OMA-TS-REST_NetAPI_Chat-V1_0-20151201-C
Page 28 V(182)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for Chat

	Candidate Version 1.0 – 01 Dec 2015

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Chat-V1_0-20151201-C

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

121.
Scope

2.
References
13
2.1
Normative References
13
2.2
Informative References
13
3.
Terminology and Conventions
15
3.1
Conventions
15
3.2
Definitions
15
3.3
Abbreviations
16
4.
Introduction
17
4.1
Version 1.0
17
5.
Chat API definition
18
5.1
Resources Summary
18
Media attachments
20
5.2
Data Types
29
5.2.1
XML Namespaces
29
5.2.2
Structures
29
5.2.2.1
Type: ChatSubscriptionList
29
5.2.2.2
Type: ChatNotificationSubscription
29
5.2.2.3
Type: ChatEventNotification
31
5.2.2.4
Type: ChatSessionInvitationNotification
32
5.2.2.5
Type: GroupChatSessionInvitationNotification
33
5.2.2.6
Type: ChatMessageNotification
34
5.2.2.7
Type: ChatParticipantStatusNotification
34
5.2.2.8
Type: ParticipantStatusEntry
35
5.2.2.9
Type: ChatMessageStatusNotification
36
5.2.2.10
Type: ChatMessage
36
5.2.2.11
Type: MessageStatusReport
37
5.2.2.12
Type: ParticipantSessionStatus
37
5.2.2.13
Type: ChatSessionInformation
37
5.2.2.14
Type: GroupChatSessionInformationList
39
5.2.2.15
Type: GroupChatSessionInformation
39
5.2.2.16
Type: ParticipantList
40
5.2.2.17
Type: ParticipantInformation
41
5.2.2.18
Type: IsComposing
42
5.2.2.19
Type: ChatSubscriptionCancellationNotification
42
5.2.2.20
Type: OutgoingMultimediaChatMessage
43
5.2.2.21
Type: IncomingMultimediaChatMessage
44
5.2.2.22
Type: MultimediaChatMessageNotification
45
5.2.2.23
Type: AttachmentInfo
46
5.2.2.24
Type: ExtensionParameters
46
5.2.2.25
Type: ThumbnailInfo
47
5.2.3
Enumerations
47
5.2.3.1
Enumeration: ParticipantStatus
47
5.2.3.2
Enumeration: EventType
48
5.2.3.3
Enumeration: MessageStatus
48
5.2.4
Values of the Link “rel” attribute
49
5.3
Sequence Diagrams
49
5.3.1
Subscription to chat notifications
49
5.3.2
Normal flow of an Ad-hoc 1-1 Chat
50
5.3.3
Normal flow of a Confirmed 1-1 Chat
52
5.3.4
Declining an invitation to a Confirmed 1-1 Chat
55
5.3.5
Cancelling an invitation to a Confirmed 1-1 Chat
55
5.3.6
Normal flow of a group chat
57
5.3.7
Declining a group chat session invitation
60
5.3.8
Cancelling a group chat session
60
6.
Detailed specification of the resources
62
6.1
Resource: All subscriptions to chat event notifications
62
6.1.1
Request URL variables
63
6.1.2
Response Codes and Error Handling
63
6.1.3
GET
63
6.1.3.1
Example: Reading all active chat notification subscriptions (Informative)
63
6.1.3.1.1
Request
63
6.1.3.1.2
Response
63
6.1.4
PUT
64
6.1.5
POST
64
6.1.5.1
Example 1: Creating a new subscription to chat notifications, response with copy of created resource (Informative)
64
6.1.5.1.1
Request
64
6.1.5.1.2
Response
64
6.1.5.2
Example 2: Creating a new subscription to chat notifications, response with location of created resource (Informative)

65
6.1.5.2.1
Request
65
6.1.5.2.2
Response
65
6.1.5.3
Example 3: Creating a new subscription to chat notifications, requiring support of Confirmed 1-1 Chats which the server does not provide (Informative)
65
6.1.5.3.1
Request
65
6.1.5.3.2
Response
66
6.1.6
DELETE
66
6.2
Resource: Individual subscription to chat event notifications
66
6.2.1
Request URL variables
66
6.2.2
Response Codes and Error Handling
66
6.2.3
GET
67
6.2.3.1
Example: Reading an individual subscription (Informative)
67
6.2.3.1.1
Request
67
6.2.3.1.2
Response
67
6.2.4
PUT
67
6.2.5
POST
67
6.2.6
DELETE
67
6.2.6.1
Example: Cancelling a subscription (Informative)
67
6.2.6.1.1
Request
67
6.2.6.1.2
Response
68
6.3
Resource: All 1-1 chat sessions between two users
68
6.3.1
Request URL variables
68
6.3.2
Response Codes and Error Handling
68
6.3.3
GET
68
6.3.4
PUT
68
6.3.5
POST
68
6.3.5.1
Example 1: Creating a 1-1 chat session (Informative)
69
6.3.5.1.1
Request
69
6.3.5.1.2
Response
69
6.3.5.2
Example2: Creating a 1-1 chat session with initial message (Informative)
69
6.3.5.2.1
Request
69
6.3.5.2.2
Response
70
6.3.6
DELETE
70
6.4
Resource: Individual 1-1 chat session
70
6.4.1
Request URL variables
71
6.4.2
Response Codes and Error Handling
71
6.4.3
GET
71
6.4.3.1
Example 1: Retrieving chat session information of a 1-1 session (Informative)
72
6.4.3.1.1
Request
72
6.4.3.1.2
Response
72
6.4.3.2
Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session (Informative)
72
6.4.3.2.1
Request
72
6.4.3.2.2
Response
72
6.4.4
PUT
73
6.4.5
POST
73
6.4.6
DELETE
73
6.4.6.1
Example: Terminating a 1-1 chat session, or declining an invitation (Informative)
73
6.4.6.1.1
Request
73
6.4.6.1.2
Response
73
6.5
Resource: 1-1 chat session status
74
6.5.1
Request URL variables
74
6.5.2
Response Codes and Error Handling
74
6.5.3
GET
74
6.5.4
PUT
74
6.5.4.1
Example 1: Accepting a 1-1 chat invitation (Informative)
75
6.5.4.1.1
Request
75
6.5.4.1.2
Response
75
6.5.5
POST
75
6.5.6
DELETE
75
6.6
Resource: Extend 1-1 chat to a group chat session
75
6.6.1
Request URL variables
76
6.6.2
Response Codes and Error Handling
76
6.6.3
GET
76
6.6.4
PUT
76
6.6.5
POST
76
6.6.5.1
Example: Extending a Confirmed 1-1 Chat to a group chat session (Informative)
77
6.6.5.1.1
Request
77
6.6.5.1.2
Response
77
6.6.6
DELETE
77
6.7
Resource: Chat messages in a 1-1 chat
78
6.7.1
Request URL variables
78
6.7.2
Response Codes and Error Handling
78
6.7.3
GET
78
6.7.4
PUT
78
6.7.5
POST
78
6.7.5.1
Example 1: Creating a chat message, using tel URI and returning the location of the created resource (Informative)
79
6.7.5.1.1
Request
79
6.7.5.1.2
Response
79
6.7.5.2
Example 2: Creating a chat message, using ACR and returning a copy of the created resource (Informative)
79
6.7.5.2.1
Request
79
6.7.5.2.2
Response
80
6.7.5.3
Example 3: Creating an “isComposing” message and returning the location of the created resource (Informative)
80
6.7.5.3.1
Request
80
6.7.5.3.2
Response
80
6.7.5.4
Example 4: Creating a chat message during session set-up in Confirmed 1-1 Chat mode (Informative)
81
6.7.5.4.1
Request
81
6.7.5.4.2
Response
81
6.7.5.5
Example 5: Creating a multimedia chat message, using tel URI and returning the location of the created resource (Informative)
81
6.7.5.5.1
Request
81
6.7.5.5.2
Response
82
6.7.6
DELETE
82
6.8
Resource: Individual message status in a 1-1 chat
83
6.8.1
Request URL variables
83
6.8.2
Response Codes and Error Handling
83
6.8.3
GET
83
6.8.3.1
Example: Reading the status of an individual message (Informative)
83
6.8.3.1.1
Request
83
6.8.3.1.2
Response
84
6.8.4
PUT
84
6.8.4.1
Example: Reporting the status of a chat message (Informative)
84
6.8.4.1.1
Request
84
6.8.4.1.2
Response
84
6.8.5
POST
84
6.8.6
DELETE
84
6.9
Resource: All group chat sessions
85
6.9.1
Request URL variables
85
6.9.2
Response Codes and Error Handling
85
6.9.3
GET
85
6.9.3.1
Example: Get the list of active group chat session (Informative)
85
6.9.3.1.1
Request
85
6.9.3.1.2
Response
85
6.9.4
PUT
86
6.9.5
POST
86
6.9.5.1
Example: Creating a new group chat session (Informative)
86
6.9.5.1.1
Request
86
6.9.5.1.2
Response
87
6.9.6
DELETE
87
6.10
Resource: Individual group chat session
88
6.10.1
Request URL variables
88
6.10.2
Response Codes and Error Handling
88
6.10.3
GET
88
6.10.3.1
Example 1: Retrieving group chat session information (Informative)
88
6.10.3.1.1
Request
88
6.10.3.1.2
Response
89
6.10.3.2
Example 2: Retrieving group chat session information when being disconnected (Informative)
89
6.10.3.2.1
Request
89
6.10.3.2.2
Response
89
6.10.4
PUT
90
6.10.5
POST
90
6.10.6
DELETE
90
6.10.6.1
Example: Cancelling or terminating a group chat session (Informative)
90
6.10.6.1.1
Request
90
6.10.6.1.2
Response
90
6.11
Resource: All Participants in a group chat session
91
6.11.1
Request URL variables
91
6.11.2
Response Codes and Error Handling
91
6.11.3
GET
91
6.11.3.1
Example 1: Retrieving the list of Participants in a group chat session (Informative)
91
6.11.3.1.1
Request
91
6.11.3.1.2
Response
92
6.11.3.2
Example 2: Retrieving the list of Participants in a group chat session when being disconnected (Informative)
92
6.11.3.2.1
Request
92
6.11.3.2.2
Response
92
6.11.3.3
Example 3: Retrieving the list of Participants in a group chat session when not having access rights (Informative)
93
6.11.3.3.1
Request
93
6.11.3.3.2
Response
93
6.11.4
PUT
93
6.11.5
POST
93
6.11.5.1
Example 1: Adding one Participant to a group chat, or re-joining a group chat (Informative)
94
6.11.5.1.1
Request
94
6.11.5.1.2
Response
94
6.11.5.2
Example 2: Adding multiple Participants to a group chat (Informative)
94
6.11.5.2.1
Request
94
6.11.5.2.2
Response
95
6.11.5.3
Example 3: Error situation when trying to re-join a group chat session (Informative)
96
6.11.5.3.1
Request
96
6.11.5.3.2
Response
96
6.11.6
DELETE
96
6.12
Resource: Individual Participant in a group chat session
96
6.12.1
Request URL variables
97
6.12.2
Response Codes and Error Handling
97
6.12.3
GET
97
6.12.3.1
Example: Retrieving information about an individual group chat Participant (Informative)
98
6.12.3.1.1
Request
98
6.12.3.1.2
Response
98
6.12.4
PUT
98
6.12.5
POST
98
6.12.6
DELETE
98
6.12.6.1
Example: Leaving a group chat session (Informative)
99
6.12.6.1.1
Request
99
6.12.6.1.2
Response
99
6.13
Resource: Individual group chat session Participant status
99
6.13.1
Request URL variables
99
6.13.2
Response Codes and Error Handling
99
6.13.3
GET
100
6.13.4
PUT
100
6.13.4.1
Example 1: Accepting a group chat invitation (Informative)
101
6.13.4.1.1
Request
101
6.13.4.1.2
Response
101
6.13.5
POST
101
6.13.6
DELETE
101
6.14
Resource: Chat messages in a group chat session
101
6.14.1
Request URL variables
102
6.14.2
Response Codes and Error Handling
102
6.14.3
GET
102
6.14.4
PUT
102
6.14.5
POST
102
6.14.5.1
Example 1: Creating a group chat message, using tel URI and returning the location of the created resource (Informative)
103
6.14.5.1.1
Request
103
6.14.5.1.2
Response
103
6.14.5.2
Example 2: Creating a multimedia group chat message, using tel URI and returning the location of the created resource (Informative)
104
6.14.5.2.1
Request
104
6.14.5.2.2
Response
105
6.14.6
DELETE
105
6.15
Resource: Individual message status at a designated participant of a group chat
106
6.15.1
Request URL variables
106
6.15.2
Response Codes and Error Handling
106
6.15.3
GET
106
6.15.3.1
Example: Reading the status of an individual message at the designated participant of a group chat (Informative)
107
6.15.3.1.1
Request
107
6.15.3.1.2
Response
107
6.15.4
PUT
107
6.15.4.1
Example: Reporting the status of a chat message for a designated participant in a group chat (Informative)
107
6.15.4.1.1
Request
107
6.15.4.1.2
Response
107
6.15.5
POST
108
6.15.6
DELETE
108
6.16
Resource: Client notification containing incoming message
108
6.16.1
Request URL variables
109
6.16.2
Response Codes and Error Handling
109
6.16.3
GET
109
6.16.4
PUT
109
6.16.5
POST
109
6.16.5.1
Example: Notify a client about incoming messages (Informative)
110
6.16.5.1.1
Request
110
6.16.5.1.2
Response
110
6.16.6
DELETE
110
6.17
Resource: Client notification about message status
111
6.17.1
Request URL variables
112
6.17.2
Response Codes and Error Handling
112
6.17.3
GET
112
6.17.4
PUT
112
6.17.5
POST
112
6.17.5.1
Example: Notify a client about 1-1 message status (Informative)
112
6.17.5.1.1
Request
112
6.17.5.1.2
Response
112
6.17.5.2
Example: Notify a client about group message status (Informative)
113
6.17.5.2.1
Request
113
6.17.5.2.2
Response
113
6.17.6
DELETE
113
6.18
Resource: Client notification about 1-1 chat session invitations
114
6.18.1
Request URL variables
114
6.18.2
Response Codes and Error Handling
114
6.18.3
GET
114
6.18.4
PUT
114
6.18.5
POST
115
6.18.5.1
Example: Notify a client about 1-1 chat session invitations (Informative)
115
6.18.5.1.1
Request
115
6.18.5.1.2
Response
115
6.18.6
DELETE
115
6.19
Resource: Client notification about group chat session invitations
116
6.19.1
Request URL variables
116
6.19.2
Response Codes and Error Handling
116
6.19.3
GET
116
6.19.4
PUT
116
6.19.5
POST
117
6.19.5.1
Example: Notify a client about group chat session invitations (Informative)
117
6.19.5.1.1
Request
117
6.19.5.1.2
Response
117
6.19.6
DELETE
118
6.20
Resource: Client notification about chat session events
118
6.20.1
Request URL variables
119
6.20.2
Response Codes and Error Handling
119
6.20.3
GET
119
6.20.4
PUT
119
6.20.5
POST
119
6.20.5.1
Example: Notify a client about chat session events (Informative)
119
6.20.5.1.1
Request
119
6.20.5.1.2
Response
119
6.20.6
DELETE
119
6.21
Resource: Client notification about changes of Participant status
120
6.21.1
Request URL variables
120
6.21.2
Response Codes and Error Handling
120
6.21.3
GET
120
6.21.4
PUT
120
6.21.5
POST
120
6.21.5.1
Example: Notify a client about Participant status changes (Informative)
121
6.21.5.1.1
Request
121
6.21.5.1.2
Response
121
6.21.6
DELETE
121
6.22
Resource: Client notification about subscription cancellation
122
6.22.1
Request URL variables
122
6.22.2
Response Codes and Error Handling
122
6.22.3
GET
122
6.22.4
PUT
122
6.22.5
POST
122
6.22.5.1
Example: Notify a client about subscription cancellation (Informative)
123
6.22.5.1.1
Request
123
6.22.5.1.2
Response
124
6.22.6
DELETE
124
6.23
Resource: Client notification about incoming multimedia message
124
6.23.1
Request URL variables
125
6.23.2
Response Codes and Error Handling
125
6.23.3
GET
125
6.23.4
PUT
125
6.23.5
POST
125
6.23.5.1
Example: Notify a client about incoming messages (Informative)
126
6.23.5.1.1
Request
126
6.23.5.1.2
Response
126
6.23.6
DELETE
126
7.
Fault definitions
127
7.1
Service Exceptions
127
7.2
Policy Exceptions
127
7.2.1
POL1012: Messages during session setup not supported
127
7.2.2
POL1013: Confirmed 1-1 chats not supported
127
7.2.3
POL1014: Ad-hoc 1-1 chats not supported
127
7.2.4
POL1017: Too many participants
128
7.2.5
POL1018: Group chat termination not supported
128
7.2.6
POL1029: Forbidden to join a closed group chat
128
Appendix A.
Change History (Informative)
129
A.1
Approved Version History
129
A.2
Draft/Candidate Version 1.0 History
129
Appendix B.
Static Conformance Requirements (Normative)
135
B.1
SCR for REST.Chat Server
135
B.1.1
SCR for REST.CHAT.Subscriptions Server
135
B.1.2
SCR for REST.CHAT.IndSubscription Server
135
B.1.3
SCR for REST.CHAT.OneToOne.Sessions Server
135
B.1.4
SCR for REST.CHAT.OneToOne.IndSession.Confirmed Server
136
B.1.5
SCR for REST.CHAT.OneToOne.IndSession.Adhoc Server
136
B.1.6
SCR for REST.CHAT.OneToOne.IndSession.Status Server
136
B.1.7
SCR for REST.CHAT.OneToOne.IndSession.Extend Server
136
B.1.8
SCR for REST.CHAT.OneToOne.Messages Server
137
B.1.9
SCR for REST.CHAT.OneToOne.IndMessage.Status Server
137
B.1.10
SCR for REST.CHAT.Group.Sessions Server
137
B.1.11
SCR for REST.CHAT.Group.IndSession Server
137
B.1.12
SCR for REST.CHAT.Group.IndSession.Participants Server
138
B.1.13
SCR for REST.CHAT.Group.IndSession.IndParticipant Server
138
B.1.14
SCR for REST.CHAT.Group.IndSession.IndParticipant. Status Server
138
B.1.15
SCR for REST.CHAT.Group.Messages Server
138
B.1.16
SCR for REST.CHAT.Group.IndMessage.Status Server
139
B.1.17
SCR for REST.CHAT.Notifications.Message Server
139
B.1.18
SCR for REST.CHAT.Notifications.Message.Status Server
139
B.1.19
SCR for REST.CHAT.Notifications.OneToOne.Invite Server
139
B.1.20
SCR for REST.CHAT.Notifications.Group.Invite Server
139
B.1.21
SCR for REST.CHAT.Notifications.Events Server
140
B.1.22
SCR for REST.CHAT.Notifications.Group.Participants Server
140
B.1.23
SCR for REST.CHAT.Notifications.SubscriptionCancellation Server
140
B.1.24
SCR for REST.CHAT.Notifications.MultimediaMessage Server
140
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
141
Appendix D.
JSON examples (Informative)
142
D.1
Reading all active chat notification subscriptions (section 6.1.3.1)
142
D.2
Creating a new subscription to chat notifications, response with copy of created resource (section 6.1.5.1)
143
D.3
Creating a new subscription to chat notifications, response with location of created resource (section 6.1.5.2)
144
D.4
Creating a new subscription to chat notifications, requiring support of Confirmed 1-1 Chats which the server does not provide (section 6.1.5.3)
145
D.5
Reading an individual subscription (section 6.2.3.1)
146
D.6
Cancelling a subscription (section 6.2.6.1)
146
D.7
Creating a 1-1 chat session (section 6.3.5.1)
147
D.8
Creating a 1-1 chat session with initial message (section 6.3.5.2)
148
D.9
Retrieving chat session information of a 1-1 session (section 6.4.3.1)
148
D.10
Retrieving chat session information of a 1-1 session that was previously extended to a group chat session (section 6.4.3.2)
149
D.11
Terminating a 1-1 chat session, or declining an invitation (section 6.4.6.1)
149
D.12
Accepting a 1-1 chat invitation (section 6.5.4.1)
150
D.13
Extending a Confirmed 1-1 Chat to a group chat session (section 6.6.5.1)
150
D.14
Creating a chat message, using tel URI and returning the location of the created resource (section 6.7.5.1)
151
D.15
Creating a chat message, using ACR and returning a copy of the created resource (section 6.7.5.2)
152
D.16
Creating an “isComposing” message (section 6.7.5.3)
153
D.17
Creating a chat message during session set-up in Confirmed 1-1 Chat mode (see section 6.7.5.4)
154
D.18
Creating a multimedia chat message, using tel URI and returning the location of the created resource (see section 6.7.5.5)
155
D.19
Example: Reading the status of an individual message (section 6.8.3.1)
156
D.20
Reporting the status of a chat message (section 6.8.4.1)
157
D.21
Creating a new group chat session (section 6.9.5.1)
157
D.22
Retrieving the list of active group chat session (section 6.10.3.1)
159
D.23
Retrieving group chat session information (section 6.10.3.1)
160
D.24
Retrieving group chat session information when being disconnected (section 6.10.3.2)
160
D.25
Cancelling or terminating a group chat session (section 6.10.6.1)
161
D.26
Retrieving the list of Participants in a group chat session (section 6.11.3.1)
161
D.27
Retrieving the list of Participants in a group chat session when being disconnected (section 6.11.3.2)
162
D.28
Retrieving the list of Participants in a group chat session when not having access rights (section 6.11.3.3)
162
D.29
Adding one Participant to a group chat, or re-joining a group chat (section 6.11.5.1)
163
D.30
Adding multiple Participants to a group chat (section 6.11.5.2)
163
D.31
Error situation when trying to re-join a group chat session (section 6.11.5.3)
165
D.32
Retrieving information about an individual group chat Participant (section 6.12.3.1)
165
D.33
Leaving a group chat session (section 6.12.6.1)
166
D.34
Accepting a group chat invitation (section 6.13.4.1)
166
D.35
Creating a group chat message, using tel URI and returning the location of the created resource (section 6.14.5.1)
167
D.36
Creating a multimedia group chat message, using tel URI and returning the location of the created resource (see section 6.14.5.2)
167
D.37
Reading the status of an individual message at the designated participant of a group chat (see section 6.15.3.1)
168
D.38
Reporting the status of a chat message for a designated participant in a group chat (see section 6.15.4.1)
169
D.39
Notify a client about incoming messages (section 6.16.5.1)
169
D.40
Notify a client about 1-1 message status (section 6.17.5.1)
170
D.41
Notify a client about 1-1 chat session invitations (section 6.18.5.1)
170
D.42
Notify a client about group message status (see section 6.19.5.1)
171
D.43
Notify a client about group chat session invitations (section 6.19.5.1)
172
D.44
Notify a client about chat session events (section 6.20.5.1)
173
D.45
Notify a client about Participant status changes (section 6.21.5.1)
173
D.46
Notify a client about Participant status changes (section 6.22.5.1)
174
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
175
Appendix F.
Light-weight Resources (Informative)
176
Appendix G.
Authorization aspects (Normative)
177
G.1
Use with OMA Authorization Framework for Network APIs
177
G.1.1
Scope values
177
G.1.1.1
Definitions
177
G.1.1.2
Downscoping
177
G.1.1.3
Mapping with resources and methods
178
G.1.2
Use of ‘acr:auth’
181

