Alternative : 1 Current solution with Light-weight Resources
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service Capability Sources
	/{userId}/capabilitySources

	CapabilitySourceList (used for GET)
CapabilitySource (used for POST)
	retrieves all own registered service capabilities with a status

Note: Query string parameter can be used to select either enabled or disabled capabilities.
	no
	defines (registers) a new own service Capability Source (i.e. registering service capabilities for a new device)
	

	Individual service Capability Source
	/{userId}/capabilitySources/{capabilitySourceId}
	CapabilitySource
(used for GET and PUT)
	retrieves all own service capabilities with a status for a specified service Capability Source
	updates capability information for a specified Capability Source (i.e. add/remove service capabilities, or enable/disable registered service capabilities)
	no
	removes (deregisters) all own service capabilities registered for a specified service Capability Source

	Individual service capability data
	/{userId}/capabilitySources/{capabilitySourceId}/[ResourceRelPath]
	The data structure corresponds to an element within the CapabilitySource structure pointed out by the resource URL.

(used for PUT/GET)
	retrieves individual own service capability information registered for a specified service Capability Source
	creates or updates capability information for a specified service capability (i.e. add new service capability, or enable/disable registered service capability)

Note: Update/refresh of duration time for a specified Capability Source is possible if such option issupported by service provider)
	no
	removes (deregisters) specified service capability registered for a specified service Capability Source

Alternative 2: Using separate resources for handling of individual capability data
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service Capability Sources
	/{userId}/capabilitySources

	CapabilitySourceList (used for GET)
CapabilitySource (used for POST)
	Retrieves all own registered service capabilities with a status

Note: Query string parameter can be used to select either enabled or disabled capabilities.
	no
	Defines (registers) a new own Capability Source (i.e. registering service capabilities for a new device/application)
	

	Individual service Capability Source
	/{userId}/capabilitySources/{capabilitySourceId}
	CapabilitySource
(used for GET and PUT)
	Retrieves all own service capabilities with a status for a particular Capability Source
	Updates capability information for a particular Capability Source (i.e. add/remove service capabilities, or enable/disable registered service capabilities)
	no

Ed.Note: To check whether to use POST for registration of individual service capability, as well as partial updates, e.g. duration.
	Removes (deregisters) all own service capabilities registered for a particular Capability Source

	Capability Source lifetime
	/{userId}/capabilitySources/{capabilitySourceId}/duration
	CapabilitySourceLifetime
	Retrieves current value for a duration (lifetime) for a particular Capability Source
	Updates/refresh duration (lifetime) for a specified Capability Source

Note: Update/refresh of duration time for a specified Capability Source is possible only if such option is supported by the servicer.
	
	

	Individual service capability
	/{userId}/capabilitySources/{capabilitySourceId}/{capabilityId}
	ServiceCapability

(used for PUT/GET)
	Retrieves a specific individual own service capability registered for a particular Capability Source.

(Normally only used to verify the existence of the capability)
	Registers/updates capability information for a partiicular service capability (i.e. add new service capability, or enable/disable registered service capability)
	no
	Removes (deregisters) a particular individual own service capability registered for a particular Capability Source

	Individual service capability status
	/{userId}/capabilitySources/{capabilitySourceId}/{capabilityId}/status
	ServiceCapabilityStatus
	Retrieves the status for a particular own service capability registered for a particular Capability Source
	Updates status for a particular own service capability registered for a particular Capability Source
	
	

Alternative 3: POST on Capability Source used to create individual capability as well as for partial update of capability data
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service Capability Sources
	/{userId}/capabilitySources

	CapabilitySourceList (used for GET)
CapabilitySource (used for POST)
	retrieves all own registered service capabilities with a status

Note: Query string parameter can be used to select either enabled or disabled capabilities.
	no
	defines (registers) a new own service Capability Source (i.e. registering service capabilities for a new device)
	

	Individual service Capability Source
	/{userId}/capabilitySources/{capabilitySourceId}
	CapabilitySource
(used for GET and PUT)
ServiceCapability
(used for POST)

CapabilitySourceLifetime
(used for POST)
	retrieves all own service capabilities with a status for a specified service Capability Source
	updates capability information for a specified Capability Source (i.e. add/remove service capabilities, or enable/disable registered service capabilities)
	Create/update an individual service capability, or partial update of Capability Source data such is “duration”
	removes (deregisters) all own service capabilities registered for a specified service Capability Source

	Individual service capability deregistration
	/{userId}/capabilitySources/{capabilitySourceId}/individualDeregistration
	ServiceCapability
(used for PUT/GET)
	
	
	This operation is used to deregister (remove) an individual service capabilty
	

PROS and CONS with alternatives
Alternative 1: Current solution with Light-weight Resources
PROS:
· allows individual access to each element in data structures

· no need for “resourceURL” in ServiceCpabability data structure (??? Should PUT request with LW resource have it included?)
· no need to create new data structures
·
CONS:
· Too complex mechanism for accessing just a few elements

· Long string for capability-tag in request URL
Alternative 2: Using separate resources for handling of individual capability data
PROS:

· Simple and clear solution where a separate resource is used to access individual element(s) in data structures

CONS:
· long string for capability-tag in request URL

· requires “resourceURL” in ServiceCpabability data structure (for PUT request)
· response to GET for contact capabilities will need to include “resourceURL” if the same ServiceCapability type is used

· 2 new data structures (for duration and capability status)

· 5 resources (compared to 3 in Alternative 1)

Another sub-variant of alternative 2 could be to use POST to add an individual service capability, then PUT will be used only for updates. See Note below alternative 3.
Alternative 3: POST on Capability Source used to create individual capability as well as for partial update of capability data
PROS:

· No need for a long capability-tag string in request URL

· No need for “resourceURL” in ServiceCapability data structure (??)
· Creation of resources always done by server with POST

CONS:
· 2 new data structures (for duration and capability status)

· no direct access to capability status; only via ServiceCapability data structure
· removal/delete of resource done by POST not very common implementation
Note: If only POST is used to create/add capabilities then it could be possible for server to map long capability-tag to something shorter and call it “capabilityId” in the created resource URL. In that case, “capabilityId” from ServiceCapability data type (in the body of the request) needs to be re-named to “capabilityTag” or similar.
However this opens a question what to include in request URL when querying for a specific capability for a contact (not requested by RCS) but this topic should be discussed separately
