor when requesting end-user B's credentials including location;

· Providing necessary credentials to access the resource;

· Using the Mobile Operator's resource.

· End-user A and B subscribes to the Friend-Location-Finder Application through their Service Provider, i.e. the Mobile Operator. Their subscriptions are paid to the Mobile Operator.

5.17.2.2.
Actor Specific Benefits

· The Mobile Operator:

· Can offer access to resource and its use while enforcing conditions of usage expressed in execution policies;

· Knows that resource is appropriately protected;

· Make available a wider range of Applications to their customer base;

· Charging and billing are coordinated per event allowing coordinated charging (or refunds) per event thus enhancing user experience.

· Third Party Service Provider:

· Can access resources to use for their Applications;

· Can simplify and automate the way to use a resource belonging to the Mobile Operator: need only to know what credential to pass and how.

· End-user A and B has single point of contact for Application queries and charging and billing issues.

· End-user A and B has a wider range of Applications available for consumption.

5.17.3. Pre-conditions

· End-user A and B must have a subscription with a Mobile Operator. In this use-case both A and B are subscribed to the same Mobile Operator;

· End-user A and B may either have a post-paid or prepaid subscription with the Mobile Operator;

· End-user A and B must have a subscription with the Friend-Location-Finder Application. Both End-user A and B are identified via a valid address (MSISDN) or an Alias ID or session ID;

· Third Party Service Provider has a contractual agreement with the Mobile Operator. This contractual agreement covers aspects such as terms and conditions, establishing payment method for application consumption and establishing privacy settings if applicable;

· Third Party Service Provider Application is registered with the Mobile Operator and is allowed to submit a "is_a_member request" and a "location_request" containing an end-user’s identity, e.g. Alias ID;

· The location being requested must be that of a network attached mobile end-user terminal;

· The Third Party Service Provider Application is responsible for converting between coordinate systems belonging to the Mobile Operator and the Third Party Service Provider Application;

· Privacy preference for the targeted end-user (end-user B), and local government legislation must be maintained by the Mobile Operator;

· If end-user A and B are roaming, service experience is not impacted. However, possibly extra charging for message reception must done with the methods employed in the same situation as those described below, i.e. different scenarios should not require special functionality;

· The submission of the message is charged (in real time) to the third party and the end-users.

5.17.4. Post-conditions

· End-user A is presented with the located of end-user B;

· End-user A is correctly charged with the service event;

· Mobile Operator and Third Party Service Provider are able to fulfil their SLA agreements, i.e. charging and billing between the two parties is correctly handled.

5.17.5. Normal Flow

· End-user A accesses the Network of the Mobile Operator in order to access the Third Party Service Provider Application;

· The Mobile Operator authenticates end-user A;

· End-user A initiates a "is_a_member request" to the Friend-Location-Finder Application;

· Mobile Operator receives the request via their Network, to access the “Friend-Location-Finder Application”;

· At this point the Mobile Operator:

· Obtains end-user A Identity information;

· Obtains end-user A Subscription Profile;

· Obtains related Access & Authorization information;

· Checks that end-user A is allowed to access the Application;

· Confirms that end-user A is authorized to access the Service;

· Introduces and associates an Alias ID to the request;

· End-user A request reaches the Third Party Service Provider Application

· End-user A requests location the Third Party Service Provider Application

· The Friend-Location-Finder Application identifies the end-user A (possibly through their Alias ID) and ensures that their credentials are authenticated and authorized for the consumption of the Friend-Location-Finder Application;

· Friend-Location-Finder application initiates a request to the Mobile Operator to check end-user's A account details, e.g. adequate funds.

· Application requests the location of end-user B from the Mobile Operator. At this moment Mobile Operator has to:

· Check the identity of the application;

· Obtain the application Profile information;

· Check that the application is allowed/authorized to request a charge/reservation/query on end-user A account.

· The Mobile Operator returns a positive acknowledgement to the Friend-Location-Finder Application confirming end-user A account details meet application expectations;

· Friend-Location-Finder Application performs a lookup, through the use of their Alias ID, of the end-user B credentials to determine whether they are registered for the Friend-Location-Finder Application

· Friend-Location-Finder application initiates a request to the Mobile Operator to check end-user's B account details, e.g. Service subscription and adequate funds. This action may require a further level of authorisation;

· The Mobile Operator returns a positive acknowledgement to the Friend-Location-Finder Application confirming end-user B account details meet Application usage criteria;

· The Third Party Service Provider Application initiates a "location_request" towards the Mobile Operator;

· The Third Party Service Provider Application credentials are authenticated and authorized;

· The Mobile Operator performs mapping of the provided Alias ID to the Mobile Operator's internally allocated end-user identification, e.g. MSISDN;

· The Mobile Operator checks whether permission has been granted by end-user B for end-user A to find the location of end-use B. This may be done by:

· Checking end-user B privacy policies;

· Checking regulatory policies;

· Checking the Mobile Operator's own policies.

