Doc# OMA-ARC-REST-NetAPI-2011-0275-CR_Chat_status_enum_fix.doc[image: image1.jpg]
Change Request

Doc# OMA-ARC-REST-NetAPI-2011-0275-CR_Chat_status_enum_fix.doc
Change Request

Change Request

	Title:
	Even more CONR resolutions for Chat
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST-NetAPI

	Doc to Change:
	OMA-TS-REST_NetAPI_Chat-V1_0-20120405

	Submission Date:
	15 Apr 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Uwe Rauschenbach, Nokia Siemens Networks, uwe.rauschenbach@nsn.com

	Replaces:
	n/a

1 Reason for Change

This CR resolves a number of open CONR comments, see below.
	A0054
	2012.01.09
	T
	5.2.2.1
	Source: NSN

Form: OMA-CONR-2012-006

Comment: Address the following ed. note: “Editors Note: Handling a client leaving a session with multiple clients for the same user needs to be defined. I.e. a client is terminated it needs to be ensured that only this client leaves the session not the others.”

Proposed Change: Check if multi-device support works (subscription to chat notifications, unsubscription from chat notifications, leaving group chat, re-joining group chat). Fix if necessary.

Assumption: in case of multi-device participation of a particular user in 1-1 session-based chat, leaving the chat from any device terminates the session. Check if correct.
	Status: CLOSED

It is assumed that multi-device/multi-instance is handled in the underlying layers, not the API.

(Just remove the note.

	A0077
	2012.01.09
	T
	5.2.2.4

6.7.4.
	Source: NSN

Form: OMA-CONR-2012-006

Comment: Address the following ed. note: “If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate.

Ed. Note: Todo: define an example for such timeout.”

Proposed Change: Add such an example to as a new subsection to section 6.7.4. Convert the first sentence of the ed. note to plain text, remove the remainder of the ed. note. If needed, define a new POL code for the timeout.
	Status: CLOSED
By CR 2012-0145.
Instead of an example, two new enumerations are added (Timeout and Unreachable).

	A0124
	2012.01.09
	T
	6.11.6
	Source: NSN

Form: OMA-CONR-2012-006

Comment: There is the following ed. note: “Ed. Note: It is FFS whether this feature can be realized using the underlying protocol layer. If it cannot, the DELETE method will be removed. It is also FFS whether this can only be done by the originator, or also by a tParticipant.”

It seems that a group session cannot be explicitly terminated using SIP means.

It would therefore need to be realized by using a proprietary i/f between Chat server and API GW (e.g. chat server management i/f). Also, only the Originator would have the right to terminate the session anyway.
Proposed Change: Remove the feature, or make it optional.
	Status: CLOSED
By CR 2012-0145

	A0125
	2012.01.09
	T
	6.11.6
	Source: NSN

Form: OMA-CONR-2012-006

Comment: There is the following ed. note: “it is FFS whether and how the Originator can remove a Participant from the session. If this is not possible, this feature may become optional (i.e. to be implemented by each vendor using proprietary means), or will be removed.”

It seems that this cannot be done using SIP means.

It would therefore need to be realized by using a proprietary i/f between Chat server and API GW (e.g. chat server management i/f).
Proposed Change: Remove the feature, or make it optional.
	Status: CLOSED

By CR 2012-0145

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

Add new enumerations to XSD. CR author to take action.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is requested to agree the CR.
6 Detailed Change Proposal
Change 1: Remove Ed. note 5.2.2.1
For the time being, it is assumed that multi-client is handled by the API GW, not in the API. Therefore, this note can just be deleted, no change required to the API

Change 2: Remove ed. note in 5.2.2.4

Change 3: Define new events for session-based 1-1 calls
Define new events for 1-1 session termination: “Timeout” (maps to SIP 408 Timeout or resource destruction by the API server due to too long inactivity from other side), “Unreachable”
5.2.3.2 Enumeration: EventType

This enumeration is defines the types of events. It is used in notifications.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the chat session during the invite phase (in session-aware 1-1 chat and in group chat).

	SessionEnded
	The session has ended (in session-aware 1-1 chat and in group chat).

	Declined
	The Participant has declined the chat session invite (only in session-aware 1-1 chat).

	Accepted
	The Participant has accepted the chat invite (only in session-aware 1-1 chat).

	Timeout
	The session invitation to the Participant has timed out (only in session-aware 1-1 chat).

	Unreachable
	The Participant could not be reached or is unknown (only in session-aware 1-1 chat).

Change 4: Remove editor’s note in group chat flow
as the referred feature is not available in the latest RCS-e Spec (1.2.1)
5.3.6 Normal flow of a group chat

The figure below shows a scenario for a normal group chat.