Figures

19Figure 1 Resource structure defined by this specification

50Figure 2 Subscribe to and unsubscribe from chat notifications

51Figure 3 Normal flow of an Ad-hoc 1-1 Chat

53Figure 4 Normal flow of a Confirmed 1-1 Chat

55Figure 5 Declining an invitation to a Confirmed 1-1 Chat

56Figure 6 Cancelling an invitation to a Confirmed 1-1 Chat

59Figure 7 Normal flow of group chat

60Figure 8 Declining a group chat invitation

61Figure 9 Cancelling a group chat

Tables

177Table 1: Scope values for RESTful Chat API

178Table 2: Required scope values for: Subscriptions

179Table 3: Required scope values for: 1-1 chats

179Table 4: Required scope values for: Group chats

180Table 5: Required scope values for: Notifications

1. Scope

This specification defines a RESTful API for Chat using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[RC_API_RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[RCC_API_RD]
	GSMA RCC.13 RCS API Detailed Requirements ??? Need to update once the document is availble

	[REST_NetAPI_ACR]
	“RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_Chat]
	“XML schema for the RESTful Network API for Chat”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_chat-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC2392]
	“Content-ID and Message-ID Uniform Resource Locators”, E. Levinson, August 1998, URL: http://www.ietf.org/rfc/rfc2392.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002, URL: http://www.ietf.org/rfc/rfc3261.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4975]
	“The Message Session Relay Protocol (MSRP)”, B. Campbell et. al, September 2007, URL: http://www.ietf.org/rfc/rfc4975.txt

	[RFC5438]
	“Instant Message Disposition Notification (IMDN)”, E. Burger and H. Khartabil, September 2007, URL: http://www.ietf.org/rfc/rfc5438.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

	[XMLSchema1]
	W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures Second Edition, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	[XMLSchema2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC3994]
	“Indication of Message Composition for Instant Messaging”, H. Schulzrinne, January 2005, URL: http://www.ietf.org/rfc/rfc3994.txt

	[RFC4575]
	“A Session Initiation Protocol (SIP) Event Package for Conference State”, J. Rosenberg et. al, August 2006, URL: http://www.ietf.org/rfc/rfc3994.txt

	[SIMPLE_IM]
	“Instant Messaging using SIMPLE ”, Open Mobile Alliance™, OMA-TS-SIMPLE_IM-V1_0, URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions
	Ad-hoc 1-1 Chat
	A one-to-one chat that allows exchanging messages and reporting message status without the need and ability to manage chat sessions.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Confirmed 1-1 Chat
	A one-to-one chat that requires opening and confirming a session before it allows exchanging messages and reporting message status. Confirmed 1-1 Chats also allow terminating the session.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a chat session.

	Participant
	A party that participates in a chat session, including the Originator.

	Receiver
	The party that receives a chat message.

	Sender
	The party that sends a chat message.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

	Terminating Participant
	A Participant in a chat session that is not the Originator.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].
3.3 Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Chat contains HTTP protocol bindings based on the requirements for Chat (also known as Instant Messaging) defined in [RC_API_RD] and [RCC_API_RD], using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoded).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Managing subscriptions to chat-related event notifications

· Sending and receiving 1-1 chat messages (with or without multimedia object)
· Reporting the status of 1-1 chat messages

· Receiving notifications about the status of 1-1 chat messages
· Managing 1-1 chat sessions

· Promoting a 1-1 chat session into a group chat session

· Managing group chat sessions

· Sending and receiving group chat messages
· Sending and receiving a single multimedia object within a single group chat message (one to many)
· Receiving notifications about invitations to a 1-1 chat
· Receiving notifications about invitations to a group chat
· Receiving notifications about the status of group chat messages
· Receiving notifications about chat session events

· Receiving notifications about a change in the list of Participants in a group chat session
· Revoking a 1-1 chat message (e.g. typically revoking an undelivered Chatbot message)
In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in a resource URL variable that identifies an end user
5. Chat API definition

This section is organized to support a comprehensive understanding of the Chat API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy, followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.2.2.20, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.

Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Chat.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.wmf]/status

/

group

//{serverRoot}/

chat/

{apiVersion}

/{userId}

/{

s

essionId}

/

participants

/

{

participant

Id}

/

subscriptions

/{

subscription

Id}

/messages

/

{messageId}

/

oneToOne

/status

/extend

/{

s

essionId}

/messages

/

{messageId}

/status

Reserved

value

:

„

adhoc

“

for

ad

-

hoc

chats

/{otherUserId}

/

{participantId}

/status

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Note: 1-1 chats (Ad-hoc or Confirmed) and group chats represent different approaches and are therefore treated differently.
In an Ad-hoc 1-1 Chat, the Participants interact direct and spontaneous without the need to create a session at API level. For that purpose, they access the resource with {sessionId} set to the reserved value “adhoc”. The underlying network layers still need to set up a session. In an Ad-hoc 1-1 Chat, the Originator can send messages to the Terminating Participant during the set-up phase of the session, as well as when the session has been established. Implementations of Ad-hoc 1-1 Chats MAY support the GET method on the {sessionId} node with the value “adhoc”. No session-management functionality is exposed via the API.
In a Confirmed 1-1 Chat, the two phases of session set-up and in-session communication are clearly separated. First, the Originator requests the creation of a chat session, which starts the session set-up phase in the underlying network layers by sending an offer to the Terminating Participant to enter a chat. If the Terminating Participant confirms that offer, the session is established. During the session set-up phase, no messages can be exchanged at the underlying network layers; message exchange only takes place in-session. Implementations MAY buffer messages sent during session set-up phase and send them once the session has been established, or MAY reject such an attempt with HTTP response code 403 and a POL1012 exception (see section 7). Implementations of Confirmed 1-1 Chats MUST support the GET and DELETE methods on the {sessionId} node.
In a group chat session, a chat server (called “conference focus” in [SIMPLE_ IM]) is involved in the communication that filters and aggregates the traffic, and each Participant is connected to the conference focus using a session model. This architecture results in different handling of many of the events, and also in different sets of events available. In order to provide a clean separation of these different feature sets, 1-1 chat and group chat are modeled as different sets of resources. A 1-1 chat can incorporate exactly 2 Participants, whereas a group chat can incorporate one Originator and one or more Terminating Participants. The different types of 1-1 chat (Ad-hoc vs. Confirmed) allow to be mapped to different underlying systems that exist in the market.
Media attachments

Both 1-1 and group chat allow sending and receiving a chat message with multimedia objects.

The media object (either multipart or individual media parts) can be either attached within the body of HTTP request or reside on a storage that is accessible by a URL:

· When a media object resides within the request it is attached as a MIME body part, which MUST have Content-Type header (to allow correct parsing) and Content-ID header (so the request can reference it according to [RFC2392]).

· When a media object resides on external storage, the request only contains a URL pointing to the location from where the media elements can be fetched.

A single request MAY have both attached media object(s) and externally referenced media object(s), for example the thumbnail could be attached whereas the full media object could be stored externally.

Purpose: Allow the client to manage subscriptions for chat notifications
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to chat event notifications
	/subscriptions

	ChatSubscriptionList
 (used for GET)

ChatNotificationSubscription
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Read the list of active chat notification subscriptions
	no
	Create new subscription to chat notifications
	no

	Individual subscription to chat event notifications
	/subscriptions/{subscriptionId}
	ChatNotificationSubscription
	Read an individual chat notification subscription
	no
	no
	Cancel subscription and stop corresponding notifications

Purpose: Allow the client to handle 1-1 chats
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All 1-1 chat sessions between two users
	/{otherUserId}
	ChatSessionInformation
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a 1-1 chat session
	No

	Individual 1-1 chat session
	/{otherUserId}/{sessionId}
	ChatSessionInformation
	Read 1-1 chat session information
	no
	no
	Cancel invitation (Originator)
Decline invitation (Terminating Participant)
Terminate session

	1-1 chat session status
	/{otherUserId}/{sessionId}/status
	ParticipantSessionStatus
	no
	Accept a 1-1 chat session invitation
	no
	no

	Extend 1-1 chat to a group chat session
	/{otherUserId}/{sessionId}/extend
	ParticipantList
ExtensionParameters
	no
	no
	Extend a 1-1 chat session to a group chat session
	no

Purpose: Allow the client to handle 1-1 chat messages
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Chat messages in a 1-1 chat
	/messages
	ChatMessage,
OutgoingMultimediaChatMessage,
IsComposing
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create (send) a chat message
	no

	Individual message status in a 1-1 chat
	/messages/{messageId}/status
	MessageStatusReport
	Read the status of a chat message
	Report the status of a chat message
	no
	no

Purpose: Allow the client to handle group chat sessions
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All group chat sessions
	/group
	GroupChatSessionInformation
(used for POST)
GroupChatSessionInformationList (for GET)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of all active group chat session
	no
	Create a new group chat session
	no

	Individual group chat session
	/group/{sessionId}
	GroupChatSessionInformation
	Retrieve group chat session information
	no
	no
	Cancel group chat session (Originator)

Terminate group chat session (Originator)

Purpose: Allow the client to handle group chat Participants
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Participants in a group chat session
	/participants
	ParticipantList
(used for GET)

ParticipantList or
ParticipantInformation
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Read the list of group chat Participants
	no
	Add one or more group chat Participant(s)

Re-join session
	No

	Individual Participant in a group chat session
	/participants/{participantId}
	ParticipantInformation
	Read information about an individual group chat Participant
	no
	no
	Remove Participant from group chat session
(Originator)

Decline invitation (Terminating Participant)

Leave session (Participant)

	Individual group chat session Participant status
	/participants/{participantId}/status
	ParticipantSessionStatus
	
	Accept group chat session invitation
	no
	no

Purpose: Allow the client to handle group chat messages
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Chat messages in a group chat session
	/messages
	ChatMessage,
OutgoingMultimediaChatMessage,
IsComposing
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a chat message
	no

	Individual message status at a designated participant of a group chat
	/messages/{messageId}/status/{participantId}
	MessageStatusReport
	Read the status of a chat message at a designated participant
	Report the status of a chat message at a designated participant
	no
	no

Purpose: Allow the client to receive chat notifications

	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification containing incoming message
	Specified by client when subscription is created or provisioned
	ChatMessageNotification
	no
	no
	Notify client about incoming chat message
	no

	Client notification about message status
	Specified by client when subscription is created or provisioned
	ChatMessageStatusNotification
	no
	no
	Notify client about the status of a chat message it has sent
	no

	Client notification about 1-1 chat session invitations
	Specified by client when subscription is created or provisioned
	ChatSessionInvitationNotification
	no
	no
	Notify client about incoming 1-1 chat invitation
	no

	Client notification about group chat session invitations
	Specified by client when subscription is created or provisioned
	GroupChatSessionInvitationNotification
	no
	no
	Notify client about incoming group chat invitation
	no

	Client notification about chat session events
	Specified by client when subscription is created or provisioned
	ChatEventNotification
	no
	no
	Notify client about chat events
	no

	Client notification about changes of Participant status
	Specified by client when subscription is created or provisioned
	ChatParticipantStatusNotification
	no
	no
	Notify client about Participant status changes
	no

	Client notification about subscription cancellation
	Specified by client when subscription is created or provisioned
	ChatSubscriptionCancellationNotification
	no
	no
	Notify client that a subscription has been cancelled (e.g. expired)
	no

	Client notification about incoming multimedia message
	Specified by client when subscription is created or provisioned
	MultimediaChatMessageNotification
	no
	no
	Notify client about incoming multimedia chat message
	no

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Chat API data types is:

urn:oma:xml:rest:netapi:chat:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_Chat].