· The Mobile Operator submits location request to the LES. The Mobile Operator receives the location request report from the LES which includes the geographical co-ordinates of the end-user B mobile terminal;

· The Mobile Operator returns the location details for end-user B to the Friend-Location Finder Application;

· The Mobile Operator logs the delivery of the request and determines the charge associated with the third party transaction.

· The Third-Party Service Provider Application receives the Location Report in geographic coordinates.

· The Third Party Service Provider Application can use other services to transform the geographic location response to the coordinate system requested in the location immediate request;

· The Third Party Service Provider Application provides notification to the Mobile Operator of the completion and successful delivery of end-user B location;

· The Mobile Operator charges end-user A for a successful consumption of the service.

5.17.6 Alternative Flow

· Authentication fails

· Authorization failed due to lack of required funds

· If the MSISDN Alias ID is invalid

· The third party application may not be able to obtain a location request response due to, for example, Authentication failure

· In the scenario where the response from the Mobile Operator fails

· The location delivery to end-user A fails and it is therefore not possible for the Mobile Operator to charge the end-user for service consumption.

5.17.7 Operational and Quality of Experience Requirements

· The Mobile Operator is able to set different levels of authorisation for accessing different levels of their resource

· 'The end-user contact is always with the Mobile Operator'

· 'The system shall allow for at least 1,000 concurrent transactions'

· 'The event charging is in real-time'

· 'The user shall have full control over his personal data'

The Mobile Operator shall adhere to local government legislation
6. Requirements
(Normative)

Editor’s note: to be done after compilation and review of enough use case.

6.1 High-Level Functional Requirements

This section contains high-level requirements for EPEM.

Some of the requirements in the following sub-sections originate from other OMA source material, (see section 2.1) and may have been modified for EPEM. In each case, the source requirement from this material is indicated.
R-20: The EPEM enabler MUST be able to act on any message specified by OMA enablers. (Motivated by sections 5.2 to 5.7)

Editor’s note: Need to revist what will be standardized under EPEM.

R-26: The EPEM enabler SHOULD NOT restrict the technology and deployment options. (Motivated by section 5.2)

R-38: The EPEM enabler MUST permit the deployment and use of OMA service enablers to allow for a wide variety of business models. [ARCH 6.1 #1]

R-39: The EPEM enabler MUST permit the use and deployment of any service enabler by any authorized actor. [ARCH 6.1 #2]

R-40: The EPEM enabler SHOULD enable the definition of components in such a way that functional overlaps between OMA enablers are minimized. [ARCH 6.1 #4]

R-41: The EPEM enabler MUST provide interfaces towards backend systems (e.g. charging, accounting, payment, provisioning, Operations & Management, etc.). [ARCH 6.1 #5]

R-42: The EPEM enabler SHOULD support the integration of service enablers, support systems and/or data sources that are not specified within the OMA. [ARCH 6.1 #6]
R-43: The EPEM enabler MUST support seamless user mobility, user equipment mobility and service mobility between multi-vendor and multi-domain environments irrespective of the underlying network infrastructure. [ARCH 6.1 #7]

R-44: Using components developed according to the EPEM enabler MUST NOT contradict or prevent any requirements imposed by legislation. [ARCH 6.1 #8]

R-45: The EPEM enabler MUST provide for extensibility for future service enablers and compatibility between these service enablers. [ARCH 6.1 #9]

R-46: The EPEM enabler MUST provide for the integration of existing service enablers defined by OMA with each other and with existing systems. [ARCH 6.1 #10]

R-47: The EPEM enabler MUST be valid for any kind of service (e.g. messaging, WAP, location, “IN”-like services, corporate services, etc. [ARCH 6.1 #12]

R-48: The EPEM enabler MUST be suitable for services focused on any kind of users or segments, including pre-paid, post-paid, corporate users, mass market, etc. [ARCH 6.1 #13]

