Doc# OMA-ARC-REST-NetAPI-2011-0017-INP_ApiVersion_in_NetAPI_TSs.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-REST-NetAPI-2011-0017-INP_ApiVersion_in_NetAPI_TSs.doc
Input Contribution

Input Contribution

	Title:
	Analysis of ApiVersion alternatives
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-REST-NetAPI

	Submission Date:
	04 Oct 2011

	Source:
	Uwe Rauschenbach, NSN, uwe.rauschenbach@nsn.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	 n/a

1 Reason for Contribution

This INP provides an analysis of the alternatives regarding the apiVersion signalling.
2 Summary of Contribution
None given
3 Detailed Proposal

Summarizing the alternatives:
1) Version number in resource URL as we have it; REST NetAPIs use string “2”

2) Version number in resource URL as we have it; REST NetAPIs use string
a. “v1”

b. “netapi1”
3) MIME type includes version information (in type name or in parameter); no version string in URL

4) Version string in a URL query parameter

5) Change another part of the URL to signal ParlayREST (NetAPI, and then go forward with version number in URL (e.g. http://{serverRoot}/netapi-{apiName}/{version}/... (Example: http://{serverRoot}/netapi-thirdpartycall/1/..., http://{serverRoot}/netapi-messaging/1/...)
In GSMA OneAPI, operators that were vocal spoke in favor of option (3) (Telus, Vodafone, T-Mobile) or (4) (Telefonica).

(Best?) current practice

Existing APIs use the following methods
· Internet APIs

· Google Plus: “v1” in URL
· Twitter: “1” in URL

· Facebook: no explicit version signaling, but running each API version on a different host. The current “graph” API is already the second version and uses host “graph.facebook.com”; the “legacy REST API” version used a different host “api.facebook.com” in the URL.
· DailyMotion: no explicit version signaling. Using api.dailymotion.com as the host name. So they may follow a similar scheme as Facebook should they need a new version in the future.
· YouTube
: Uses either a “v=2” query string parameter, or a custom HTTP header (“GData-Version: 2”)
· Oracle
: Not using version indications.
· Telco APIs (only random checks of the documentation)
· Orange Partner: No mentioning of versioning, no version tag visible in URL or elsewhere
· Developergarden: No mentioning of versioning, no version tag visible in URL or elsewhere
· BlueVia: mandatory query string parameter (“version=v1”)
It can be summarized that not all players care about versioning. In particular dominant IT players, but also telcos’ own APIs come without version number. For dominant players like Google or Facebook this may be OK, but with Telcos planning to interconnect their APIs not caring about APi versioning is the recipe for chaos.
Those players that do version either use the version indicator as part of the path or as part of the query string. As an alternative, YouTube offers to use an optional proprietary HTTP header.

So, current practice visible to the author of this contribution covers (1), (2), (4) and (5).
Resolution for “version mess” at OMA

Issue: In OMA, ParlayREST is identified by the string /1/ in the resourceURL, MIME types application/json, application/xml and application/x-www-formurlencoded, and a distinctive XML namespace (if XML is used). Due to some changes made that are non-backwards-compatible, OMA needs to update the version signaling to enable client and server to understand which version is being used.

Assessment: All alternatives technically solve the issue.
Alternative (1) is confusing (ParlayREST 2 has /1/ as the version string and REST NetAPI 1 has /2/ as the version string.

Alternative (2) works. However “netapi1” is not really elegant; which may be bad for the reputation of the API in the developer community. We may go for “v1”, but still it’s a bit strange to declare “1 denotes ParlayREST 2, v1 denotes REST NetAPI”
Alternatives (3), (4) and (5) are viable.

Support for version signaling

Issue: Client and server must always know which version of a resource / representation is accessed / exchanged.
Assessment:

Options (1), (2) and (5) meet this criterion without limitation.

For option (3), there’s a workaround required when resFormat is used, and also for www-formurlencoded (see below).

For option (4), in order to support version signaling in all circumstances, the version parameter quasi becomes a mandatory resourceURL part, as the server would have to return it (well, omission would be possible for the first version). This way, it is closer to options (1) and (2) than to option (3).

Support for dynamic version discovery / negotiation

Issue: When accessing a resource, ideally client and server can discover automatically which version(s) the other side supports, and adapt dynamically; without the need to run a discovery step beforehand. In particular in multi-SP environments this feature is advantageous.