5.2.2 Structures

The subsections of this section define the data structures used in the Chat API.
Some of the structures can be instantiated as so-called root elements.
For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: ChatSubscriptionList

This type represents a list of chat notification subscriptions.
	Element
	Type
	Optional
	Description

	chatNotificationSubscription
	ChatNotificationSubscription
[0..unbounded]
	Yes
	Array of chat notification subscriptions

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named chatSubscriptionList of type ChatSubscriptionList is allowed in response bodies.
5.2.2.2 Type: ChatNotificationSubscription

This type represents a subscription to chat-related event notifications, i.e. all notifications of type ChatEventNotification, ChatSessionInvitationNotification, ChatParticipantStatusNotification, ChatMessageNotification, MultimediaChatMessageNotification, GroupChatSessionInvitationNotification and ChatMessageStatusNotification targeted at a particular user.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	confirmedChatSupported
	xsd:boolean
	Yes
	In resource-creating requests, this flag signals to the server that this client supports Confirmed 1-1 Chats. In case this is present and set to true, the client supports Confirmed 1-1 Chats.
In the created resource, the server sets this flag to true in case it was set to true by the client in the corresponding creation request and the server supports Confirmed 1-1 Chats; otherwise the server either sets it to false or omits it.
If the server does not support any of the methods signalled by the client using the elements “confirmedChatSupported” and “adhocChatSupported”, it SHALL reject the subscription either with the exception POL1013 (if Confirmed 1-1 Chats are not supported) or with the exception POL1014 (if session-Ad-hoc 1-1 Chats are not supported).

Default: false

	adhocChatSupported
	xsd:boolean
	Yes
	In resource-creating requests, this flag signals to the server that this client supports Ad-hoc 1-1 Chats. In case this is absent or set to true, the client supports for Ad-hoc 1-1 Chats.
In the created resource, the server sets this flag to true or omits it in case it was absent or set to true in the corresponding creation request and the server supports Ad-hoc 1-1 Chats; otherwise the server sets it to false.

If the server does not support any of the methods signalled by the client using the elements “confirmedChatSupported” and “adhocChatSupported”, it SHALL reject the subscription either with the exception POL1013 (if Confirmed 1-1 Chats are not supported) or with the exception POL1014 (if Ad-hoc 1-1 Chats are not supported).
Default: true
Note: the default is “true” here for maximum simplification of the API.

	duration
	xsd:int
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.
This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element MAY be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
 The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatNotificationSubscription of type ChatNotificationSubscription is allowed in request and/or response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The document [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.

5.2.2.3 Type: ChatEventNotification

This type represents a notification about chat events that only need to convey the type of event without additional type-specific parameters.
More specific notification types are defined below.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

Depending on the value of eventType, the server MUST include links as defined by the actual Notification resource in section 6.20.

Further, the server SHOULD include a link to the related subscription.

	eventType
	EventType
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

A root element named chatEventNotification of type ChatEventNotification is allowed in notification request bodies.
5.2.2.4 Type: ChatSessionInvitationNotification

This type represents the notification for a 1-1 chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.18.

Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	Yes
	Topic of the chat session, which MAY be set by the Originator and is passed to the invited Participant

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator

	tParticipantAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant

	initialMessage
	ChatMessage
	Choice
	OPTIONAL initial chat message in the session.
This element is instantiated if the Originator has passed an initial chat message as part of the chat session creation request.
This element MUST NOT be present if initialMultimediaMessage is present.

	initialMultimediaMessage
	IncomingMultimediaChatMessage
	Choice
	OPTIONAL initial multimedia chat message in the session.
This element is instantiated if the Originator has passed an initial multimedia chat message as part of the chat session creation request.
This element MUST NOT be present if initialMessage is present.

XSD modelling uses a “choice” to select either initialMessage or initialMultimediaMessage or none of them, but not both.
A root element named chatSessionInvitationNotification of type ChatSessionInvitationNotification is allowed in notification request bodies.

The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.

Typically this URL is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/status

The recipient can decline the request by sending a DELETE request to the URL passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

Typically this URL is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}
This type is not relevant in group chats.
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate.
5.2.2.5 Type: GroupChatSessionInvitationNotification

This type represents a notification for a group chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.19.

Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	Yes
	Topic of the chat session, which MAY be set by the Originator and is passed to the invited Participants

	participant
	ParticipantInformation
[2..unbounded]
	No
	Contains the list of Participants of the session.

	isClosed
	xsd:boolean
	Yes
	If present and true, the group chat which this invitation relates to is closed for additional users.

Default: false

A root element named groupChatSessionInvitationNotification of type GroupChatSessionInvitationNotification is allowed in notification request bodies.

Each recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.

Typically this URL is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status

The recipient can decline the request by sending a DELETE request to the URL passed in the “href” attribute of the “link” element with rel=”ParticipantInformation”.

Typically this URL is
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}

If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a group session, this means that this recipient will not be mentioned in any ChatParticipantStatusNotification.

This type is not relevant in 1-1 chats.
5.2.2.6 Type: ChatMessageNotification

This type represents a notification delivering an incoming chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.15.

Further, the server MAY include a link to the related subscription.

	senderAdress
	xsd:anyURI
	No
	Identifier of the Participant that sent the message (e.g. 'sip' URI, 'tel' URI, 'acr' URI)

	senderName
	xsd:string
	Yes
	Name of the Sender

	chatMessage
	ChatMessage
	Choice
	The actual message

	isComposing
	IsComposing
	Choice
	“isComposing” message

	dateTime
	xsd:dateTimeStamp
	Yes
	The time when the message was sent

XSD modelling uses a “choice” to select either chatMessage or isComposing.

A root element named chatMessageNotification of type ChatMessageNotification is allowed in notification request bodies.

In case the “chatMessage” element contains the element “reportRequest”, the recipient MUST acknowledge the requested event ‘Displayed’ by sending a PUT request with a “MessageStatusReport” root element in the body to the URL passed in the “href” attribute of the “link” element with rel=”MessageStatusReport”.

For 1-1 chat this URL is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages/{messageId}/status.
For group chat this functionality is not supported.
5.2.2.7 Type: ChatParticipantStatusNotification
This type represents the Participant status notification.

It is used to inform about Participant status changes in a group chat.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.21.
Further, the server SHOULD include a link to the related subscription.

	participant
	ParticipantStatusEntry
[1..unbounded]
	No
	The list of Participants
At least those that changed status since the last notification MUST be included.

A root element named chatParticipantStatusNotification of type ChatParticipantStatusNotification is allowed in notification request bodies.
Note: This type is not relevant in 1-1 chats.

5.2.2.8 Type: ParticipantStatusEntry
This type represents the status of a chat Participant.
	Element
	Type
	Optional
	Description

	address
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name of the Participant

	status
	ParticipantStatus
	Yes
	Connection status of the Participant

	yourown
	xsd:boolean
	Yes
	If present and set to true, this indicates that the status entry represents the Participant to which this data structure is sent in a message.

	link
	common:Link [0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server SHOULD include a link to the resource representing the Participant in the chat session.

5.2.2.9 Type: ChatMessageStatusNotification
This type represents a notification about the status of a chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.17.

Further, the server MAY include a link to the related subscription.

	status
	MessageStatus
	No
	Indicates the status of the message

	errorCode
	xsd:string
	Yes
	Code of the error, if any

	description
	xsd:string
	Yes
	Description of the error, if any

A root element named chatMessageStatusNotification of type ChatMessageStatusNotification is allowed in notification request bodies.
5.2.2.10 Type: ChatMessage

This type represents a chat message.
	Element
	Type
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message

	reportRequest
	MessageStatus
[0..unbounded]
	Yes
	List of status events to report
This element is not relevant in group chats.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.
Note that in this version of the specification, the resourceURL is only used for correlation purposes, as there is no HTTP method defined for this URL.

A root element named chatMessage of type ChatMessage is allowed in request bodies.
5.2.2.11 Type: MessageStatusReport
This type represents a response to a chat message notification.
It is only needed if the chat message includes an indication that the Sender wishes to receive a report about “Displayed” message status.
Note that the report regarding the “Delivered” message status is generated in the API Server by procedures of the underlying protocol layers which are out of scope of this specification.
	Element
	Type
	Optional
	Description

	status
	MessageStatus
	No
	Indicates the status of the message

A root element named messageStatusReport of type MessageStatusReport is allowed in request/response bodies.
Note: This type is not relevant in group chats.
5.2.2.12 Type: ParticipantSessionStatus
This type represents the status of a Participant in the chat session.
	Element
	Type
	Optional
	Description

	status
	ParticipantStatus
	No
	Status of the Participant

To indicate that the client accepts the session invitation, this element MUST be set to “Connected”.
The client is not allowed to use in requests the remaining values of the ParticipantStatus enumeration.
If the client uses one of these in a request, the server SHOULD respond with an HTTP status code “400 Bad request” and return a SVC0003 exception with the list of valid values set to “Connected”.

A root element named participantSessionStatus of type ParticipantSessionStatus is allowed in request and/or response bodies.
5.2.2.13 Type: ChatSessionInformation

This type represents information about a 1-1 chat session.

	Element
	Type
	Optional
	Description

	subject
	xsd:string
	Yes
	Topic of the chat session, which MAY be set by the Originator and is passed to the invited Participant.

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator.
If originatorAddress is also part of the request URL, the two MUST have the same value.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator

	tParticipantAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant

If tParticipantAddress is also part of the request URL, the two MUST have the same value.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant

	status
	ParticipantStatus
	Yes
	Connection status of the Terminating Participant
Set by the server
SHALL NOT be present in request bodies during resource creation

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element SHOULD be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate chat session creations in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	initialMessage
	ChatMessage
	Choice
	OPTIONAL initial chat message in the session.
This element is instantiated by the application of the Originator to pass an initial chat message as part of the chat session creation request.
The server is NOT REQUIRED to instantiate this element in HTTP responses.

This element MUST NOT be present if initialMultimediaMessage is present.

	initialMultimediaMessage
	OutgoingMultimediaChatMessage
	Choice
	OPTIONAL initial multimedia chat message in the session.
This element is instantiated by the application of the Originator to pass an initial multimedia chat message as part of the chat session creation request. In this case, the application MUST pass this structure to the server as part of a MIME multipart body (see 5.2.2.20).
The server is NOT REQUIRED to instantiate this element in HTTP responses.

This element MUST NOT be present if initialMessage is present.

XSD modelling uses a “choice” to select either initialMessage or initialMultimediaMessage or none of them, but not both.
A root element named chatSessionInformation of type ChatSessionInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

This type is not relevant in group chats.
5.2.2.14 Type: GroupChatSessionInformationList

This type represents a list of chat GroupChatSessionInformation

	Element
	Type
	Optional
	Description

	groupChatSessionInformation
	GroupChatSessionInformation[0..unbounded]
	Yes
	List of group chat sessions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL
The resourceURL MUST be included in responses to any HTTP method that returns an entity body.

5.2.2.15 Type: GroupChatSessionInformation

This type represents information about a group chat session.

	Element
	Type
	Optional
	Description

	subject
	xsd:string
	Yes
	Topic of the chat session, which MAY be set by the Originator and is passed to the invited Participants

	participant
	ParticipantInformation
[0..unbounded]
	Yes
	The Participant(s) connected or invited to this chat session
The client SHALL include this element when creating a new group chat session (POST request).

The server SHALL include this element when answering to the query to get the details of a specific group chat session (answer to the GET request on resource “All group chat sessions”).
The server MAY include this element when answering to the query to get the list of active group chat session. (answer to the GET request on resource “Individual group chat sessions”)

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element SHOULD be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate chat session creations in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	isClosed
	xsd:boolean
	Yes
	If present and true, the group chat session is closed for additional users.

Default: false

A root element named groupChatSessionInformation of type groupChatSessionInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

This type is not relevant in 1-1 chats.

5.2.2.16 Type: ParticipantList

This type represents a list of chat Participants.
	Element
	Type
	Optional
	Description

	participant

	ParticipantInformation
[1..unbounded]
	No
	List of chat Participants.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantList of type ParticipantList is allowed in request and/or response bodies.
This type is not relevant in 1-1 chats.

5.2.2.17 Type: ParticipantInformation

This type represents a chat Participant.

It is based on the [RFC4575] as defined in [SIMPLE_IM] chapter 7.2.1.12.
	Element
	Type
	Optional
	Description

	address
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Participant.
If address is also part of the request URL, the two MUST have the same value.

	name
	xsd:string
	Yes
	Human readable name

	isOriginator
	xsd:boolean
	Yes
	If the Participant represented by this data structure is the Originator of a call session, this element MUST be present and set to “true”. It MUST be either absent or set to “false” otherwise.
Default: “false”

	status
	ParticipantStatus
	Yes
	Connection status of the Participant
Set by the server
SHALL NOT be present in request bodies during resource creation

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element SHOULD be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids creating a resource twice for the same Participant in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantInformation of type ParticipantInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

5.2.2.18 Type: IsComposing

This type represents a message indicates to the recipient that the Sender is editing (composing) a message.
	Element
	Type
	Optional
	Description

	state
	xsd:string
	No
	Sender state, as defined in [RFC3994]. One of “idle”, “active”

	lastactive
	xsd:dateTimeStamp
	Yes
	Time of last activity, as defined in [RFC3994]

	contenttype
	xsd:string
	Yes
	Type of message being created, as defined in [RFC3994]
This element contains either a MIME media type, or a combination of media type and subtype.

	refresh
	xsd:positiveInteger
	Yes
	Time interval in seconds after which the Receiver can expect an update from the Sender, as defined in [RFC3994]

	(any)
	any[0..unbounded]
	Yes
	Any element from another namespace, as defined in [RFC3994]

A root element named isComposing of type IsComposing is allowed in request bodies.
The structure of this message is aligned with [RFC3994]. Note that because the element names in this structure follow the syntax in [RFC3994], they do not conform to the naming conventions in OMA RESTful Network APIs as defined in [REST_WP].
5.2.2.19 Type: ChatSubscriptionCancellationNotification

A type containing the subscription cancellation notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if passed by the application in the ‘callbackReference’ element during the associated subscription operation.

See [REST_NetAPI_Common] for details.
	

	reason
	common:ServiceError
	Yes
	Reason notification is being discontinued. SHOULD be present if the reason is different from a regular expiry of the subscription.

	link
	common:Link[1..unbounded]
	No
	Link to other resources that are in relationship with the resource.
There MUST be a link to the subscription that is cancelled.