The resources:

· To start a group chat session create a new resource under
http://{serverRoot}/chat/{apiVersion}/{userId}/group
with the GroupChatSessionInformation data structure.
· To accept a group chat session invitation update the Participant status resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status
· To send a group chat message create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages

· To invite additional Participants to the existing group chat session update the resource
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants

· To leave a group chat session delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}

· To re-join a group chat session POST the ParticipantInformation to http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants

(graphics not displayed in the CR)

Figure 4 Normal flow of group chat

Outline of the flow:

1. The originating application starts a group chat session using the POST method to submit to the resource containing all group chat sessions the GroupChatSessionInformation data structure with the list of invited Participants. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.

2. The terminating application receives a group chat SessionInvitationNotification as a notification.

3. The terminating application accepts the group chat invitation using the PUT method to submit the ParticipantSessionStatus data structure to the resource containing the Participant status. The status MUST be set to “Connected”.
4. The originating application receives a ParticipantStatusNotification data structure with status information of the Participant(s).

5. The originating application adds another Participant to the group chat session using the POST method to update the ParticipantInformation data structure under the resource that contains all Participants. Thereby the originating API server triggers a new SessionInvitationNotification to the newly added Participant.

6. The application of the new terminating Participant receives a group chat SessionInvitationNotification.

7. The terminating application accepts the group chat invitation using the PUT method to submit the ParticipantSessionStatus data structure to the resource containing the Participant status. The status MUST be set to “Connected”.
8. All applications connected to the group chat receive a ParticipantStatusNotification data structures with status information of the Participant.

9. The application sends a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.

10. All applications connected to the chat session receive the chat message as a notification.

11. An application leaves a group chat session using the DELETE method on the “participants” resource including the participantId. The Participant is thereby deleted from the Participants list while the session still exists (as this is a group chat session.)
12. A ParticipantStatusNotification is created by the API server to inform all other Participants that a user has left.

13. An application re-joins a group chat session using the POST method to submit the ParticipantInformation data structure to the resource containing the Participants. The status MUST be set to “Connected”. The application receives a resource URL containing a new participantId.

14. A ParticipantStatusNotification is created by the API server to inform all Participants that a user has joined.

15. The Originator’s application leaves a group chat session using the DELETE method on the “participants” resource including the participantId. The Originator is thereby deleted from the Participants list while the session may stay alive for remaining Participants or may end (depending on service provider policies, see step 17.)

16. A ParticipantStatusNotification is created by the API server to inform all other Participants that a user has left.

17. Depending on service provider policies the session may end when the Originator has left the chat, which triggers a ChatEventNotification (SessionEnded) to inform the remaining Participants that the group chat session has ended.

At minimum, a group chat session consists of the steps 1, 2, 3, 4, 9, 10 and 17.

Note that a group chat session terminates according to service provider policies when all Participants have left, or when the Originator has left, or after a specific period of time (e.g. pre-defined maximum session duration, inactivity, etc.).

Change 5: Remove ed. note on DELETE operation and clarify availability
6.10.6 DELETE

This operation
is used to terminate the group chat session by the Originator.

Change 6: Make DELETE operation on group chats optional
B.1.11 SCR for REST.CHAT.Group.IndSession Server
	REST-CHAT- GROUP-INDSESS-S-001-O
	Support for individual group chat sessions
	6.10

	

	REST-CHAT- GROUP-INDSESS-S-002-O
	Retrieve group chat session information – GET
	6.10.3
	REST-CHAT- GROUP-INDSESS-S-001-O

	REST-CHAT- GROUP-INDSESS-S-003-O
	Terminate group chat session – DELETE
	6.10.6
	REST-CHAT- GROUP-INDSESS-S-001-O

Change 7: Remove ed. note on DELETE operation on participant and clarify availability
6.1.1 DELETE

This operation ends the participation of a Participant in the group chat session, i.e. disconnects the Participant from the session.

It is used in the following contexts:

· by the Originator to remove a Participant from the chat session (OPTIONAL, and subject to service provider policies)
· by the Terminating Participant to decline an invitation to a chat session

· by any Participant to leave the chat session.

Note that a Participant who has left the session can re-join (if allowed by policies) using the mechanism defined in section 6.11.5.

Also note that if the Originator leaves, this may lead to the session being torn down by the server, depending on service provider policies.

As a result of performing the DELETE operation, the server SHALL remove the {participantId} node of the removed Participant from the resource tree, but SHALL keep the “sessionId” node and its “participants” sub-node available for a certain period of time that is controlled by policies. As it is not guaranteed that the server will receive information regarding the further session progress after leaving the session, GET access to these resources on behalf of a disconnected Participant SHALL return ‘204 No Content’.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

