Doc# OMA-ARC-REST-NetAPI-2011-0315-INP_Handling_reserved_identifiers_in_resource_URL[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2011-0nnn-INP_ParlayREST2_issue_list.doc
Input Contribution

Input Contribution

	Title:
	Handling_reserved_identifiers_in_resource_URL
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST-NetAPI

	Submission Date:
	Oct 24 2011

	Source:
	Michael Brenner, Alcatel-Lucent, Michael.Brenner@alcatel-lucent

	Attachments:
	
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Proposal to handle reserved identifiers (e.g. “acr:authorization” or similar) as an acceptable end user identifier in the request/response URL path.
2 Summary of Contribution

This INP proposes addressing the acr:authorization pattern supported by WAC.

The assumption is that this is used in combination with an authorization mechanism (e.g. OAuth 2.0) that passes information that can be used to identify the real user (e.g.an Oauth token), via some HTTP header. The scenario below assumes specifically the use of OAuth 2.0. The main issues that need to be addressed are:

- uniqueness and later accessibility of the resource being created (regardless whether using POST or PUT)

- RESTfulness of the approach

- impacts on the TSs; try to avoid non-backward compatibility issues, especially if not addressable within the CONR period
- minimal impacts on the implementations
The following describes the scenario and effect on the implementation:

1.the client creates a resource using "acr:authorization" in the request URL path (instead of "endUserId", etc), and provides a valid OAuth token previously obtained by passing it in an HTTP header, e.g.:

http://{serverRoot}/{apiVersion}/APIname/acr:authorization/.../ (if POST is used)
http://{serverRoot}/{apiVersion}/APIname/acr:authorization/.../clientCreatedId (if PUT is used)
2. the server obtains the real end user identifier by asking the Authorization Server to resolve the OAuth token into such an identifier.
3. if Authorization Server returns an end user identifier (e.g.pseudonym123), the server replaces the "acr:authorization" with THAT particular identifier in the request URL path provided in the request for the purpose of creating the resource, but does not replace acr:authorization with that identifier in the returned response to the client.
3.a if POST was used for creation, the path returned to the client will look something like: http://{serverRoot}/{apiVersion}/APIname/acr:authorization/.../serverCreatedId
while the real internal resource path used by the server is:
http://{serverRoot}/{apiVersion}/APIname/pseudonym123/.../serverCreatedId

3.b if PUT was used for creation, the path returned to the client will look something like:
http://{serverRoot}/{apiVersion}/APIname/acr:authorization/.../clientCreatedId
while the real internal resource path used by the server is:
http://{serverRoot}/{apiVersion}/APIname/pseudonym123/.../clientCreatedId
4. the path returned to the client will continue to be used by the client in future requests for the created resource, or subordinate resources.

5. at every request, the Server will exchange the OAuth token for the real user identity through an exchange with the Authorization Server (obtaining the SAME end user identifier everytime). It will use the obtained end user identifier to re-create the real request URL path, by replacing "acr:authorization" with that user identifier. It will then return the “virtual” request URL path (with "acr:authorization") to the client.
Note that even if the OAuth token has changed, it MUST resolve to same end user identifier. The end user identifier does NOT change in this scenario. Any changes in the end user identifier from a SP perspective is a much more complex process, may require saving any long-lasting information associated with created resources, and would require creation of new resources (out-of-scope for the API).
5. resources created with POST will expire after a while, even if not explicitly deleted (e.g. SP policy set timeout)

6. resources created with PUT will remain alive until explicitly deleted (unless they have a timeout associated at creation, in which case they will be deleted in accordance).
An analysis of the above results in a number questions/issues (non-exhaustive possibly) that require resolutions:

I. can we support a “mixed usage environment”, e.g. having all 3rd party applications use OAuth, while applications of the SP inside the SP domain do not need to use OAuth, while still allowing “sharing” of resources (e.g. resources created by using PUT (e.g. a Contact in AddressBook).
a. the answer seems to depend on what is provided as an identifier by the application that is NOT using OAuth. If the identifier provided is exactly the same that the SP uses internally, then this is not an issue, since the “real” resource path will be the same (e.g. both “real” paths will end up using “pseudonym123”). However, if the identifier provided was e.g. tel:+19585550100, then if the resource previously created was using PUT and was gated by authorization, then the 2 paths will not match, and depending on the operation attempted this will result either into creation of a new resource or an error status.
i. It may be preferable if SP allows such mixture, to completely separate the resource spaces (except for the case of a perfect match). In other words, unless there is a perfect match between a path created while using Oath (as described) and a path created while not using OAuth, then the behaviour for the non-OAuth using application should be as dictated by the specific request (i.e. succeed to create/access a resource, or fail, on its own merits only).
ii. a much more complex alternative (and could have unwanted effects) would be to try to resolve ANY identifier passed in place of ”acr:authorization” to the true end user identifier used by the SP also for the case of using OAuth. We are advising against such an implementation.