A root element named chatSubscriptionCancellationNotification of type ChatSubscriptionCancellationNotification is allowed in request and/or response bodies.
5.2.2.20 Type: OutgoingMultimediaChatMessage

This type represents an outgoing multimedia chat message.
	Element
	Type
	Optional
	Description

	text
	xsd:string
	Yes
	Text content of a multimedia chat message, if available

	reportRequest
	MessageStatus
[0..unbounded]
	Yes
	List of status events to report
This element is not relevant in group chats.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.
Note that in this version of the specification, the resourceURL is only used for correlation purposes, as there is no HTTP method defined for this URL.

	attachment
	AttachmentInfo
	Yes
	Information about individual multimedia object.
This element MUST be included if the media object has a thumbnail or if the media object is stored in external location.

This element MAY be included when the media object is attached to the request and has no thumbnail.

A root element named outgoingMultimediaChatMessage of type outgoingMultimediaChatMessage is allowed in request and/or response bodies.
Media object can either reside on a storage that is accessible by a URL (provided within the ‘attachment’ element) or attached to the body of HTTP request.

When a media object is attached to the HTTP request and there is no thumbnail then the ‘attachment’ element is optionally provided.
When a media object or a thumbnail is attached to the request then the outgoing multimedia chat message is represented as multipart/form-data entity bodies, where the first entry of the form are the root fields and the second entry of the form are the attachments. Details about the structure of such messages are defined in [REST_NetAPI_Common]. In case the message has a presentation part, this part SHALL be the first MIME message body part after the root part, i.e. the first part of the multipart/mixed body.
5.2.2.21 Type: IncomingMultimediaChatMessage

This type represents an incoming multimedia chat message.
	Element
	Type
	Optional
	Description

	text
	xsd:string
	Yes
	Text content of a multimedia chat message, if available

	reportRequest
	MessageStatus
[0..unbounded]
	Yes
	List of status events to report
This element is not relevant in group chats.

	attachment
	AttachmentInfo [0…unbounded]
	Yes
	Information about individual attachments, including content type indication, the link to the individual attachment and optionally the size of the attachment.

In case the message contains a presentation part, this SHALL be referenced by the first item in the list of attachment elements.

Media object can either reside on a storage that is accessible by a URL (provided within the ‘attachment’ element) or attached to the body of HTTP request.

When a media object is attached to the HTTP request and there is no thumbnail then the ‘attachment’ element is optionally provided.
When a media object or a thumbnail is attached to the request then the incoming multimedia chat message is represented as multipart/form-data entity bodies, where the first entry of the form are the root fields and the second entry of the form are the attachments. Details about the structure of such messages are defined in [REST_NetAPI_Common]. In case the message has a presentation part, this part SHALL be the first MIME message body part after the root part, i.e. the first part of the multipart/mixed body.
5.2.2.22 Type: MultimediaChatMessageNotification

This type represents a notification about an incoming multimedia chat message being available for download.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session)

The server MUST include links as defined by the actual Notification resource in section 6.15.

Further, the server MAY include a link to the related subscription.

	senderAdress
	xsd:anyURI
	No
	Identifier of the Participant that sent the message (e.g. 'sip' URI, 'tel' URI, 'acr' URI)

	senderName
	xsd:string
	Yes
	Name of the Sender

	message
	IncomingMultimediaChatMessage
	No
	Metadata of the multimedia chat message.

	dateTime
	xsd:dateTimeStamp
	Yes
	The time when the message was sent

A root element named multimediaChatMessageNotification of type MultimediaChatMessageNotification is allowed in notification request bodies.

In case the data structure contains the element “reportRequest”, the recipient MUST acknowledge the requested event ‘Displayed’ by sending a PUT request with a “MessageStatusReport” root element in the body to the URL passed in the “href” attribute of the “link” element with rel=”MessageStatusReport”.

For 1-1 chat this URL is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages/{messageId}/status.
For group chat this URL is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status/{participantId}.
5.2.2.23 Type: AttachmentInfo

Attachment parameters for a multimedia chat message.
	Element
	Type
	Optional
	Description

	contentType
	xsd:string
	No
	Indicates the content type of the attachment.
For example: image/gif, video/3gpp

	size
	xsd:unsignedLong
	Yes
	Indicates the actual size of the original attachment in bytes.

	link
	common:Link
	No
	Link to individual attachment. The value of the “rel” attribute MUST be “attachment.
For media object attached to the request (as a MIME body part), the link SHALL refer to the Contend ID (cid) of the attachment within the request [RFC2392].

For media object stored externally, the link SHALL use full-path (URL) to the media location (including the name of the resource).

	name
	xsd:string
	Yes
	A display name for the multimedia object (for example it might be presented to the recipient).

	thumbnail
	ThumbnailInfo
	Yes
	Information about individual thumbnail, including content type, link to the thumbnail and optionally the the thumbnail size.

5.2.2.24 Type: ExtensionParameters
This type represents the parameters necessary to extend a 1-1 session to a group session.
	Element
	Type
	Optional
	Description

	participant
	ParticipantInformation
[1..unbounded]
	No
	List of additional chat Participants.

	isClosed
	xsd:boolean
	Yes
	If present and true, the group chat which this invitation relates to is closed for additional users.

Default: false

A root element named extensionParameters of type ExtensionParameters is allowed in request bodies.
5.2.2.25 Type: ThumbnailInfo

Thumbnail parameters for a multimedia chat message.
	Element
	Type
	Optional
	Description

	contentType
	xsd:string
	No
	Indicates the content type of the thumbnail.
For example: image/gif

	size
	xsd:unsignedLong
	Yes
	Indicates the actual size of the thumbnail in bytes.

	link
	common:Link
	No
	Link to the thumbnail. The value of the “rel” attribute MUST be “thumbnail”.

For thumbnail attached to the request (as a MIME body part), the link SHALL refer to the Contend ID (cid) of the attachment within the request [RFC2392].

For thumbnail stored externally, the link SHALL use full-path (URL) to the media location (including the name of the resource).

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Chat API.
5.2.3.1 Enumeration: ParticipantStatus

This enumeration defines the possible values for chat Participant status. The two values “Connected”, “Disconnected” are defined based on [SIMPLE_IM] chapter 7.2.2.10, plus an indication of a “pending” status i.e. “Invited”:
	Enumeration
	Description

	Invited
	Participant was invited to the session.

	Connected
	Participant is connected to the session.

	Disconnected
	Participant is disconnected from the session.

5.2.3.2 Enumeration: EventType

This enumeration is defines the types of events. It is used in notifications.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the chat session during the invite phase (in Confirmed 1-1 Chat and in group chat).

	SessionEnded
	The session has ended (in Confirmed 1-1 Chat and in group chat).

	Declined
	The Participant has declined the chat session invite (only in Confirmed 1-1 Chat).

	Accepted
	The Participant has accepted the chat invite (only in Confirmed 1-1 Chat).

	Timeout
	The session invitation to the Participant has timed out (only in Confirmed 1-1 Chat).

	Unreachable
	The Participant could not be reached or is unknown (only in Confirmed 1-1 Chat).

5.2.3.3 Enumeration: MessageStatus

This enumeration defines the possible values for the message status.
	Enumeration
	Description

	Sent
	Message was sent to the first hop in the network and has not yet reached the recipient.

Initial status of a message, not used in PUT requests from the client.

	Delivered
	Message was delivered to the client.
Maps to “delivered” according to [RFC5438] or to success reports (“Success-Report=yes”) according to [RFC4975].
Only used in notifications from the server, but not in PUT requests from the client.

	Displayed
	Message was displayed by the client. Maps to “displayed” according to [RFC5438].

	Revoke
	Message was revoked.

	Failed
	Message was not delivered to the client. Only used in notifications from the server, but not in PUT requests from the client.

Maps to failure reports (“Failure-Report=yes”) according to [RFC4975], or any other means to detect failure available to the implementation.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

· ChatSubscriptionList

· ChatNotificationSubscription

· ChatMessage
· MessageStatusReport
· ParticipantSessionStatus
· ChatSessionInformation
· GroupChatSessionInformation
· ParticipantList
· ParticipantInformation
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
The sequence diagrams depict the special case where all Participants use the service via the API, because this allows illustrating the complete functionality of the API. Note that other scenarios are assumed to be more common, such as those where some Participants are connected to the service via the API, while others are using the native underlying enablers.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.3.1 Subscription to chat notifications
The figure below shows a scenario for an application subscribing to chat notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.

The resources:
· To subscribe to chat notifications, create a new resource under http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions
· To cancel subscription to chat notifications delete the resource under http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions/{subscriptionId}

 [image: image3.png]Application API Server

create a new
chat
subscription

delete chat
subscription

1. POST ChatNotificationSubscription

with callbackURL

Response

with subscriptionld in resourceURL

2. DELETE ChatNotificationSubscription

resource including subscriptionld

Response

I SR 4

Figure 2 Subscribe to and unsubscribe from chat notifications
Outline of the flows:

1. An application subscribes to chat notifications using the POST method to submit the ChatNotificationSubscription data structure to the resource containing all subscriptions and receives the result resource URL containing the subscriptionId.

2. The application stops receiving notifications (including chat messages) using DELETE with a resource URL containing the subscriptionId.
5.3.2 Normal flow of an Ad-hoc 1-1 Chat

The figure below shows a scenario for an application to send, receive and confirm delivery of a chat message. In case of 1-1 chats, the application can immediately send the message to the desired Participant. The conversation does not need to be explicitly cancelled but automatically ends if one of the Participants stops sending chat messages for a certain time interval controlled by service provider policies.

See section 5.3.3 for an alternative, the Confirmed 1-1 Chat approach.
The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.

The resources:
· To send a 1-1 chat message, create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/adhoc/messages
· (The chat message is received in a notification)
· To confirm successful message reception in a 1-1 chat, update the resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/adhoc/messages/{messageId}/status

[image: image4.emf]Application

(Participant)

API Server

(Participant)

1. POST ChatMessage

Response

with resourceURL including messageId

API Server

(Participant)

Application

(Participant)

5. POST or NOTIFY

ChatMessageStatusNotification

2. POST or NOTIFY

ChatMessageNotification

4. PUT ChatMessageStatusReport

with status=Displayed

9. POST ChatMessage

Response

10. POST or NOTIFY

ChatMessageNotification

with reportRequest=Displayed

send a new chat

message

receive a new

chat message

send a display

report

with status=Displayed

receive a

display report

send a chat

message

receive a chat

message

with resourceURL including messageId

3. POST or NOTIFY

ChatMessageDeliveryNotification

with status=Delivered

receive a

deliveryreport

7. POST or NOTIFYChatMessageNotification

6. POST „isComposing“ Message

send

„isComposing“

message

receive

„isComposing“

message

Response

8. POST or NOTIFY

ChatMessageDeliveryNotification

with status=Delivered

receive a

deliveryreport

11. POST or NOTIFY

ChatMessageDeliveryNotification

with status=Delivered

receive a

deliveryreport

Figure 3 Normal flow of an Ad-hoc 1-1 Chat

Outline of the flows:

1. The originating application sends a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.
2. The terminating application receives a chat message as a notification.
3. If the originating application has requested to receive a delivery report for the message by setting the according value in the ChatMessage data structure, a ChatMessageStatusNotification is generated by the originator’s API server (based on underlying protocol signalling in the network) and sent to the originating application.

4. If the received message contains an indication that display confirmation is requested, the terminating application confirms message display using the PUT method to submit the MessageStatusReport data structure to the resource containing the message status. Thereby the creation of a message status report is triggered.

5. If the originating application has requested to receive a display report for the message by setting the according value in the ChatMessage data structure, a ChatMessageStatusNotification will be sent to the originating application if the message was displayed to the user.

6. As the user of the terminating application composes a chat message, the terminating application indicates that fact by sending an “isComposing” message (which is a specific chat message) to the originator’s application.

7. The originating application receives the “isComposing” message as a notification.
8. To confirm delivery of the “isComposing” message, a ChatMessageStatusNotification is generated by the Terminating Participant’s API server (based on underlying protocol signalling in the network) and sent to the terminating application.

9. The terminating application replies to the Originator’s message by sending a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.
10. The originating application receives a chat message as a notification.

11. To confirm delivery of the chat message, a ChatMessageStatusNotification is generated by the Originating Participant’s API server (based on underlying protocol signalling in the network) and sent to the originating application.

5.3.3 Normal flow of a Confirmed 1-1 Chat

The figure below shows a scenario for a Confirmed 1-1 Chat.

The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.
The resources:
· To invite a user to a 1-1 chat session create a new resource under
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}
with the ChatSessionInformation data structure.
· To accept a 1-1 chat session invitation, update the session status resource http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/status
from “Invited” to “Connected” with the ParticipantSessionStatus data structure.

(The originator receives a ChatEventNotification that the other user accepted the 1-1 chat session invitation)
· To send a 1-1 chat message create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages
wth the ChatMessage data stucture.
(The chat message is received in a notification)
· To confirm successful message display in a 1-1 chat update the resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages/{messageId}/status
with “Displayed” in the MessageStatusReport data structure
· To close a 1-1 chat session delete the resource
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}

(Both users receive a ChatEventNotification that the session has ended)

[image: image5.emf]Application

(Originator)

API Server

(Originator)

5. POST ChatMessage

Response

with resourceURL including messageId

API Server

(term. Participant)

Application

(term. Participant)

9. POST or NOTIFY

ChatMessageStatusNotification

6. POST or NOTIFY

ChatMessageNotification

8. PUT MessageStatusReport

with status=Displayed

16. DELETE 1-1 session resource

Response

with reportRequest=Displayed

receive a new

chat message

send a

display

report

with status=Displayed

receive a

display report

with resourceURL including messageId

start a new 1-1

chat

accept 1-1chat

session

invitation

receive notification

session accepted

with resourceURL including sessionId

receive 1-1chat

session

invitation

with status=Connected

2. POST or NOTIFY

ChatSessionInvitationNotification

with resourceURL including sessionId

4. POST or NOTIFY ChatEventNotification

with link to session and eventType=Accepted

3. PUT ParticipantSessionStatus

1. POST ChatSessionInformation

Response

send a new chat

message

leave the chat

Response

Response

with sessionId

17. POST or NOTIFY ChatEventNotification

with link to session and

eventType=SessionEnded

with link to session and

eventType=SessionEnded

18. POST or NOTIFY ChatEventNotification

receive

notification

session ended

receive

notification

session ended

14. POST or NOTIFYChatMessageNotification

13. POST ChatMessage

send chat

message

receive chat

message

Response

7. POST or NOTIFY

ChatMessageStatusNotification

with status=Delivered

receive a

deliveryreport

11. POST or NOTIFYChatMessageNotification

10. POST „isComposing“ Message

send

„isComposing“

message

receive

„isComposing“

message

Response

12. POST or NOTIFY

ChatMessageStatusNotification

with status=Delivered

receive a

deliveryreport

15. POST or NOTIFY

ChatMessageStatusNotification

with status=Delivered

receive a

deliveryreport

Figure 4 Normal flow of a Confirmed 1-1 Chat
Outline of the flows:

1. The originating application sends a chat session invitation using the POST method to submit the ChatSessionInformation data structure to the resource representing the chat sessions with the invited user. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.
2. The terminating application receives a chat session invitation as a notification.
3. The terminating application accepts the chat session invitation using the PUT method to submit the ParticipantSessionStatus data structure to the resource representing the session status, updating the status from ‘Invited’ to ‘Connected’.

4. The originating application receives a chat event notification including a link to the resource representing the session that has been accepted.

5. The originating application sends a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages in the current chat session. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.
6. The terminating application receives the chat message as a notification.
7. If the originating application has requested to receive a delivery report for the message by setting the according value in the ChatMessage data structure, a ChatMessageStatusNotification is generated by the originator’s API server (based on underlying protocol signalling in the network) and sent to the originating application.

8. If the received message contains an indication that display confirmation is requested, the terminating application confirms message display using the PUT method to submit the MessageStatusReport data structure to the resource containing the message status. Thereby the creation of a MessageStatusReport notification is triggered.

9. If the originating application has requested to receive a success report for the display of the message by setting the according value in the ChatMessage data structure, a ChatMessageStatusNotification will be sent to the originating application if the message was displayed.

10. As the user of the terminating application composes a chat message, the terminating application indicates that fact by sending an “isComposing” message (which is a specific chat message) to the originator’s application.

11. The originating application receives the “isComposing” message as a notification.
12. To confirm delivery of the “isComposing” message, a ChatMessageStatusNotification is generated by the terminating Participant’s API server (based on underlying protocol signalling in the network) and sent to the terminating application.

13. The terminating application sends a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.
14. The originating application receives a chat message as a notification.

15. If the terminating application has requested to receive a delivery report for the message by setting the according value in the ChatMessage data structure, a ChatMessageStatusNotification is generated by the terminating participant’s API server (based on underlying protocol signalling in the network) and sent to the terminating application.

