Doc# OMA-ARC-REST-NetAPI-2013-0041R01-INP_CapDis-analysis_of_new_requirements.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-REST-NetAPI-2013-0041R01-INP_CapDis-analysis_of_new_requirements.doc
Input Contribution

Input Contribution

	Title:
	Analysis of new requirements for Capability Discovery API
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-ARC

	Submission Date:
	06 May 2013

	Source:
	Vitomir Ilic, Ericsson
+46107152698
Vitomir.ilic@ericsson.com

	Attachments:
	OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_multiple_contacts2.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_bundled1.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_bundled2.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

The purpose of this contribution is to present an analysis of new requirements for RESTful Network API for Capability Discovery, and see whether the requirements can be implemented with CRs to the existing Capability Discovery V1.0 Candidate version or a new WID would be required.
R01: Added Notification Channel info for data type “ContactsList” in the attachment OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_multiple_contacts2.doc
2 Summary of Contribution

The analysis is based on the following requirements/comments for Capability Discovery:
· RCS API Detailed Requirements, Version 2.3.1, Section 4.4,
· OMA-ARC-REST-NetAPI-2012-0266-INP_Some_comments_on_RCSe_NetAPI_specs
3 Detailed Proposal

RCS API Detailed Requirements, Version 2.3.1, Section 4.4

An application should be able to retrieve capabilities for a list of contacts, and/or check whether the contacts indicated in the list are RCS users or not.

The requirements do not specify in which format “list of contacts” is provided during the request. Generally there are 2 possibilities:
1. “List of contacts” is stored on the server (e.g. created by Address Book), and a client provides only identity of the list in the query request,

2. Identity of each contact is included in the body of the query request

Possible solutions:

1. List of contacts stored on the server

The solution is quite simple and the existing resource and method (GET) for querying contact capabilities can be used also for querying capabilities for a list of contacts. The following updates are foreseen:

· The description of URL “contactId” variable should be updated to indicate that “contactId” can point to a single contact or a group of contacts (list of contacts),

· The response to the query can be received either synchronously or asynchronously; in both cases new data types shall be created to include capabilities for multiple contacts,

· The client application needs also to create notification channel and subscribe for notifications to be able to receive capabilities asynchronously.

2. List of contacts provided in the body of request

The solution would require a new resource and new method (POST) to be used to retrieve service capabilities for a list of contacts. The following updates are foreseen:

· A new resource for querying contacts capabilities,

· The response to the query can be received either synchronously or asynchronously; in both cases new data types shall be created to include capabilities for multiple contacts,
· The client application needs also to create notification channel and subscribe for notifications to be able to receive capabilities asynchronously,
· With this solution it is not possible to use a query string to query only if contacts are RCS capable or not. It needs to be indicated in the body of the request.
Both solutions are backward compatible however the solution 2 is more flexible and therefore it is preferred solution.
Attached file OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_multiple_contacts gives an overview of changes that will be required for resource definition and data types for solution 2.

OMA-ARC-REST-NetAPI-2012-0266-INP_Some_comments_on_RCSe_NetAPI_specs
The comments/suggestions are based on feedback from developers (and vendors) which are described in the above contribution from Solaiemes. The comments/suggestions are:

1. The existing APIs are cumbersome and require too many steps in terms of subscriptions and notification channel handling. Any real application must subscribe to several notification channels. It should be possible to subscribe to a “bundled” notification channel,
2. Capability query and semantics need to be clarified. API gateway will keep capabilities updated as per operator policy. Returned capabilities would be per network best knowledge, indicating if they are “stale”. API gateway will send notification when capabilities are updated. Add explicit call to refresh capabilities for a given contact.
Possible solutions:

1. “Bundled” Notification Channel

Current OMA Network APIs which are included in RCS profiles are mostly independent APIs which means that in order to use a particular RCS service the RCS user needs: to register service capability, create Notification Channel to receive notifications, and subscribe to service enabler for notifications. In many of these operations the client application has not too much influence, most of the parameters the network can figure out itself.
What Solaiemes suggests is in line with the initial RCS requirements and there was also similar discussion in OMA but due to a shortage of time a solution was postponed for later releases.

The “bundled” API solution can be achieved either:
a. by updating an existing API and add necessary information so the network can perform itself the tasks which are usually initiated by the client application, or
b. by creating a new API that will include all necessary operations for registering service capability, creation of notification channel, and subscription to service enabler for notifications.

Assuming that Notification Channel is really needed only if there is at least one enabled service capability, Capability Discovery API would be the best candidate to implement option a) since this API is used to control service capability status (enabled or disabled). This involves some duplication of Notification Channel functionality.

Updating Notification Channel API to include registration of service capabilities dos not solve the problem since there will be still changes required for Capability Discovery API.

Options b) would require a lot of duplication of functionalities from other APIs and therefore it is not preferred solution.

For discussions, attached are 2 alternative solutions for option a). For both solutions the existing resources will be used however the difference is in data types that will be used. The attached files describe only changes in resource tables and data types.
Alternative 1 (see attached file OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_bundled) is based on re-using the existing data structures which need to be updated to include additional information for Notification Channel creation. In addition 2 new data types need to be created and change the name of one enumeration. The proposed solution is not backward compatible since introduces a new mandatory parameter and changes the existing element and data type name.

Alternative 2 (see attached file OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20130321-D_bundled2) is proposing entirely new data types that shall be used in case the server is responsible for creation of Notification Channel and subscriptions to notifications. The proposed solution is backward compatible.
Aternative 2 provides backward compatible solution and therefore it is considered as preferable solution.

2. Capability query clarification
The requirement is basically to have two type of queries for contact capabilities: an ordinary query where the network returns capabilities at its best knowledge indicating whether the capabilities are “stale” or not, and another type of query where the application specifically requests the network to update/refresh contact capabilities before the capabilities are returned to the application. Refreshing of the capabilities is done by interrogating a contact and is subject to operator policy (e.g. whether it will be allowed to all applications or some of them only).

This requirement was discussed also in the GSMA RCS API group however it didn’t result in any specific requirement for RCS API V2.3.1, except a note in the comment section for UNI-CPD-003 which reads: “The refreshing of the capabilities exposed by the gateway is subject to operator policy, for example, to avoid abuse or impact in network load.

It is not clear why 2 types of query are required and which application will be using “ordinary” query operation if both types of queries are available; who needs stale capabilities?
Current Capability API solutions allows an application to check if a contact has a specific service capability and, if necessary, such operation can be used to trigger interrogation of the contact
It is proposed not to take any action to this comment.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommendation to ARC group is to discuss the above proposals and decide whether the requirements can be implemented with CRs or a new WID would be required.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20130101-I]