II. many of our specs mandate (all probably SHOULD have mandated that) that if an end user identifier appears both in the resource path and in the body of the request or response, they MUST be identical. That may no longer make sense however, at least in some cases, e.g in cases where inside the body a ‘tel’ URI is passed deliberately so that the receiving party knows where to send a response. And it gets even more complex in the case of RCS/RCE, because no party can really use “acr:authorization” to pass messages to one another. Hence, it seems that when using “acr:authorization” we may have to create an exception in our specs for the description of element in the body of the message, where that element should be a real end user identifier (e.g. ‘tel’ URI, ‘sip’ URI, ‘acr’ URI) – namely the one passed by the client application in the body of the message.
III. based on above, it appears that when using OAuth and “acr:authorization”, the value of using other identifiers (tel, sip or acr) is restricted to the body of the message. If that is the case, the whole point of using “acr:authorization” is kind of lost. One could obviously use “me” instead of “acr:authorization”, as long as “me” would be a reserved keyword. One may argue we could at some point support additional reserved words. Still, same argument applies- one would have to just document all reserved keywords. In fact, one would not even need to reserve ANY keyword.
IV. Related to this, what about such APIs where we do NOT have a fragment in the request URL that currently is meant for an end user identifier (there are example of such resources e.g. in ShortMessaging and Messaging – mainly those that deal with inbound messages. Since in those cases we cannot pass “acr:authorization” in the request URL path, the idea that this may be used to “signal” to the Server that an OAuth token exists in a header cannot be generalized. If it cannot be generalized, may be we should not advocate it at all, for any API? In other words, we could mandate that the Server inspects all headers before processing any request, and if a header includes an OAuth token, then the request needs to be authorized by exchanges with the Authorization Server, before granting the request.

a. Since no end user identifier is needed for the resource creation, this does not affect at all an existing API that does not carry such end user identifier in the request URL path. At the same time, it clarifies the need for “acr:authorization” (or “me”), in that sense that this is not needed to “signal” that OAuth is being used, but rather it is needed to “signal” that the Server needs to ask the Authorization Server for resolving the OAuth token to an SP internal end user identity. That would be an additional step needed only in those APIs where normally such an end user identity is carried in the request URL path, but not needed for those that do not have such fragment in the path.

V. another question is the following: what should be the behaviour when an OAuth protected resource is being accessed by an application providing a valid OAuth token, but providing e.g. a ‘tel’ URI in the end user identifier fragment of the request URL path. Should the Server create the resource using that identifier? Should the Server identify that there is an OAuth token, hence resolve it regardless using the described mechanism, and create a real vs. a virtual path? Should the Server fail the request?

a. Maybe the solution is to MANDATE that IF such a fragment meant to identify an end user id exists in the request URL path, and IF OAuth is used, then that fragment MUST be “acr:authorization” (or “me” should we so decide), and we should reject a request that both carries an OAuth token, and passes a true end user identifier. Otherwise, we invalidate the previous proposal that “acr:authorization” is solely used to indicate resolution of the OAuth token, and we now have to support such conversion in any case, which basically removes the need for “acr:authorization” altogether.

VI. An obvious implication of the use of “acr:authorization” is that it being a reserved keyword, precludes any SP to issue a true ACR named “authorization”.
VII. Does this impact SCRs? Do we need to add some?

VIII. the above implementation ensures that a resource is unique within an end user's identity space. It also ensures that such a resource can be repeatedly accessed with the same path, even across application instances on behalf of the same user. Is it RESTful? Not sure. But it is transparent to the client at least.

This concludes the analysis portion of this contribution.
What needs to be documented and where:

· there is impact on TSs:

· different sections of each API TS will be impacted (see attachment showing potential impact; not exhaustive)

· In addition this will also impact (TBD):

· Either Appendix G of each API TS or

· split between Appendix G of each API TS and Common or

· split between Appendix G of each API TS and Autho4API

· other alternatives?

· Will there be impact on OneAPIProfile? RCS API Profile?
3 Detailed Proposal
See attachment 1 for a (incomplete) blueprint of changes for an API TS.

See attachment 2 for a blueprint of changes to Common TS.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Discuss general approach, and agree whether “acr:authorization” or “me” should or not be supported. If support is agreed, agree to the proposal and/or refine it in a drafting session. Assign AIs as appropriate. The document can be noted.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