(Note that more messages may be exchanged in the session)

16. The terminating application closes the chat session using the DELETE method to the resource representing the chat session. Thereby a notification is triggered that the session has ended. (Note that the originating application can also close the session).

17. The originating application receives a chat event notification that the session provided in the link has ended.

18. The terminating application receives a chat event notification that the session provided in the link has ended.

5.3.4 Declining an invitation to a Confirmed 1-1 Chat

The figure below shows a scenario for declining a Confirmed 1-1 Chat invitation.

The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.
The resources:
· To decline an invitation to a Confirmed 1-1 Chat session delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}

[image: image6.emf]API Server

(Originator)

1. POST ChatSessionInformation

Response

API Server

(term. Participant)

Application

(term. Participant)

2. POST or NOTIFY

ChatSessionInvitationNotification

start a new1-1

chatsession

with resourceURL including sessionId

with resourceURL including sessionId

receive 1-1 chat

session

invitation

3. DELETE sessionresource

with sessionId

Response

4. POST or NOTIFY ChatEventNotification

decline 1-1

chat invitation

Application

(Originator)

with link to session and eventType=Declined

1-1chat invitation

has been

declined

Figure 5 Declining an invitation to a Confirmed 1-1 Chat
Outline of the flows:
1. The originating application sends an invitation to a Confirmed 1-1 Chat session invitation using the POST method to submit the ChatSessionInformation data structure to the resource representing the chat sessions with invited user. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.
2. The terminating application receives a chat session invitation as a notification.
3. The terminating application declines the chat session invitation using the DELETE method to the resource representing the chat session. Thereby a notification is triggered that the session has been declined.

4. A chat event notification is sent to the originator application that the session has been declined.

5.3.5 Cancelling an invitation to a Confirmed 1-1 Chat

The figure below shows a scenario for an originator cancelling an invitation to a Confirmed 1-1 Chat.

The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.
The resources:
· To cancel a 1-1 chat session invitation delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}

[image: image7.emf]API Server

(Originator)

1. POST ChatSessionInformation

Response

API Server

(term. Participant)

Application

(term. Participant)

2. POST or NOTIFY

ChatSessionInvitationNotification

start a new1-1

chatsession

with resourceURL including sessionId

with resourceURL including sessionId

receive 1-1 chat

session

invitation

4. POST or NOTIFY ChatEventNotification

Application

(Originator)

with link to session and

eventType=SessionCancelled

1-1chat invitation

has been

cancelled

3. DELETEsession resource

with sessionId

Response

4. POST or NOTIFY ChatEventNotification

with link to session and

eventType=SessionCancelled

1-1chat invitation

has been

cancelled

Cancel 1-1chat

session

Figure 6 Cancelling an invitation to a Confirmed 1-1 Chat

Outline of the flows:
1. The originating application sends a 1-1 chat session invitation using the POST method to submit the ChatSessionInformation data structure to the resource representing the invited user. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.
2. The terminating application receives a chat session invitation as a notification.
3. Before the invited user has accepted the chat invitation, the originating application cancels the chat session invitation using the DELETE method to the resource representing the chat session.

4. A chat event notification is sent to the originating and terminating applications that the session has been cancelled.

5.3.6 Revoking a 1-1 Chat message

The figure below shows a scenario for attempting to revoke a 1-1 Chat message.

This flow shows both a successful and an unsuccessful revoke operation. Client Application (e.g. Chatbot Platform) must avoid requesting to revoke a chat message for which it has already received a “delivered” or “displayed” event notification. Attempting to revoke a delivered message may result in a Policy error POL1015 (i.e. if the message status resource exists and its value is set to delivered or displayed) or HTTP 404 (Not Found) error based on the response received by the API Server from the underlying network.
The preconditions for this flow are:

a) The originating Application (e.g. Chatbot Platform) sent a 1-1 chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource was triggered and the Application received the resulting resource URL containing the messageId (see section 5.3.2).
b) that the originating Application (e.g. Chatbot Platform) has subscribed to chat event notifications (see section 5.3.1).
The resources:
· To revoke a 1-1 chat message, the value “revoke” is used for the following resource: /http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages/{messageId}/status

[image: image8.emf]Application

(Network or Client)

2. Request to Revoke Message*

API Server

(Participant)

Application

(e.g. Chatbot Platform)

1. PUT ChatMessageStatusReport

Receive a

revoke

request

Revoke a

message

Revoke

message

result

With messageID and status=revoke

With messageID

Result of

revoke

request

3. HTTP 200 OK

Acknowledge the request

5 .POST or NOTIFY

ChatMessageStatusNotification with

status=Revoked

4. Response*

with Revoke Response success

Figure 6 Request to revoke a 1-1 Chat message
Outline of the flows:
1) The originating application (e.g. Chatbot Platform) requests to revoke the chat message using DELETE method (e.g. triggered by a chatbot).

a) Alternative error flow: If the chat message has already been delivered to, or displayed by, the terminating application (i.e. messageStatusReport = Delivered or Displayed in the API Server), an appropriate Policy error is sent back in the response.

· Note: The duration for which the API Server stores information about a chat message is controlled by service provider policies.

2) Otherwise, if the status resource for that message is not set or does not exist, the API Server relays the revoke request to the receiving Application of the other party (the underlying network or a client)

* The API Server may use different technologies to communicate to the Application e.g. using current REST APIs or the native technology of the underlying network (SIP MESSAGE request).

3) The API Server receives the result of the revoke request from the receiving Application which can be one of the following:

a) Success; then the API Server sets the status of the chat message accordingly (i.e. to “Revoked”); or

b) Failure.

4) The result of the revoke request is relayed to the originating Application as:

a) HTTP 200 OK, in case of success

b) HTTP 404, in case of failure.

5.3.7 Normal flow of a group chat

The figure below shows a scenario for a normal group chat.

The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.

The resources:
· To start a group chat session create a new resource under
http://{serverRoot}/chat/{apiVersion}/{userId}/group
with the GroupChatSessionInformation data structure.
· To accept a group chat session invitation update the Participant status resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status
· To send a group chat message create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages

· To report/read the status of a chat message for a designated participant in a group chat
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status/{participantId}
· To invite additional Participants to the existing group chat session update the resource
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants

· To leave a group chat session delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}

· To re-join a group chat session POST the ParticipantInformation to http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants

[image: image9.emf]Application (orig.) API Server (orig.)

1. POST GroupChatSessionInformation

Response

API Server (term.) Application (term.)

Response

start a new

group chat

accept group

chat invitation

receive

participant

status

with resourceURL including sessionId

9. POST ChatMessage

Response

send a chat

message

receive chat

message

with resourceURL including messageId

receive group

chat invitation

with status=Connected

11. DELETE participant resource

with participantId

Response

13. POST ParticipantInformation

Response

with resourceURL including participantId

with address and status=Disconnected

notify participant

status

Application (term.)

5. POST ParticipantInformation

receive group

chat invitation

Response

accept group

chat invitation with status=Connected

Response

leave group

chat

re-join group

chat

receive

participant

status

receive

participant

status

receive chat

message

with address and status=Disconnected

receive

participant left

receive

participant re-

joined

15. DELETE participant resource

with participantId

Response

receive

participant left

receive

participant left

with eventType=SessionEnded

receive session

ended

receive session

ended

add participant

to group chat

leave group

chat

2. POST or NOTIFY

GroupChatSessionInvitationNotification

with resourceURL including sessionId

4. POST or NOTIFY

ParticipantStatusNotification

with address and status=Connected

6. POST or NOTIFY

GroupChatSessionInvitationNotification

with resourceURL including sessionId

8. POST or NOTIFY

ChatParticipantStatusNotification

with address and status=Connected

8. POST or NOTIFY

ChatParticipantStatusNotification

with address and status=Connected

10. POST or NOTIFY

ChatMessageNotification

10. POST or NOTIFY

ChatMessageNotification

12. POST or NOTIFY

ChatParticipantStatusNotification

12. POST or NOTIFY

ChatParticipantStatusNotification

with address and status=Connected

14. POST or NOTIFY

ChatParticipantStatusNotification

with address and status=Connected

14. POST or NOTIFY

ChatParticipantStatusNotification

with address and status=Disconnected

16. POST or NOTIFY

ChatParticipantStatusNotification

16. POST or NOTIFY ChatParticipantStatusNotification

with address and status=Disconnected

17. POST or NOTIFY

ChatEventNotification

17. POST or NOTIFY ChatEventNotification

with eventType=SessionEnded

3. PUT ParticipantSessionStatus

7. PUT ParticipantSessionStatus

Figure 7 Normal flow of group chat

Outline of the flow:

1. The originating application starts a group chat session using the POST method to submit to the resource containing all group chat sessions the GroupChatSessionInformation data structure with the list of invited Participants. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.

2. The terminating application receives a GroupChatSessionInvitationNotification as a notification.

3. The terminating application accepts the group chat invitation using the PUT method to submit the ParticipantSessionStatus data structure to the resource containing the Participant status. The status MUST be set to “Connected”.

4. The originating application receives a ChatParticipantStatusNotification data structure with status information of the Participant(s).
5. The originating application adds another Participant to the group chat session using the POST method to update the ParticipantInformation data structure under the resource that contains all Participants. Thereby the originating API server triggers a new GroupChatSessionInvitationNotification to the newly added Participant.

6. The application of the new terminating Participant receives a GroupChatSessionInvitationNotification.

7. The terminating application accepts the group chat invitation using the PUT method to submit the ParticipantSessionStatus data structure to the resource containing the Participant status. The status MUST be set to “Connected”.
8. All applications connected to the group chat receive a ChatParticipantStatusNotification data structures with status information of the Participant.

9. The application sends a chat message using the POST method to submit the ChatMessage data structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.
10. All applications connected to the chat session receive the chat message as a notification.

11. All applications that received the chat message and displayed the message to the user report the ‘displayed’ status of chat message.

12. The sending application reads the message status of each chat participants
13. An application leaves a group chat session using the DELETE method on the “participants” resource including the participantId. The Participant is thereby deleted from the Participants list while the session still exists (as this is a group chat session.)
14. A ChatParticipantStatusNotification is created by the API server to inform all other Participants that a user has left.

15. An application re-joins a group chat session using the POST method to submit the ParticipantInformation data structure to the resource containing the Participants. The status MUST be set to “Connected”. The application receives a resource URL containing a new participantId.

16. A ChatParticipantStatusNotification is created by the API server to inform all Participants that a user has joined.

17. The Originator’s application leaves a group chat session using the DELETE method on the “participants” resource including the participantId. The Originator is thereby deleted from the Participants list while the session may stay alive for remaining Participants or may end (depending on service provider policies, see step 17.)

18. A ChatParticipantStatusNotification is created by the API server to inform all other Participants that a user has left.

19. Depending on service provider policies the session may end when the Originator has left the chat, which triggers a ChatEventNotification (SessionEnded) to inform the remaining Participants that the group chat session has ended.

At minimum, a group chat session consists of the steps 1, 2, 3, 4, 9, 10 and 17.

Note that a group chat session terminates according to service provider policies when all Participants have left, or when the Originator has left, or after a specific period of time (e.g. pre-defined maximum session duration, inactivity, etc.).
5.3.8 Declining a group chat session invitation
The figure below shows how to decline a group chat session invitation.

This flow only applies if the server has not automatically accepted the invitation as stated in section 5.3.6 step 3 and 7.

The precondition for this flow to work is that the client has subscribed to chat event notifications, see section 5.3.1.

The resources:
· To decline a group chat session invitation delete the Participant resource in the chat session http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/participants/{participantId}

[image: image10.emf]API Server

(Originator)

1. POST GroupChatSessionInformation

Response

API Server

(term. Participant)

Application

(term. Participant)

2. POST or NOTIFY

GroupChatSessionInvitationNotification

start a new

group chat

with resourceURL including sessionId

with resourceURL including sessionId

receive group

chat invitation

3. DELETE participant resource

with participantId

Response

with address and status=Disconnected

4. POST or NOTIFY

ChatParticipantStatusNotification decline group

chat invitation

Application

(Originator)

Figure 8 Declining a group chat invitation
Outline of the flow:
1. The originating application starts a group chat session using the POST method to submit to the resource containing all group chat sessions the GroupChatSessionInformation data structure with the list of invited Participants. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.

2. The terminating application receives a GroupChatSessionInvitationNotification as a notification.

3. The terminating application declines the group chat session invitation using the DELETE method on the “participants” resource including the participantId. The Participant is thereby deleted from the Participants list of the session, while the session still exists (as this is a group chat session).
4. A ChatParticipantStatusNotification is created by the API server to inform all other Participants that a user has left.
5.3.9 Cancelling a group chat session

The figure below shows a scenario for an originator cancelling a group chat. Note that this will only work if no Terminating Participant has yet accepted the invitation.

The resources:
· To cancel a group chat delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}

[image: image11.emf]API Server

(Originator)

1. POST GroupChatSessionInformation

Response

API Server

(term. Participant)

Application

(term. Participant)

2. POST or NOTIFY

GroupChatSessionInvitationNotification

start a new

group chat

session

with resourceURL including sessionId

with resourceURL including sessionId

receive group

chat session

invitation

Application

(Originator)

3. DELETEsession resource

with sessionId

Response

4. POST or NOTIFY ChatEventNotification

with link to session and

eventType=SessionCancelled

group chat

session has

been cancelled

cancel group

chatsession

Figure 9 Cancelling a group chat
Outline of the flows:
1. The originating application sends a group chat session invitation using the POST method to submit the GroupChatSessionInformation data structure to the resource representing all group chat sessions. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.
2. The terminating application(s) receive(s) a group chat session invitation as a notification.
3. Before any of the invited users has accepted the group chat invitation, the originating application cancels the chat session invitation using the DELETE method to the resource representing the group chat session.
4. A chat event notification is sent to the terminating applications that the session has been cancelled.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].

· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to Appendix H of [REST_NetAPI_ACR].
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: All subscriptions to chat event notifications
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions

This resource is used to manage subscriptions to chat event notifications. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.1.3 GET
This operation is used for reading the list of active chat notification subscriptions.
6.1.3.1 Example: Reading all active chat notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSubscriptionList xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<chatNotificationSubscription>

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<duration>7037</duration>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chatNotificationSubscription>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</chat:chatSubscriptionList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for chat notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to chat notifications, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<duration>7200</duration>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.1.5.2 Example 2: Creating a new subscription to chat notifications, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

 <duration>7200</duration>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.5.3 Example 3: Creating a new subscription to chat notifications, requiring support of Confirmed 1-1 Chats which the server does not provide
(Informative)
6.1.5.3.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

 <confirmedChatSupported>true</confirmedChatSupported>

 <adhocChatSupported>false</adhocChatSupported>

 <duration>7200</duration>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.3.2 Response

	HTTP/1.1 403 Forbidden
Content-Type: application/xml

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POL1013</messageId>

 <text>Confirmed 1-1 chats are not supported.</text>

 </policyException>

</common:requestError>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual subscription to chat event notifications
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions/{subscriptionId}
This resource represents an individual subscription to chat notifications.
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	Identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
This example shows also an alternative way to indicate desired content type in response from the server, by using URL query parameter “?resFormat” which is described in [REST_NetAPI_Common].
6.2.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

 <duration>7200</duration>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

6.3 Resource: All 1-1 chat sessions between two users

The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/

This resource contains information about all 1-1 chat sessions between two particular users.
6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST

This operation is used to create a 1-1 chat session with the user represented by {userId} as Originator and the one represented by {otherUserId} as Terminating Participant.
For Ad-hoc 1-1 Chats (i.e. those using the reserved value “adhoc” for {sessionId}), this step is not necessary.
6.3.5.1 Example 1: Creating a 1-1 chat session
(Informative)

6.3.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101 HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatSessionInformation xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <clientCorrelator>23456</clientCorrelator>

</chat:chatSessionInformation>

6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001
<?xml version="1.0" encoding="UTF-8"?>
<chat:chatSessionInformation xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Invited</status>

 <clientCorrelator>23456</clientCorrelator>

 <resourceURL>

 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001

 </resourceURL>

</chat:chatSessionInformation>

6.3.5.2 Example2: Creating a 1-1 chat session with initial message
(Informative)

6.3.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101 HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatSessionInformation xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <clientCorrelator>23456</clientCorrelator>
 <initialMessage>

 <text>What about dinner tonight at 8pm at our favorite restaurant? </text>

 <reportRequest>Displayed</reportRequest>

 </initialMessage>

</chat:chatSessionInformation>

6.3.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess002

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatSessionInformation xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Invited</status>

 <clientCorrelator>23456</clientCorrelator>

 <resourceURL>

 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess002
 </resourceURL>

</chat:chatSessionInformation>

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual 1-1 chat session

The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/
This resource represents a 1-1 chat session.