R-49: The EPEM enabler SHOULD enable component reusability. [ARCH 6.1 #14]

R-50: When authorized, Principals MUST be able to set policies (e.g. charging policies and privacy policies) on any request (including discovery). [ARCH 6.1 #16]

R-88: The EPEM MUST be able to enforce policies on requests from types of Requestors, including (but not limited to)

· Requests from a 3rd party ASP, wanting to utilize Mobile Operator's resources

· Requests from end users, wanting to access services of the mobile operator
· Requests from end users, wanting to access services of a 3rd party ASP, and
· Requests from another Mobile operator

6.1.1 Security

R-27: The EPEM enabler MUST support secure exchanges between requestor and responder (Motivated by sections 5.5 and 5.6)

R-51: The EPEM enabler MUST provide mechanisms for authentication of users, applications and third-party service providers, and authorization for the use of service enablers across and within service provider domains. [ARCH 6.1.1 #1]

R-52: The EPEM enabler SHOULD NOT disallow different trust models for brokered authentication assertions or for single authentication assertions. [ARCH 6.1.1 #3]

R-53: The EPEM enabler MUST allow optimisations if a requestor and responder are in the same domain i.e. trust domain). [ARCH 6.1.1 #4]

R-54: The EPEM enabler MUST support setting various strengths of security policies and SHOULD support a way for service providers to define and communicate authorization policies for enablers. [ARCH 6.1.1 #6]

R-55: The EPEM enabler MUST provide secure and confidential access to services and associated exchanges within and across networks and domains e.g. through methods such as encryption, integrity protection, non-repudiation, authentication (both mutual and one-way) and authorization. [ARCH 6.1.1 #9]

R-56: The EPEM enabler MUST be able to control access to enablers, irrespective of the network technology and domain of origin of the party attempting to access the enabler. [ARCH 6.1.1 #10]

R-57: The EPEM enabler MUST provide mechanisms that ensure protection against security threats. [ARCH 6.1.1 #12]

R-83: The EPEM enabler SHOULD support a dynamic way to negotiate security settings between the service providers and the 3rd Party Service Provider.

R-87: Based on information provided by the Requestor, the EPEM enabler MUST be able to determine if authentication of a third Party is required and if required MUST be able to delegate authorisation to the authentication enabler. The EPEM MUST be able to log the results of the authorisation, e.g. results including successful, unsuccessful or higher authentication level required;

6.1.2 Charging

R-58: The EPEM enabler MUST NOT preclude any charging models between different actors. [ARCH 6.1.2 #1]

6.1.3 Administration and configuration

R-2: EPEM enabler MUST NOT impact establishment of SLAs between requestor and owner. (Motivated by section 5.2)

Editor’s note: This requirement is to be re-visisted.

R-3: EPEM MUST be able to derive execution policies from SLAs and enforce them. (Motivated by sections 5.2, 5.8 and 5.11)

R-6: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently express the execution policies associated to a resource.

R-7: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently simulate the execution policies associated to a resource. (Motivated by section 5.8)

R-8: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently modify the execution policies associated to a resource. (Motivated by section 5.8)

R-9: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently simulate the execution policies associated to a resource. (Motivated by sections 5.8 and 5.9)

R-10: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently debug the execution policies associated to a resource. (Motivated by section 5.9)

R-11: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently prioritize the execution policies associated to a resource. (Motivated by sections 5.8, 5.9 and 5.12)

R-12: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be resource-specific. (Motivated by section 5.11)

R-13: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be defined across multiple resources. (Motivated by section 5.11)

R-14: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be requestor specific. (Motivated by sections 5.2 and 5.11)

R-15: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be request specific. (Motivated by sections 5.2 and 5.11)

R-16: The EPEM enabler MUST provide mechanisms for the owner of resources to efficiently manage the execution policies associated to a resource in ways that can be deployment specific. (Motivated by sections 5.2 and 5.11)

R-17: The EPEM enabler SHOULD allow associating new execution policies to a new resource. This SHOULD support mechanisms of extensions from existing execution policies or inheritance mechanisms. facilitate adding or exposing new resources. (Motivated by section 5.10)

R-23: The EPEM enabler MUST provide ways to express execution policy assertions associated to OMA standard resources. (Motivated by sections 5.5, 5.6, 5.8, 5.10 and 5.11)

R-24: The EPEM enabler SHOULD provide ways to express non-standard execution policy assertions. Motivated by section 5.2 to 5.13)

R-29: The EPEM enabler MUST enable to derive request conditions from execution policies.