Assessment: Only (3) offers dynamic version discovery / negotiation in conjunction with GET and DELETE (i.e. methods without request body). In POST and PUT, only version signaling is supported by option (3) as the client has to pick one version for the body before sending the request. The remaining options generally only support version signaling, with no dynamics..
Interworking with web forms (x-www-formurlencoded)

Issue: The support for the x-www-formurlencoded content type has been added to the API in order to support web forms (which by default use this type when sending the input data to the server in a POST request).

Assessment: This mechanism does not conflict with (1), (2), (4) and (5). However, there are difficulties with (3) if these parameters are directly submitted from a web form. The enctype attribute can be used in HTML4 to include a version number. But in HTML5 enctype is an enumerated attribute; only types predefined by HTML5 can be used. Also, there is no way to set the Accept: header from a web form to signal the desired type and version of the response.
Interworking with OAuth

Issue: Oauth requires obtaining an access token before being able to access a resource. In that process, so-called Scope values need to be sent from the client to the server to express the scope of the requested rights (in terms of operations and resources). Scope values may differ between versions of an API. Even though the client may be able to request scope values for different versions of an API, the server may choose to narrow down to a particular version already in that step. Otherwise, it needs to issue a single access token that covers multiple different versions of an API.
If the server chooses to narrow down the scope, the version discovery/negotiation occurs already as a side-effect as part of the OAuth flows. Still, if the server decides to grant authorization to multiple versions of an API in a single access token, dynamic discovery/negotiation is still possible.

Assessment: Using OAuth in conjunction with the MIME-type based mechanism waters down the dynamic discovery/negotiation property of the MIME approach (and thereby its greatest advantage); but may still keep that property if access tokens for multiple API versions can be issued.
Interworking with resFormat
Issue: OMA REST NetAPI supports the resFormat query string parameter to allow a client that cannot access the HTTP headers to request the MIME type of the response. If we now introduce versioning by MIME type, the resFormat mechanism needs to be updated to cater also for the version (which makes it basically a variant of option (4). This means that option (3) implies the use of option (4) for clients that cannot access HTTP headers.
Assessment: If ARC agrees that such clients need to be supported, this means that in fact two mechanisms for versioning will co-exist in the spec, and will be available for use by implementations. This leads to higher complexity of server implementations, and may lead to IOP issues.

Use from within web browsers

Issue: Accessing HTTP headers is difficult from web browsers and Javascript. Therefore, the resFormat header has been introduced.
Assessment: For use from within web browsers, option (3) has issues.
Interworking with HTTP Caches

Issue: HTTP caches need to determine a key for each stored page. In case the version number is in the URL (no matter whether in the “path” portion or in the query-string portion), the cache can use that as the key, but also needs to consider the MIME type in addition in order to distinguish between different representations of a particular resource. It is unclear whether a “version” parameter of a particular MIME type would be considered by the web cache.
Assessment: Further study required.
Overview Table
	
	(1)
	(2)
	(3)
	(4)
	(5)

	(Best?) current practice
	+
	+
	-
	+
	n/a

	Resolution for “version mess” at OMA
	-
	o
	+
	+
	+

	Support for version signaling
	+
	+
	-
	-
	+

	Support for dynamic version discovery / negotiation

	-
	-
	+
	-
	-

	Interworking with web forms (x-www-formurlencoded)

	+
	+
	-
	+
	+

	Interworking with OAuth

	o
	o
	o
	o
	o

	Interworking with resFormat

	+
	+
	-
	+
	+

	Use from within web browsers
	+
	+
	-
	+
	+

	(attempt to quantify (-1/0-+1), just indicative)
	3
	4
	-3
	3
	4

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

No actual API uses the MIME type approach. From looking at the criteria, it seems that the MIME approach is too disruptive given the actual environment.

There is no clear “winner” among the other alternatives.

Therefore the group is recommended to select one approach in the discussion. Also, there is the need to align this with OneAPI and WAC. Important to notice that using any option apart from (3) requires discovery.

Revision 02:

Some more discussion has shown a preference for 2a, and in addition it is needed to specify a mechanism how the server handles the case that it does not support the version requested, but another version.
The group is therefore requested to agree on option 2a (apiVersion=“v1”).

� � HYPERLINK "http://code.google.com/intl/de-DE/apis/youtube/2.0/developers_guide_protocol.html#API_Versioning" �http://code.google.com/intl/de-DE/apis/youtube/2.0/developers_guide_protocol.html#API_Versioning�

� � HYPERLINK "http://download.oracle.com/docs/cd/E14148_02/wlcp/ocsg41_otn/pdf/restfulappdev.pdf" �http://download.oracle.com/docs/cd/E14148_02/wlcp/ocsg41_otn/pdf/restfulappdev.pdf�

� OMA specific

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