A 1-1 chat session MAY be extended to a group chat session as described in section 6.6. These are represented using different resources because the feature sets of both types of sessions are different. In case a 1-1 session has been successfully extended into a group chat session, the 1-1 session is closed. For a certain period of time after extending the session, it is RECOMMENDED to redirect all accesses to a 1-1 session resource or its offspring resources to the resource representing the corresponding group chat session. Section 6.4.3.2 provides an example for such redirection.
6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.4.3 GET

This operation is used to retrieve chat session information.
6.4.3.1 Example 1: Retrieving chat session information of a 1-1 session
(Informative)

6.4.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSessionInformation xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Invited</status>

 <clientCorrelator>23456</clientCorrelator>

 <resourceURL>
http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001

 </resourceURL>

</chat:chatSessionInformation>

6.4.3.2 Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session
(Informative)

6.4.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.2.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.4.6 DELETE

This operation ends the chat session.

It is used in the following contexts:

· by the Originator to cancel a pending invitation before the Terminating Participant has accepted the invitation, which will cause the session to end

· by the Terminating Participant to decline an invitation to a chat session, which will cause the session to end

· by any Participant to terminate the chat session.

6.4.6.1 Example: Terminating a 1-1 chat session, or declining an invitation
(Informative)

6.4.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.4.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5 Resource: 1-1 chat session status

The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/status

This resource represents the status of the session and is used for accepting a 1-1 chat invitation, by means of updating the status.
6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.5.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.5.4 PUT

This operation is used is used for accepting a 1-1 chat invitation, by means of updating the status.

6.5.4.1 Example 1: Accepting a 1-1 chat invitation
(Informative)

6.5.4.1.1 Request

	PUT /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <status>Connected</status>

</chat:participantSessionStatus>

6.5.4.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2011 17:51:59 GMT

6.5.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.6 Resource: Extend 1-1 chat to a group chat session

The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/extend

This resource is used to extend a 1-1 chat to a group chat session.
6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123.

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123.

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.6.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6.5 POST

This operation is used to extend a 1-1 chat to a group chat session. The list in the body of the request represents those users that are to be added to the session.
In case of successful operation, “303 See Other” SHALL be returned, providing a Location header and a resourceReference root element with the location representing the new group chat session in which the Originator is already a Participant. All Participants given in the body of the HTTP request are invited to the group chat session.
On behalf of the Terminating Participant in the original 1-1 session, the API server SHALL end the original 1-1 chat session once the Terminating Participant in the original 1-1 session has accepted or declined the invitation to the group chat, or once that invitation has timed out.
The entity body of the POST request can carry two different data types: ParticipantList or ExtensionParameters. ExtensionParameters allows to OPTIONALLY mark the resulting group chat session as “closed”, in addition to listing the additional participants. The use of “ParticipantList” is deprecated for clients, but servers still MUST support it.
6.6.5.1 Example: Extending a Confirmed 1-1 Chat to a group chat session
(Informative)

6.6.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/extend HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
<chat:extensionParameters xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <participant>

 <address>tel:+B19585550102</address>

 <name>Ted</name>

 <clientCorrelator>ABCDE</clientCorrelator>

 </participant>
 <isClosed>false</isClosed>
</chat:extensionParameters>

6.6.5.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7 Resource: Chat messages in a 1-1 chat
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages
This resource represents all chat messages in a chat session. In the current version of the specification, it is a “send-only” resource (i.e. chat messages cannot be read back).
6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.7.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.5 POST
This operation is used to create a chat message. This method MUST return either a resourceReference root element or a chatMessage root element, where using the first option is RECOMMENDED.

6.7.5.1 Example 1: Creating a chat message, using tel URI and returning the location of the created resource
(Informative)
6.7.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.7.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001
 </resourceURL>

</common:resourceReference>

Note that alternatively, a copy of the created resource can be returned, as illustrated in section 6.7.5.2.

6.7.5.2 Example 2: Creating a chat message, using ACR and returning a copy of the created resource
(Informative)
6.7.5.2.1 Request

	POST /exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/adhoc/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.7.5.2.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/adhoc/messages/msg001

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/adhoc/msg001
 </resourceURL>
</chat:chatMessage>

Note that alternatively, the location of the created resource can be returned, as illustrated in section 6.7.5.1.
6.7.5.3 Example 3: Creating an “isComposing” message and returning the location of the created resource (Informative)

6.7.5.3.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:isComposing xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <state>active</state>

 <contenttype>text/plain</contenttype>

 <refresh>90</refresh>

</chat:isComposing>

6.7.5.3.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg002
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg002

 </resourceURL>

</common:resourceReference>

Note that alternatively, a copy of the created resource can be returned, as illustrated in section 6.7.5.2.

6.7.5.4 Example 4: Creating a chat message during session set-up in Confirmed 1-1 Chat mode (Informative)

This example illustrates the case of trying to send a chat message between creating the chat session and receiving the acceptance message from the terminating participant. In case the Chat server does not buffer such messages, an exception is returned as follows.
6.7.5.4.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <text>How are you?</text>

 <reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.7.5.4.2 Response

	HTTP/1.1 403 Forbidden

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

<link rel="ChatMessage"
href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/messages/msg002"/>

<policyException>
 <messageId>POL1012</messageId>

 <text>Messages during session setup not supported.</text>

</policyException>

</common:requestError>

6.7.5.5 Example 5: Creating a multimedia chat message, using tel URI and returning the location of the created resource
(Informative)
6.7.5.5.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Accept: application/xml

Host: example.com

Content-Length: nnnn
Content-Type: multipart/form-data;boundary="===============123456==";
MIME-Version: 1.0

--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<chat:outgoingMultimediaChatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <reportRequest>Displayed</reportRequest>

</chat:outgoingMultimediaChatMessage>

--===============123456==

Content-Disposition: form-data; name=”attachments”

Content-Type: multipart/mixed; boundary=”====aaabbb”

--====aaabbb

Content-Disposition:attachment;filename=”textBody.txt”;

Content-Type: text/plain
Content-Transfer-Encoding: 8 bit

Look at the attached picture

--====aaabbb

Content-Disposition:attachment;filename=”image1.png”;

Content-Type: image/png
MIME-Version: 1.0
Content-ID: <99334422@example.com>

ëPNG...binary image data...

--====aaabbb--

--===============123456==--

6.7.5.5.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg003
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg003
 </resourceURL>

</common:resourceReference>

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Individual message status in a 1-1 chat
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/{sessionId}/messages/{messageId}/status
This resource represents the status of a message.

Note: The duration for which the Server stores information about a chat message is controlled by service provider policies.
6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	otherUserId
	Identifier of the user who acts as chat partner
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

	messageId
	Identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.8.3 GET
This operation is used for reading the status of an individual message.

6.8.3.1 Example: Reading the status of an individual message
(Informative)
6.8.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001/status HTTP/1.1
Accept: application/xml
Host: example.com

6.8.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<chat:messageStatusReport xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <status>Displayed</status>

</chat:messageStatusReport>

6.8.4 PUT

This operation is used for reporting the “Displayed” status of a message. The client SHALL execute this method if a received message indicates that a “Displayed” status report is requested, by including the element ‘reportRequest’ in the message.

Note that the “Delivered” status report is generated by the API Server by procedures of the underlying protocol layers which are out of scope of this specification.

6.8.4.1 Example: Reporting the status of a chat message
(Informative)
6.8.4.1.1 Request

	PUT /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/adhoc/messages/msg001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageStatusReport xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Displayed</status>

</chat:messageStatusReport>

6.8.4.1.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.9 Resource: All group chat sessions
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/group
This resource represents the active group chat sessions for a particular user.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.9.3 GET
This operation is used to list all group chat sessions the user is participating to.

6.9.3.1 Example: Get the list of active group chat session (Informative)

6.9.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group HTTP/1.1

Accept: application/xml

Host: example.com

6.9.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformationList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <groupChatSessionInformation>
 <subject>Dinner tonight</subject>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
 </chat:groupChatSessionInformation>

	 < groupChatSessionInformation>
 <subject>Lunch tomorrow</subject>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess002</resourceURL>
 </chat:groupChatSessionInformation>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group

 </resourceURL>
</chat:groupChatSessionInformationList>

6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
This operation is used to create a new group chat session.
6.9.5.1 Example: Creating a new group chat session
(Informative)
6.9.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group HTTP/1.1

Content-Length: nnnn
Content-Type: application/xml

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Dinner tonight</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>
 <isOriginator>true</isOriginator>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
</chat:groupChatSessionInformation>

6.9.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Dinner tonight</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>

 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: Individual group chat session
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
This resource represents a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session to the client that has left. This is done for the purpose of allowing re-joining the session. The time how long this is exposed is controlled by operator policies. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to it for possible re-joining, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

This identifier is populated by the server during resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.10.3 GET
This operation is used to retrieve chat session information.

6.10.3.1 Example 1: Retrieving group chat session information
(Informative)
6.10.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Dinner tonight</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>
<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
</resourceURL>

 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>
<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
</resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

6.10.3.2 Example 2: Retrieving group chat session information when being disconnected
(Informative)
This example illustrates the case that the client reads information about a group chat session on behalf of a user who is currently not participating in the session, but who is allowed to re-join according to operator policies.
6.10.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.6 DELETE

This operation is used by the Originator to cancel the group chat session (before any tParticipant has accepted the invitation) or to terminate it (after at least one tParticipant has accepted the invitation). This method MUST be supported by the server for “cancel” and MAY be supported by the server for “terminate”. In case the method is not supported for “terminate”, a policy exception POL1018 SHALL be returned.
6.10.6.1 Example: Cancelling or terminating a group chat session
(Informative)
6.10.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11 Resource: All Participants in a group chat session
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants
This resource represents the set of Participants in a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session and the ‘participants’ node to the client that has left, for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. During the time this resource is still available, the client can re-join by executing the POST method as described below. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him for possible re-joining, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.
6.11.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

This identifier is populated by the server during resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.11.3 GET
This operation is used to retrieve the list of Participants in a group chat session.
6.11.3.1 Example 1: Retrieving the list of Participants in a group chat session
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently participating in the session.
6.11.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants

 </resourceURL>
</chat:participantList>

6.11.3.2 Example 2: Retrieving the list of Participants in a group chat session when being disconnected
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, but who is allowed to re-join according to operator policies.
6.11.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11.3.3 Example 3: Retrieving the list of Participants in a group chat session when not having access rights
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, and who is not allowed to re-join according to operator policies.
6.11.3.3.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.3.2 Response

	HTTP/1.1 403 Forbidden
Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="ParticipantList"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants"/>
 <policyException>

 <messageId>POL2003</messageId>

 <text>Access denied.</text>

 </policyException>

</common:requestError>

6.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.11.5 POST
This operation is used to add Participants to a group chat:
· The Originator executes this method to add one or more Participants to a group chat.

· A former Participant executes this method to re-join a group chat.

· A Terminating Participant executes this method to add one or more Participants to a group chat, if operator policies allow that.
Note that for a Participant re-joining a chat session, the {participantId} resource URL variable is not guaranteed to have the same value as in the previous participation of the Participant in the session.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.

In other words, adding one Participant corresponds to the creation of a new “participant” resource in the list of Participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple Participants corresponds to an update operation of the list of Participants.
6.11.5.1 Example 1: Adding one Participant to a group chat, or re-joining a group chat
(Informative)
This example illustrates the following three cases for which the same request syntax is being used:

· one Participant added to a group chat by the Originator

· one Participant re-joining a chat which she/he has left earlier
6.11.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

</chat:participantInformation>

6.11.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.11.5.2 Example 2: Adding multiple Participants to a group chat
(Informative)
6.11.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
 <clientCorrelator>67890</clientCorrelator>

 </participant>
</chat:participantList>

6.11.5.2.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>
<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part005

 </resourceURL>
 </participant>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.5.3 Example 3: Error situation when trying to re-join a group chat session
(Informative)
This example illustrates the case that the client is not allowed to re-join a group chat session, or that the session does not exist. Either error code 404 (for non-existing sessions) or 403 (for sessions to which the client has no access) are returned.
6.11.5.3.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.5.3.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="ParticipantList"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants"/>
 <serviceException>

 <messageId>SVC0004</messageId>

 <text>No valid addresses provided in message part %1</text>

 <variables>Request-URI</variables>

 </serviceException>
</common:requestError>

6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.12 Resource: Individual Participant in a group chat session
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}
This resource represents a Participant in a group chat session.

6.12.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

This identifier is populated by the server during resource creation.

	participantId
	Identifier of the Participant
Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.12.3 GET
This operation is used to retrieve information about an individual group chat Participant.
6.12.3.1 Example: Retrieving information about an individual group chat Participant
(Informative)
6.12.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.6 DELETE

This operation ends the participation of a Participant in the group chat session, i.e. disconnects the Participant from the session.
It is used in the following contexts:

· by the Originator to remove a Participant from the chat session (OPTIONAL, and subject to service provider policies)
· by the Terminating Participant to decline an invitation to a chat session

· by any Participant to leave the chat session.

Note that a Participant who has left the session can re-join (if allowed by policies) using the mechanism defined in section 6.11.5.

Also note that if the Originator leaves, this may lead to the session being torn down by the server, depending on service provider policies.

As a result of performing the DELETE operation, the server SHALL remove the {participantId} node of the removed Participant from the resource tree, but SHALL keep the “sessionId” node and its “participants” sub-node available for a certain period of time that is controlled by policies. As it is not guaranteed that the server will receive information regarding the further session progress after leaving the session, GET access to these resources on behalf of a disconnected Participant SHALL return ‘204 No Content’.
6.12.6.1 Example: Leaving a group chat session
(Informative)
6.12.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.13 Resource: Individual group chat session Participant status
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status
This resource represents the status of a Participant in a group chat session and is used for accepting a group chat invitation, by means of updating the status.
6.13.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

This identifier is populated by the server during resource creation.

	participantId
	Identifier of the Participant
Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.13.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.13.4 PUT

This operation is used is used for accepting a group chat invitation, by means of updating the status.

6.13.4.1 Example 1: Accepting a group chat invitation
(Informative)
6.13.4.1.1 Request

	PUT /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001/status HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Connected</status>

</chat:participantSessionStatus>

6.13.4.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

Note that the pendant operation, i.e. declining a group chat invitation, is the same as leaving a group chat session. For an example see section 6.12.6.1
6.13.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.14 Resource: Chat messages in a group chat session
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages
This resource represents the set of messages in a group chat session.
In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.14.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

This identifier is populated by the server during resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.14.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.14.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.14.5 POST
This operation is used to create a chat message. This method MUST return either a resourceReference root element or a chatMessage root element, where using the first option is RECOMMENDED.

6.14.5.1 Example 1: Creating a group chat message, using tel URI and returning the location of the created resource
(Informative)
6.14.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.14.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001
 </resourceURL>

</common:resourceReference>

Note that alternatively, a copy of the created resource can be returned, as illustrated in section 6.7.5.2.
6.14.5.2 Example 2: Creating a multimedia group chat message, using tel URI and returning the location of the created resource
(Informative)
6.14.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages HTTP/1.1

Accept: application/xml

Host: example.com

Content-Length: nnnn
Content-Type: multipart/form-data;boundary="===============123456==";
MIME-Version: 1.0

--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<chat:outgoingMultimediaChatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <reportRequest>Displayed</reportRequest>

</chat:outgoingMultimediaChatMessage>

--===============123456==

Content-Disposition: form-data; name=”attachments”

Content-Type: multipart/mixed; boundary=”====aaabbb”

--====aaabbb

Content-Disposition:attachment;filename=”textBody.txt”;

Content-Type: text/plain
Content-Transfer-Encoding: 8 bit

Look at the attached picture

--====aaabbb

Content-Disposition:attachment;filename=”image1.png”;

Content-Type: image/png
MIME-Version: 1.0
Content-ID: <99334422@example.com>

ëPNG...binary image data...

--====aaabbb--

--===============123456==--

6.14.5.2.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001</resourceURL>

</common:resourceReference>

6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.15 Resource: Individual message status at a designated participant of a group chat
The resource used is:
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status/{participantId}
This resource represents the status of a message at a designated participant of a group chat.

Note: The duration for which the Server stores information about a chat message is controlled by service provider policies.
6.15.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path
Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API clients want to use
The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	Identifier of the chat session

In Confirmed 1-1 Chat mode, this identifier is populated by the server during resource creation.