R-30: The EPEM enabler MUST enable delegation by a resource ownere of the enforcement of the execution policies associated to the resource to other parties.

R-59: The EPEM enabler SHOULD provide for the simplification of the services and service enablers life-cycle management by avoiding manual processes, need of integration due to lack of standards, etc. [ARCH 6.1.3 #1]

R-60: The EPEM enabler MUST provide the means to manage the activation, registration, authentication, and authorization of users and service components. [ARCH 6.1.3 #5]

R-61: The EPEM enabler MUST provide a mechanism for an authorized third-party to discover the conditions for using a service enabler exposed by a particular service provider in a dynamic manner. [ARCH 6.1.3 #11]

R-62: The EPEM enabler MUST support a mechanism for service providers and other authorized actors to enforce the conditions for use of a service enabler. [ARCH 6.1.3 #12]

R-63: The EPEM enabler MUST have a single logical point that handles subscriber and subscription information. [ARCH 6.1.3 #13]

R-66: The EPEM enabler MUST support simplified (e.g., plug-in) and automated integration for enablers with each other. [ARCH 6.1.3 #3]

R-67: The EPEM enabler SHOULD provide a mechanism to manage and use policies (e.g. access policies, charging polices, service level agreements, etc.). [ARCH 6.1.3 #5]

R-84: The EPEM enabler MUST enable the communication of service monitoring data (e.g. performance measurements) between actors.

R-85: When requested, the EPEM MUST be able to log application statistical information (e.g. failure rate of a particular resource and real time QoS information for a session) for resources that are used by third party applications.

R-86: The EPEM enabler MUST be able to log all application session information for both inbound requests, e.g. requests from authorised third parties, and outbound responses, e.g. responses from resources to authorised third parties.

6.1.4 Usability

R-4: The EPEM enabler MUST be compatible with mechanisms for the owner of a resource to advertise the request conditions in order for another party to use a service enabler. (Motivated by sections 5.2, 5.3, 5.5 to 5.8 and 5.11)

R-25: When authorized, principals MUST be able to express preferences or set settings that will be reflected in execution policies. (Motivated by sections 5.8, 5.11 and and 5.14
)

· Principals may be end-users who setup preferences that are reflected in execution policies. (Motivated by section 5.14 and by [Privacy])

· Other principals that may have settings that must also be reflected in execution policies. This includes a principal (e.g. enterprise) being able to constrain usage by others (e.g. its employees) and having this reflected into execution policies that will be enforced for requests to the relevant resources.

R-31: The EPEM MUST be compatible with requests done on behalf of principals.

R-32: The EPEM MUST support requests done on behalf of principals.

R-68: The EPEM enabler MUST provide a means to manage and enforce end-user privacy. [ARCH 6.1.6 #1]

Editor’s Note: Requirements R33 to R37 are proposed from OMA-REQ-2003-0837R01Use_case_handling_execution_policy_changes_with_answers. These requirements are not fully agreed. The complete use case from which they are derived in this document is subject to on-going discussion

R-33: The EPEM enabler MUST be compatible with mechanisms for requestors to determine how to satisfy the request conditions associated to a resource. (Motivated by sections 5.2 to 5.7 and 5.16)

R-34: The EPEM enabler MUST support Machine Readable automated discovery of request conditions associated to a resource. (Motivated by sections 5.2 to 5.7 and 5.16)

R-35: The EPEM enabler MUST support request conditions that are a subset of the execution policies assertions or derived from such a subset. (Motivated by sections 5.2 to 5.7 and 5.16)

R-36: The EPEM enabler MUST provide mechanisms enabling EPEM to determine the execution policies associated to a resource. (Motivated by sections 5.2 to 5.6 and 5.16)

R-37: The EPEM enabler MUST provide mechanisms enabling EPEM to dynamically determine changes execution policies associated to a resource and immediately enforce the changes. (Motivated by sections 5.2 to 5.6 and 5.16)

6.1.5 Interoperability

R-1: The EPEM enabler MUST be compatible with any service registry and discovery mechanisms that may be defined by OMA

R-64: The EPEM enabler MUST define the data flows and interfaces between applications and enablers, and between enablers. These are the interfaces where interoperability is required. [ARCH 6.1.5 #1]

R-65: The EPEM enabler MUST NOT mandate any specific deployments. [ARCH 6.1.5 #2]

See also requirement R-17.