In Ad-hoc 1-1 Chat mode, this identifier SHALL be set to the reserved word “adhoc”, which SHALL NOT be used for other purposes in this resource URL variable.

	messageId
	Identifier of the message

	participantId
	Identifier of the designated participant

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.15.3 GET
This operation is used for reading the status of an individual message at the designated participant of a group chat. If the status is not yet available then an error SHOULD be returned, such as 404 Not Found.
6.15.3.1 Example: Reading the status of an individual message at the designated participant of a group chat
(Informative)
6.15.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/messages/msg001/status/ tel%3A%2B171253124653 HTTP/1.1
Accept: application/xml
Host: example.com

6.15.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<chat:messageStatusReport xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <status>Displayed</status>

</chat:messageStatusReport>

6.15.4 PUT

This operation is used for reporting the “Displayed” status of a message. The client SHALL execute this method if a received message indicates that a “Displayed” status report is requested, by including the element ‘reportRequest’ in the message.

Usually an app can only modify the status of the participant(s) it represents (the “own status”). Accessing other participants’ resources with PUT will result in an error, such as 403 Forbidden.

Note that the “Delivered” status report is generated by the API Server by procedures of the underlying protocol layers which are out of scope of this specification.

6.15.4.1 Example: Reporting the status of a chat message for a designated participant in a group chat
(Informative)
6.15.4.1.1 Request

	PUT /exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/messages/msg001/status/ tel%3A%2B171253124653 HTTP/1.1
Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageStatusReport xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Displayed</status>

</chat:messageStatusReport>

6.15.4.1.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.15.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.15.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.16 Resource: Client notification containing incoming message
This resource is a callback URL provided by the client for notifications about incoming messages. The actual messages are inlined in the notifications.

The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.16.5.

To message notifications in Confirmed and Ad-hoc 1-1 Chats, the following table applies:
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	n/a
	ChatMessageNotification
	Receiver
	displayed (6.8.4.)
	ChatSessionInformation

ChatMessage
	/{otherUserId}/{sessionId}
/{otherUserId}/{sessionId}/messages/{messageId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”. The resource URL of the resource representing the underlying Chat message is passed in the “href” attribute of the “link” element with rel=”ChatMessage”.

To indicate that the message was displayed to the user, the application of the Receiver MUST update the status of the message as defined in section 6.8.4. The status is represented by the child “/status” of the resource representing the Chat message.
To message notifications in group chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	ChatMessageNotification
	Receivers
	n/a
	GroupChatSessionInformation
ChatMessage
	/{sessionId}

/{sessionId}/messages/{messageId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”GroupSessionInformation”. The resource URL of the resource representing the underlying Chat message is passed in the “href” attribute of the “link” element with rel=”ChatMessage”.

6.16.1 Request URL variables

Client provided if any.
6.16.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.16.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.16.5.1 Example: Notify a client about incoming messages
(Informative)
6.16.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessageNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>
 <link rel="ChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 "/>
<link rel="ChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001"/>
<senderAddress>tel:+19585550102</senderAddress>

<senderName>Ted</senderName>

<chatMessage>

<text>Hello Alice</text>

<reportRequest>Displayed</reportRequest>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001</resourceURL>

</chatMessage>

<dateTime>2001-12-17T09:30:47Z</dateTime>

</chat:chatMessageNotification>

6.16.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.16.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.17 Resource: Client notification about message status
This resource is a callback URL provided by the client for notifications about message status such as “Delivered”, “Failed”, “Displayed”.
The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.17.5.

To message status notifications in Confirmed and Ad-hoc 1-1 Chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	n/a
	ChatMessageStatusNotification
	Sender
	n/a
	ChatSessionInformation

ChatMessage
	/{otherUserId}/{sessionId}

/{otherUserId}/{sessionId}/messages/{messageId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

The resource URL of the resource representing the underlying Chat message is passed in the “href” attribute of the “link” element with rel=”ChatMessage”.
To message status notifications in group Chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	ChatMessageStatusNotification
	Sender
	n/a
	ChatSessionInformation
ChatMessage
Participant
	/{sessionId}

/{sessionId}/messages/{messageId}

/{sessionId}/participants/{participantId}/

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

A notification MAY aggregate more than one Participant link. The resource URL of the resource representing the Participant(s) is (are) passed in the “href” attribute of the “link” element (s) with rel=”Participant”.
The resource URL of the resource representing the underlying Chat message is passed in the “href” attribute of the “link” element with rel=”ChatMessage”.
6.17.1 Request URL variables

Client provided if any.

6.17.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.17.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.17.5 POST
This operation is used to notify the client the status of a message that it has sent. It is only relevant for 1-1 chats.

6.17.5.1 Example: Notify a client about 1-1 message status
(Informative)
6.17.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessageStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>
 <link rel="ChatSessionInformation"
href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001"/>
<link rel="ChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc "/>
<status>Displayed</status>

</chat:chatMessageStatusNotification>

6.17.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.17.5.2 Example: Notify a client about group message status
(Informative)
6.17.5.2.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessageStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>efgh</callbackData>
 <link rel="ChatSessionInformation"
href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123 "/>
<link rel="ChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/messages/message987"/>
<link rel="Participant"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/participant/ tel%3A%2B17124441323"/>
<status>Displayed</status>

</chat:chatMessageStatusNotification>

6.17.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.18 Resource: Client notification about 1-1 chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.18.5.

This resource is not relevant in Ad-hoc 1-1 Chats and group chats.
To chat session invitation notifications in Confirmed 1-1 Chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	n/a
	ChatSessionInvitationNotification
	Terminating Participant
	accept (6.5.4.)
decline (6.4.6.)
	ChatSessionInformation
	/{otherUserId}/{sessionId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

To accept the session invitation request, the application of the Receiver MUST update the status of the session as defined in section 6.5.4. The status is represented by the child “/status” of the resource representing the Chat session.
To decline the session invitation request, the application of the Receiver MUST destroy the resource representing the underlying Chat session as defined in section 6.4.6.
6.18.1 Request URL variables

Client provided if any.
6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.18.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.18.5 POST
This operation is used to notify the client about chat session invitations.
6.18.5.1 Example: Notify a client about 1-1 chat session invitations
(Informative)
6.18.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSessionInvitationNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <callbackData>abcd</callbackData>

 <link rel="ChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sess001"/>
 <subject>Dinner tonight</subject>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

</chat:chatSessionInvitationNotification>

6.18.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19 Resource: Client notification about group chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.19.5.

This resource is not relevant in 1-1 chats.

To chat session invitation notifications in group chats, the following table applies:

	Event Type
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	GroupChatSessionInvitationNotification
	Terminating Participants
	accept (6.13.4)
decline (6.12.6.)
	GroupChatSessionInformation

ParticipantInformation

	/{sessionId}

/{sessionId}/participants/{participantId}

The resource URL of the resource representing the underlying group chat session is passed in the “href” attribute of the “link” element with rel=”GroupChatSessionInformation”. The resource URL of the resource representing the actual invited participant is passed in the “href” attribute of the “link” element with rel=”ParticipantInformation”.
To accept the session invitation request, the application of the Receiver MUST update the status of the session as defined in section 6.13.4. The status is represented by the child “/status” of the resource representing the group chat session.
To decline the session invitation request, the application of the Receiver MUST destroy the resource representing the underlying group chat session as defined in section 6.12.6.
6.19.1 Request URL variables

Client provided if any.
6.19.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.19.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19.5 POST
This operation is used to notify the client about chat session invitations.
6.19.5.1 Example: Notify a client about group chat session invitations
(Informative)
This example notification is triggered by the request in example 6.9.5.1. Note that the {userId} resourceURL variable represents the userId of the user on whose behalf the application acts, not the one of the Originator.
6.19.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInvitationNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001"/>
<link rel=" ParticipantInformation"
 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001/participants/part003"/>
<subject>Dinner tonight</subject>

<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<isOriginator>true</isOriginator>

<status>Connected</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>

</participant>

<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>

</participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>

 </participant>
</chat:groupChatSessionInvitationNotification>

6.19.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20 Resource: Client notification about chat session events
This resource is a callback URL provided by the client for notification about various chat session events. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.20.5.

This resource is not relevant in Ad-hoc 1-1 Chats.

To chat session event notifications in Confirmed 1-1 Chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	Accepted
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionId}

	Declined
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionId}

	SessionCancelled
	ChatEventNotification
	Participants
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionId}

	SessionEnded
	ChatEventNotification
	Participants
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

To chat session event notifications in group chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	SessionCancelled
	ChatEventNotification
	Participants
	n/a
	GroupChatSessionInformation
	/{sessionId}

	SessionEnded
	ChatEventNotification
	Participants
	n/a
	GroupChatSessionInformation
	/{sessionId}

The resource URL of the resource representing the underlying group chat session is passed in the “href” attribute of the “link” element with rel=”GroupChatSessionInformation”.

6.20.1 Request URL variables

Client provided if any.
6.20.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.20.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20.5 POST
This operation is used to notify the client about chat session events.
6.20.5.1 Example: Notify a client about chat session events
(Informative)
6.20.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatEventNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"/>

<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
<eventType>SessionEnded</eventType>

<eventDescription>The session has ended.</eventDescription>

</chat:chatEventNotification>

6.20.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21 Resource: Client notification about changes of Participant status
This resource is a callback URL provided by the client for notification about changes of Participant status. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.21.5.

The notification is sent by the server to all subscribed Participants in the chat session triggered by Participants re-joining or leaving the chat.

This resource is not relevant in 1-1 chats.

To participant status notifications in group chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	ChatParticipantStatusNotification
	Participants
	n/a
	GroupChatSessionInformation

	/{sessionId}

6.21.1 Request URL variables

Client provided if any.
6.21.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.21.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21.5 POST
This operation is used to notify the client about changes of Participant status.
6.21.5.1 Example: Notify a client about Participant status changes
(Informative)
6.21.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatParticipantStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"/>
<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<status>Connected</status>

<yourown>true</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001"/>
</participant>
<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Disconnected</status>

<yourown>false</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002"/>
</participant>

</chat:chatParticipantStatusNotification>

6.21.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.21.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22 Resource: Client notification about subscription cancellation
This resource is a callback URL provided by the client for notification about subscription cancellations, which are usually due to the subscription expiring. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.21.5.

The notification is sent by the server to the user to whom the cancelled subscription belongs.
To subscription cancellation notifications, the following table applies:
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}

	n/a
	ChatSubscriptionCancellationNotification
	subscriber
	n/a
	ChatNotificationSubscription
	/subscriptions/{subscriptionId}

6.22.1 Request URL variables

Client provided if any.
6.22.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see section 7.
6.22.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22.5 POST
This operation is used to notify the client about a cancelled subscription, e.g. due to expiry or an error.
6.22.5.1 Example: Notify a client about subscription cancellation
(Informative)
6.22.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSubscriptionCancellationNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</chat:chatSubscriptionCancellationNotification >

6.22.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.22.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.23 Resource: Client notification about incoming multimedia message
This resource is a callback URL provided by the client for notifications about incoming multimedia messages. Each notification contains links where the components of the message can be downloaded.

The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.16.5.

To multimedia message notifications in Confirmed and Ad-hoc 1-1 Chats, the following table applies:
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	n/a
	MultimediaChatMessageNotification
	Receiver
	displayed (6.8.4.)
	ChatSessionInformation

IncomingMultimediaChatMessage
	/{otherUserId}/{sessionId}

/{otherUserId}/{sessionId}/messages/{messageId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”. The resource URL of the resource representing the underlying multimedia chat message is passed in the “href” attribute of the “link” element with rel=”IncomingMultimediaChatMessage”.

To indicate that the message was displayed to the user, the application of the Receiver MUST update the status of the message as defined in section 6.8.4. The status is represented by the child “/status” of the resource representing the multimedia chat message.

To message notifications in group chats, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	MultimediaChatMessageNotification
	Receivers
	n/a
	GroupChatSessionInformation
IncomingMultimediaChatMessage
	/{sessionId}

/{sessionId}/messages/{messageId}

The resource URL of the resource representing the underlying Chat session is passed in the “href” attribute of the “link” element with rel=”GroupSessionInformation”. The resource URL of the resource representing the underlying multimedia chat message is passed in the “href” attribute of the “link” element with rel=”IncomingMultimediaChatMessage”.

6.23.1 Request URL variables

Client provided if any.
6.23.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Chat API, see see section 7.
6.23.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.23.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.23.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.23.5.1 Example: Notify a client about incoming messages
(Informative)
6.23.5.1.1 Request

	POST /chat/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:multimediaChatMessageNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>
 <link rel="ChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 "/>
<link rel="IncomingMultimediaChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001"/>
<senderAddress>tel:+19585550102</senderAddress>

<senderName>Ted</senderName>
<message>

 <reportRequest>Displayed</reportRequest>
 <attachment>
 <contentType>text/plain</contentType>

 <link rel="attachment"
 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001/att/att1.txt" />

 </attachment>

 <attachment>

 <contentType>image/png</contentType>

 <link rel="attachment"

 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001/att/att2.png" />

 </attachment>

</message>

<dateTime>2001-12-17T09:30:47Z</dateTime>

</chat:multimediaChatMessageNotification>

	

6.23.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.23.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions
7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional specific Service Exception codes defined for this release of the Chat API.

7.2 Policy Exceptions
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the Chat API.
7.2.1 POL1012: Messages during session setup not supported
	Name

	Description

	MessageID
	POL1012

	Text
	Messages during session setup not supported.

	Variables
	None

	HTTP status code(s)
	403 Forbidden

7.2.2 POL1013: Confirmed 1-1 chats not supported
	Name

	Description

	MessageID
	POL1013

	Text
	Confirmed 1-1 chats are not supported.

	Variables
	None

	HTTP status code(s)
	403 Forbidden

7.2.3 POL1014: Ad-hoc 1-1 chats not supported
	Name

	Description

	MessageID
	POL1014

	Text
	Ad-hoc 1-1 chats are not supported.

	Variables
	none

	HTTP status code(s)
	403 Forbidden

7.2.4 POL1015: revoke of 1-1 chat message not possible
	Name

	Description

	MessageID
	POL1015

	Text
	Revoking this 1-1 chat message is not supported.

	Variables
	none

	HTTP status code(s)
	403 Forbidden

7.2.5 POL1017: Too many participants
	Name

	Description

	MessageID
	POL1017

	Text
	Too many participants.

	Variables
	none

	HTTP status code(s)
	403 Forbidden

7.2.6 POL1018: Group chat termination not supported
	Name

	Description

	MessageID
	POL1018

	Text
	Group chat termination not supported.

	Variables
	none

	HTTP status code(s)
	403 Forbidden

7.2.7 POL1029: Forbidden to join a closed group chat
	Name

	Description

	MessageID
	POL1029

	Text
	Forbidden to join a closed group chat

	Variables
	none

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions
REST_NetAPI _Chat-V1_0
	28 Apr 2011
	All
	TS skeleton created

	
	31 May 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0020R05-CR_Chat_API_basic_design implemented.

	
	07 Jul 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0124R03-CR_Chat_API_resource_and_datatype_alignment_with_new_resource_model implemented.

	
	27 Jul 2011
	2.1

5.1

5.2.2.x

5.2.3.x

	Implemented CRs

· OMA-ARC-REST-NetAPI-2011-0156-CR_Chat_alignment_with_FT_IS_VS

· OMA-ARC-REST-NetAPI-2011-0157R01-CR_Chat_small_fix

	
	02 Aug 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0173R01-CR_Chat_section_6_structure_with_tel_URI_fixes_and_Notif_channel_changes implemented

	
	08 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0197R01-CR_Chat_Appendix_C

· OMA-ARC-REST-NetAPI-2011-0093R03-CR_Chat_Flows

· OMA-ARC-REST-NetAPI-2011-0220-CR_Separating_originator_and_tParticipant_1_1_chat^

· OMA-ARC-REST-NetAPI-2011-0227R02-CR_Chat_Long_Polling_fix

	
	26 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0238R02-CR_ACR_Chat

· OMA-ARC-REST-NetAPI-2011-0250-CR_ChatEventNotification_fix

	
	17 Oct 2011
	5.2.3.3, 5.2.2.11, 5.2.2.12
	CR implemented: OMA-ARC-REST-NetAPI-2011-0275R01-CR_Chat_status_enum_fix

	
	11 Nov 2011
	Many
	CRs implemented:

· OMA-ARC-REST-NetAPI-2011-0284R02-CR_Simplifying_1_1_chat_sessions

· OMA-ARC-REST-NetAPI-2011-0237R02-CR_Chat_examples

Note that CR 284 implements a fundamental change in the approach to 1-1 chats. Rather than exposing session-based 1-1 chats only, this now supports both session-based and session-less 1-1 chats. The new mode greatly simplifies the API, and makes it closer to today’s chat APIs in the Internet. Session-based oneToOne chats are supposed to be optional.