6.1.6 Privacy

R-28: The EPEM enabler MUST support enforcement of privacy policies (Motivated by section 5.14 and by [Privacy])

6.2 Overall System Requirements

The general characteristics & behaviours specified in this chapter are supported by the EPEM enabler:

Editor’s Note: Some of the following requirements may need to be assigned to section 6.3

R-5: The EPEM enabler MUST provide mechanisms to enforce the execution policy associated to a resource on any request to that resource and on any associated response. (Motivated by sections 5.2 to 5.7). This is also an OMA Architecture requirement. [ARCH]

R-18: The EPEM enabler MUST support delegation from a resource of any functionality expressed in execution policies. (Motivated by section 5.4).

R-19: The EPEM enabler MUST support requestor and responders located in the same or on different systems, within the same or different domains. (Motivated by sections 5.5, 5.6, 5.8 and 5.11)

R-21: It MUST be possible to geographically distribute the EPEM.

R-22: The EPEM enabler MUST support integration with legacy resources that are not aware of the EPEM capabilities and mechanisms. (Motivated by sections 5.4, 5.5, 5.8 and 5.10)

R-69: The EPEM Enabler SHOULD NOT preclude the deployment of service enablers in high-availability, high-uptime, scalable environments (e.g. By requiring implementation in ways which disable the use of the functions of this environment). [ARCH 6.3 #1]

R-70: The EPEM Enabler MUST allow applications to make use of multiple enablers to create services (e.g. service composability). [ARCH 6.3 #2]

R-71: The EPEM Enabler SHOULD enable the definition of components in such a way that consistent design (e.g. reuse of data formats, reuse of components, etc) is encouraged [ARCH 6.3 #3]

R-72: The EPEM enabler MUST support the ability to simultaneously operate multiple versions (i.e. multiple instances, defined according to different releases of the OMA specifications) of an interface or API. [ARCH 6.3 #4]

R-73: The EPEM Enabler MUST provide a mechanism to control the QoS and the service quality of the behaviour of enablers. [ARCH 6.3 #5]

R-74: The specification of the EPEM Enabler MUST be done in such a way that allows for scalable implementations. [ARCH 6.3 #6]

R-75: The interfaces to the EPEM Enabler MUST NOT constrain the functions of the enabler to a single domain. [ARCH 6.3.1 #1]

R-76: Standardized interfaces MUST be defined for the EPEM enabler. [ARCH 6.3.1 #2]

R-77: The EPEM Enabler MUST provide support to a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler. [ARCH 6.3.2 #1]

R-78: The EPEM Enabler MUST support Discovery for an implementation of a Service Enabler. [ARCH 6.3.2.1 #3]

R-79: The EPEM Enabler MUST support Registration for an implementations of a Service Enabler. [ARCH 6.3.2.1 #4]

R-80: EPEM enabler MUST be able to register, discover, and retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier). [ARCH 6.3.2.1 #5]

R-81: The EPEM Enabler MUST define a common interface for the operations and management (O&M) of both common and service-specific enablers or applications (including service monitoring and end-to-end service delivery). [ARCH 6.3.3 #1]

R-82: The EPEM enabler OMA Service Environment SHOULD support options for the choice of party for handling authentication, charging and/or storage of user profiles.

6.3 System Elements

<This section identifies the high level requirements, on each system element in the use cases, identified in this specification, including the user’s device(s) if relevant. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements. Each subsection should have a sub-section(s) covering the requirements on interfaces>

6.3.1 System Element A

<This section contains numbered high level requirements on System Element A>

6.3.2 Interfaces to System Element X

<This subsection and the following subsections describe the high level requirements on the interfaces from System Element A to the other Elements in the System.>

6.3.3 Interfaces to System Element Y

<etc>

6.3.4 Network interfaces

<This clause identifies the high level network interface (bearers/protocols) needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

<<This section is available in pre-approved versions – it should be removed in the actual approved versions>>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20030927-D
	27 Sep 2003
	All
	First version proposed to initiate the drafting

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031019-D
	19 Oct 2003
	All
	Baseline version following Tokyo Breakout session and reflecting the agreements captured in OMA-Req-2003-0652-minutesOctober08_EPEMBreakoutTokyo

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031111-D
	11 Nov 2003
	All
	Updated RD that reflect agreements at the end of the first day of the London REQ EPEM breakout session as reflected in the minutes.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031127-D
	27 Nov 2003
	All
	· Updated RD that reflect agreements at the end of the second day of the London REQ EPEM breakout session as reflected in the minutes.

· Introduction of notion of “request condition” to address some of the issues that the London meeting addressed in cumbersome ways.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031204-D
	04 Dec 2003
	6
	· Update of requirements based on decisions agreed during the conference call of Dec 1, 2003.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20031209-D
	09 Dec 2003
	3.2, 5, 6
	· Update of requirements based on decisions during the conference call of Dec 8, 2003.

· Added Editor’s Note to defn of “request condition”

· Added ARCH RD as normative reference and transposed the corresponding requirements agreed in OMA-REQ-2003-0787-requirements-derived-from-Arch-work-group and over e-mail.

· Include agreed sections from OMA-REQ-2003-0837R01Use_case_handling_execution_policy_changes_with_answers, and non-agreed sections with Editor’s Note, acknowledging comments by e-mail (OMA-REQ-2003-0833-Use_case_handling_execution_policy_changes_CommentsTelefonica) that the alternative flows of the use case are not fully agreed.

	OMA-RD-Execution_Policy_Enforcement_Management-V1_0-20040112-D
	12 Jan 2004
	3.2, 5.14, 5.15, 6
	· Update of requirements and use caes based on decisions during the OMA REQ WG breakout sessions on 7th and 8th Jan 2004

· Include all agreed changes to definitions in OMA-REQ-2003-0873-EPEM_Comments_to_definitions,

· Include agreed changes to use case 5.14 proposed in OMA-REQ-2003-0875-EPEM_Updated_Use_case_SMS_Privacy.doc

· Include agreed changes to use case 5.15 proposed in OMA-REQ-2003-0874-EPEM_Updated_Use_case_Charging doc

· Include new use case (5.17) OMA-REQ-2003-0877-Additional-use-case-for-EPEM-RD with agreed changes

· Inclide changes to requirements and agreed new requirements from OMA-REQ-2003-0878-EPEM-OMA-ARCH-Common-Requirements

· Add requirements modified and agreed from OMA-REQ-2003-0879-Friend-Location-Finder-use-case-EPEM-requirements

· Re-phrase R21 from OMA-REQ-2003-0880-EPEM-Decomposition

· Categorizie requirements as agreed in OMA-REQ-2003-0886-Categorization_EPEM_requirements

Appendix B. Review of Related Technologies and Standards (Informative)

Editor’s note: This section will provide a overview of:

- IETF

- IETF [RFC 3198] and related IETF policy specifications:

- Common Open Policy Service (COPS)

- IETF Policy Framework

- AAA

- Policy provisioning

- Policy Management

- Web Services: W3C, OASIS:

- web service activities (e.g. Choreography / composition, security)

- Private specifications:

- WS-Policy [WS-Policy]

- Workflow technologies and standards (e.g. Simple Workflow Access Protocol (SWAP)).

- Aspects of Parlay / OSA

- Related OMA activities (e.g. non-exhaustive: Security, Privacy, DRM, DM, MWS, Architecture, …)

- Others?

Editor’s note: The following are technology specific / specification specific statements collected in inputs that should be captured when this appendix and the following one are addressed.

The definitions of execution policy assertions proposed in section 3.2 encompass the definitions of policies as used by IETF [RFC 3198] and WS-Policy [WS-Policy].
EPEM makes use of the web-services policy management paradigm to establish a policy enabled services framework that orchestrates a subscriber’s access to one or more network service enablers. Complementing this, it uses a policy paradigm that is motivated by the IETF policy information model to manage and enforce static policies associated with network service enablers.

Appendix C. Technologies available to implement Execution Policy Enforcement and Management (Informative)

Editor’s Note: The following provides an enumeration of technologies that can be used to implement EPEM. They are provided to help generate use cases. At the later stage, this section may be moved to the TR as the TR progresses.

Several technology approaches can be considered to provide execution policy enforcement and management. The following list is not exhaustive.

· Pre-composition of resources with the target resource as specified by the associated execution policy.

· Possible description of the conditions exposed to the requestor thorugh the resulting composed interface

· Possible description of the conditions exposed to the requestor through meta-data (e.g. a la WS-Policy [WS-Policy] in the case of Web Services)

· Possible registration and discovery of the interface and meta-data

· Composition at discovery or request of resources with the target resource as specified by the associated execution policy.

· Interception of all messages by a single entity (proxy / gateway):

· Trusted client provisioning

· Single point of access any resources in the network

· Pre-composition or dynamic composition through the entity

· Interface with address that is actually the address of the entity

· Distributed execution policy enforcement and management functionalities

· Execution policy enforcement and management implemented in front of each resource

· Execution policy enforcement and management implemented within / as part of each resource

· Implementation of the execution policy enforcement and management as a combination of policy engines (PDP and PEP a la [RFC 3198]) and Workflow engines

· Combinations of some of the above.

� Notions of allowing billable and auditable exposure of resources used throughout this document should be understood as examples of conditions that can be enforced before allowing access and usage of the resource. It does not imply that billing must always take place, nor that this is the sole type of condition can be enforced besides authentication, authorization etc… This comments applies throughout this document.

� In a non typical variation of the flow, the requestor could discover the conditions that it must satisfy.

� In case of failure of some of the execution or validation steps, the request may be returned with the requestor with an error or a dialog may be established between the requestor and one of the involved intermediate resources (e.g. a new prompt / challenge).

� The credentials may result from previous steps performed by the requestor to acquire these credentials as allowed or specified by the details on the executions policies that it is aware of.

� We could however envisage other cases where the requestor is actually informed of the changes when he / she sends the previous type of information to the resource, It could be identified that this is an older request type and the expected changes can be communicated as part of the error response. Alternatively a return code could simply inform the requestor that this is not / no more a correct request and to go get an update through whatever mean is available to do so.

�PAGE \# "'Page: '#'�'" ��Propose to delete this reference – where is it?

�PAGE \# "'Page: '#'�'" ��Added from OMA-REQ-2003-0877-Additional-use-case-for-EPEM-RD with agreed changes

�PAGE \# "'Page: '#'�'" ��Added after discussions in Singapore

�PAGE \# "'Page: '#'�'" ��Added after discussions in Singapore

�PAGE \# "'Page: '#'�'" ���Agreed as a result of discussions from OMA-REQ-2003-0879-Friend-Location-Finder-use-case-EPEM-requirements

�PAGE \# "'Page: '#'�'" ��From Vodafone: OMA-REQ-2003-0878-EPEM-OMA-ARCH-Common-Requirements

�PAGE \# "'Page: '#'�'" ��From Vodafone: OMA-REQ-2003-0878-EPEM-OMA-ARCH-Common-Requirements

�PAGE \# "'Page: '#'�'" �� “SHOULD” -> “MUST”?

�PAGE \# "'Page: '#'�'" ��From Vodafone: OMA-REQ-2003-0878-EPEM-OMA-ARCH-Common-Requirements

�PAGE \# "'Page: '#'�'" ��Agreed as a result of discussions from OMA-REQ-2003-0879-Friend-Location-Finder-use-case-EPEM-requirements

�PAGE \# "'Page: '#'�'" ��Agreed as a result of discussions from OMA-REQ-2003-0879-Friend-Location-Finder-use-case-EPEM-requirements

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��Propose to delete in favour orf 32

�PAGE \# "'Page: '#'�'" �� From Vodafone OMA-REQ-2003-0880-EPEM-Decomposition

�PAGE \# "'Page: '#'�'" ��Originally read “The specification of a Service Enabler MUST be done in such a way that allows for scalable implementations. [ARCH 6.3 #6]”

�PAGE \# "'Page: '#'�'" �� Originally read: “When a Service Enabler is defined by OMA a standardized interface MUST be defined for the Service Enabler."

�PAGE \# "'Page: '#'�'" �� Originally: The OMA Service Environment MUST have a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler. [ARCH 6.3.2 #1]

�PAGE \# "'Page: '#'�'" ��From Vodafone: OMA-REQ-2003-0878-EPEM-OMA-ARCH-Common-Requirements

(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]
(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]

_1129987710.ppt

EPEM

Operator

Controlled

Service provider

Resources

Common

Functions

Service Provider

Requestor

_1135346270.ppt

PDP

PEP

Short Message Service Center (SMSc)

1. Subscriber enters customer information

Policy

Administration

Point

Policy Repository

2. Customer information

is collated with Rules

and stored

3. Originator Creates Short Message and sends to subscriber

4. Request Decision

5. Download Applicable Rules

6. Evaluate Rules

7. Enforce Decision (Allow SMS)