	
	18 Nov 2011
	Many
	CR OMA-ARC-REST-NetAPI-2011-0375-CR_Chat_actions_and_editorials implemented

	
	23 Nov 2011
	Many
	CRs implemented:

· OMA-ARC-REST-NetAPI-2011-0403R01-CR_Chat_JSON

· OMA-ARC-REST-NetAPI-2011-0409-CR_Annex_F_in_Chat

· OMA-ARC-REST-NetAPI-2011-0410-CR_Section_4_in_Chat

· OMA-ARC-REST-NetAPI-2011-0412R01-CR_Chat_Flows_updates

Editorial:

· Converted Word comments into editor’s notes

· Removed pure-editorial editor’s notes

	
	29 Nov 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0411R01-CR_Chat_SCR_tables
· OMA-ARC-REST-NetAPI-2011-0416-CR_Chat_Appendix_G
· OMA-ARC-REST-NetAPI-2011-0424-INP_HTML_401_reference_blueprint
Editorial:

· Removed hyperlinks in JSON examples

	
	22 Dec 2011
	None
	Repackaged as the previous revision was stored in a broken ZIP file. No changes to actual content.

	
	26 Jan 2012
	Many
	Implemented CRs:

· OMA-ARC-REST-NetAPI-2012-0013-CR_TS_Chat_CONR_editorials_and_simple_bugfixes

· OMA-ARC-REST-NetAPI-2011-0434R01-INP_Blueprint_for_APIs_changes_for_ACR_Authorization

· OMA-ARC-REST-NetAPI-2012-0029-INP_NOTIFY_blueprint

	
	22 Feb 2012
	G.1.2
	Editorial: capitalized “Authorization” in “acr:Authorization”

	
	13 Mar 2012
	Many
	Implemented OMA-ARC-REST-NetAPI-2012-0102R01-CR_Chat_TS_Addressing_new_global_comments

	
	27 Mar 2012
	Many
	CRs implemented:

· OMA-ARC-REST-NetAPI-2012-0106R01-CR_Chat_implementing_new_resource_structure

· OMA-ARC-REST-NetAPI-2012-0114-CR_Chat_Notifications_with_TTL_blueprint

	
	05 Apr 2012
	Some
	Implemented OMA-ARC-REST-NetAPI-2012-0126R01-CR_Session_aware_session_unaware_signalling_Chat

	
	16 Apr 2012
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2012-0146R02-CR_Chat_section_5_3_intro

· OMA-ARC-REST-NetAPI-2012-0145R01-CR_Chat_even_more_CONR_resolutions

· OMA-ARC-REST-NetAPI-2012-0142R01-CR_Chat_more_CONR_resolutions

· OMA-ARC-REST-NetAPI-2012-0131R01-CR_Chat_flows_session_aware

	
	17 Apr 2012
	Many
	OMA-ARC-REST-NetAPI-2012-0149R01-CR_Chat_loose_ends implemented

	
	18 Apr 2012
	Many
	OMA-ARC-REST-NetAPI-2012-0152R01-CR_Chat_session_aware_session_unaware_take_3 implemented

	
	24 Apr 2012
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2012-0159-CR_Chat_errorcodes

· OMA-ARC-REST-NetAPI-2012-0158R01-CR_Chat_cleanup

	
	02 May 2012
	Many
	CR implemented

· OMA-ARC-REST-NetAPI-2012-0163-CR_Chat_TS_address_example_validation_errors

	
	03 May 2012
	All
	Suffix "-v1" removed from document name
Editorial changes

	Candidate Version
REST_NetAPI _Chat-V1_0
	09 May 2012
	n/a
	Status changed to Candidate by TP

TP Ref # OMA-TP-2012-0195-INP_REST_NetAPI_Chat_1_0_ERP_and_ETR_for_Candidate_Approval

	Draft Versions
REST_NetAPI _Chat-V1_0

	23 Jul 2012
	5.1, 5.2.2.4, 5.2.2.5, 5.2.2.13, 5.2.2.14, 5.2.2.18, 5.3.5, 5.3.6, 5.3.7, 5.3.8, 6.3.5.1.1, 6.3.5.1.2, 6.4.3.1.2, 6.10, 6.10.6, 6.10.6.1, 6.11.3.3.2, 6.11.5.3.2, 7.2.5, B.1.11, C.4, C.4.1.1, C.4.1.2, D.7, D.8, D.22, D.25, D.28
	Incorporated CRs:

 OMA-ARC-REST-NetAPI-2012-0177R01-CR_Cancel_Group_Chat_fix_for_TS_Chat
 OMA-ARC-REST-NetAPI-2012-0184R01-CR_Subject_optional_in_Chat_TS
 OMA-ARC-REST-NetAPI-2012-0191-CR_Chat_examples_exception_type_fix
 OMA-ARC-REST-NetAPI-2012-0195R01-CR_ClientCorrelator_in_ChatSessionInformation_TS
 OMA-ARC-REST-NetAPI-2012-0207-CR_Chat_common_POL_code_remapping
Editorial changes

	
	06 Aug 2012
	5.2.2.13, 5.2.2.14, 5.2.2.16, C.4, C.5, C.6, C.7
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0209-CR_Issue_20_clientCorrelator_resolution_Chat
Editorial changes

	
	28 Sep 2012
	3.2, 3.3, 5, 5.1, 5.2.2.2, 5.2.2.3, 5.2.3.1, 5.2.3.2, 5.2.3.3, 5.3, 6, 6.1.1, 6.2.1, 6.3.1, 6.4.1, 6.5.1, 6.6.1, 6.7.1, 6.8.1, 6.9.1, 6.10.1, 6.11.1, 6.12.1, 6.13.1, 6.13.4.1.1, 6.13.4.1.2, 6.14.1, 7.1, 7.2,

B.1, C, D, D.31, F, G.1.1.1, G.1.1.3
	Incorporated CRs;

 OMA-ARC-REST-NetAPI-2012-0240-CR_ApplyingNewTemplate_Chat, with comments at R&A Ref : REST-NetAPI-12-026
 OMA-ARC-REST-NetAPI-2012-0263-CR_Chat_bugfix
Template changed to OMA-TEMPLATE-TS_RESTful_Network_API-20120813-I

Editorial changes

	
	19 Nov 2012
	5.2.2.4, 5.2.2.5, 5.2.2.13, 5.2.2.14, 6.3.5.1.1, 6.3.5.1.2, 6.4.3.1.2, 6.9.5.1.1, 6.9.5.1.2, 6.10.3.1.2, 6.17.5.1.1, 6.18.5.1.1, C.4, C.4.1.1, C.4.1.2, C.6, C.6.1.1, C.6.1.2, D.7, D.8, D.19, D.20, D.35, D.36,
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0270R01-CR_Chat_subject_removing_ambiguity

	
	27 Nov 2012
	3.2, 4.1, 5.3.1, 6, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, G.1.2
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0283-CR_Chat_implement_blueprint_longpoll_auth
Template changed to OMA-TEMPLATE-TS_RESTful_Network_API-20120813-I

Editorial changes

	
	30 Jan 2013
	6.13.4
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0001-CR_Chat_TS_Small_fixes
Editorial changes

	
	26 Feb 2013
	2.2, 5.1, 5.2.2.2, 5.2.2.4, 5.2.2.5, 5.3.3-5.3.8, 6.17, 6.17.5.1.1, 6.18, 6.18.5.1.1, B.1.18, D.35, D.36
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0005-CR_Addressing_RCSe_Problem_Report_TS_Chat
 OMA-ARC-REST-NetAPI-2013-0025-CR_Chat_reference_fix
Reference to OMA Dictionary updated to version 2.9

Editorial changes

	
	30 Apr 2013
	5.1, 5.2.2.2, 5.2.2.5, 5.2.2.6, 5.2.2.7, 5.2.2.9, 5.2.2.18, 5.3, 6.15, 6.15.5.1.1, 6.16, 6.16.5.1.1, 6.17, 6.17.5.1.1, 6.18, 6.18.5.1.1, 6.20, 6.20.5.1.1, 6.21, 6.21.5.1.1, D.33, D.34, D.35, D.36, D.38, D.39
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0031R01-CR_Chat_TS_updates_INP0028r01
Editorial changes

	Candidate Version
REST_NetAPI _Chat-V1_0
	13 May 2013
	n/a
	Status changed to Candidate by TP

TP Ref # OMA-TP-2013-0135-INP_REST_NetAPI_Chat_V1_0_ERP_for_Notification

	Draft Versions
REST_NetAPI _Chat-V1_0
	26 Sep 2013
	5.2.2.18, 6.16, 6.19, 6.19.5, 6.21, 6.21.5
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0057-CR_Chat_small_fixes
Editorial changes

	
	25 Nov 2013
	2.1, 5.1, 5.2.2.2, 5.2.2.4, 5.2.2.5, 5.2.2.6, 5.2.2.13, 5.2.2.14, 5.2.2.17, 5.2.2.18, 5.2.2.19-5.2.2.23, 5.2.4, 5.3.3, 5.3.4, 5.3.5, 5.3.8, 6.3.5.1, 6.3.5.2, 6.5.4.1.1, 6.6.5, 6.6.5.1.1, 6.7.5.1.2, 6.7.5.3.2, 6.7.5.5, 6.8.4.1.1, 6.14.5.1.2, 6.14.5.2, 6.22, 7.2.6, B.1, B.1.1, B.1.3, B.1.6-B.1.10, B.1.12, B.1.14-B.1.23, C, D.8, D.12, D.13, D.18, D.20, D.34, D.35
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0065R02-CR_Chat_fixes_from_issue_list
Editorial changes

	
	03 Dec 2013
	2.1
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0071-CR_Chat_XML_schema_reference_version
Editorial changes

	
	13 Jan 2014
	B.1.15
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0006-CR_Chat_SCR_reference_fix

	
	07 Feb 2014
	5.1, G.1, G.1.1.3
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0010R02-CR_Chat_small_fixes

	
	12 Sep 2014
	4.1, 5.1, 5.2.2.9, 5.2.2.21, 5.3.6, 6.15, 6.17, 6.17.5.1, 6.17.5.2, B.1.9, B.1.16, D.36, D.37, D.39, D.41
	Incorporated CRs:

 OMA-ARC-REST-NetAPI-2014-0054R01-ChatAPI_GroupChatNotifications

 OMA-ARC-REST-NetAPI-2014-0061R01-CR_ChatAPI_GroupChatNotifications

	
	25 Sep 2014
	2.1, 6
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0065-CR_ACR_reference_in_TS_Chat

	
	07 Oct 2014
	N/A
	Added PDF version

	
	08 Dec 2014
	5.1, 5.2.2.14, 5.2.2.15, 6.9.3, G.1.13
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0088R01-CR_Add_new_method_to_get_the_list_of_all_group_chat

	
	17 Dec 2014
	B.1.10, D.22
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0090-CR_update_JSON_and_SCR_following_CR0088

	
	25 Feb 2015
	2.1, 4.1, 5.1, 5.2.2.20, 5.2.2.21, 5.2.2.23, 5.2.2.25
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2015-0010R02-CR_FT_in_Group_Chat
Editorial changes

	
	10 Nov 2015
	D.5
	Incorporated CR:

 OMA-ARC-REST-NetAPI-2015-0085-CR_Chat_bug_fixing_for_JSON_example
Editorial changes

	Candidate Version
REST_NetAPI _Chat-V1_0
	01 Dec 2015
	n/a
	Status changed to Candidate by TP

 TP Ref # OMA-TP-2015-0188-INP_REST_NetAPI_Chat_V1_0_ERP_for_Candidate_re_approval

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.Chat Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-SUPPORT-S-001-M
	Support for the RESTful Chat API
	5, 6
	

	REST-CHAT-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST-CHAT-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

B.1.1 SCR for REST.CHAT.Subscriptions Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-SUBSCR-S-001-M
	Support for subscriptions to chat event notifications
	6.1
	

	REST-CHAT-SUBSCR-S-002-O
	Read the list of active subscriptions to chat event notifications – GET
	6.1.3
	

	REST-CHAT-SUBSCR-S-003-M
	Create new subscription to chat event notifications – POST
	6.1.5
	

B.1.2 SCR for REST.CHAT.IndSubscription Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-INDSUBSCR-S-001-M
	Support for access to an individual subscription to chat event notifications
	6.2
	

	REST-CHAT-INDSUBSCR-S-002-O
	Read an individual subscription to chat event notifications – GET
	6.2.3
	

	REST-CHAT-INDSUBSCR-S-003-M
	Cancel subscription and stop corresponding notifications – DELETE
	6.2.6
	

B.1.3 SCR for REST.CHAT.OneToOne.Sessions Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-SESS-S-001-M
	Support for 1-1 chat sessions between two users
	6.3
	REST-CHAT-ONE2ONE-INDSESS-CONF-S-001-O OR REST-CHAT-ONE2ONE-INDSESS-ADH-S-001-O

	REST-CHAT-ONE2ONE-SESS-S-002-O
	Creating a 1-1 chat session between two users – POST
	6.3.5
	REST-CHAT-ONE2ONE-INDSESS-CONF-S-001-O

	REST-CHAT-ONE2ONE-SESS-S-003-O
	Creating a 1-1 chat session between two users with initial message – POST (XML or JSON)
	6.3.5
	REST-CHAT-ONE2ONE-INDSESS-CONF-S-001-O

	REST-CHAT-ONE2ONE-SESS-S-004-O
	Creating a 1-1 chat session between two users with initial multimedia message – POST (XML or JSON)
	6.3.5
	REST-CHAT-ONE2ONE-INDSESS-CONF-S-001-O

B.1.4 SCR for REST.CHAT.OneToOne.IndSession.Confirmed Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-INDSESS-CONF-S-001-O
	Support for individual Confirmed 1-1 Chats
	6.4
	REST-CHAT-ONE2ONE-INDSESS-CONF-S-003-O

	REST-CHAT-ONE2ONE-INDSESS-CONF-S-002-O
	Read individual 1-1 chat session information – GET
	6.4.3
	

	REST-CHAT-ONE2ONE-INDSESS-CONF-S-003-O
	Cancel invitation / Decline Invitation / Terminate an individual 1-1 chat session – DELETE
	6.4.6
	

B.1.5 SCR for REST.CHAT.OneToOne.IndSession.Adhoc Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-INDSESS-ADH-S-001-O
	Support for Ad-hoc 1-1 Chats
	6.4
	

	REST-CHAT-ONE2ONE-INDSESS-ADH-S-002-O
	Read individual 1-1 chat session information – GET
	6.4.3
	

B.1.6 SCR for REST.CHAT.OneToOne.IndSession.Status Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-INDSESS-STAT-S-001-O
	Support for 1-1 chat session status
	6.5
	REST-CHAT-ONE2ONE-INDSESS-STAT-S-002-O

	REST-CHAT-ONE2ONE-INDSESS-STAT-S-002-O
	Accept a 1-1 chat session invitation – POST
	6.5.4

	

B.1.7 SCR for REST.CHAT.OneToOne.IndSession.Extend Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-INDSESS-EXT-S-001-O
	Support for extending a 1-1 chat to a group chat session
	6.6
	REST-CHAT-ONE2ONE-INDSESS-EXT-S-002-O

	REST-CHAT-ONE2ONE-INDSESS-EXT-S-002-O
	Extend a 1-1 chat to a group chat session – POST
	6.6.5
	

B.1.8 SCR for REST.CHAT.OneToOne.Messages Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-MSG-S-001-M
	Support for chat messages in a 1-1 chat
	6.7
	

	REST-CHAT-ONE2ONE-MSG-S-002-M
	Create (send) a 1-1 chat message – POST
	6.7.5
	

	REST-CHAT-ONE2ONE-MSG-S-003-O
	Create (send) a 1-1 chat multimedia message – POST (XML or JSON)
	6.7.5
	

B.1.9 SCR for REST.CHAT.OneToOne.IndMessage.Status Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-ONE2ONE-INDMSG-STAT-S-001-M
	Support for individual message status in a 1-1 chat
	6.8
	

	REST-CHAT-ONE2ONE-INDMSG.STAT-S-002-O
	Read the status of a 1-1 chat message – GET
	6.8.3

	

	REST-CHAT-ONE2ONE-INDMSG.STAT-S-003-M
	Report the status of a 1-1 chat message – PUT
	6.8.4
	

B.1.10 SCR for REST.CHAT.Group.Sessions Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-SESS-S-001-M
	Support for group chat sessions
	6.9
	

	REST-CHAT-GROUP-SESS-S-002-M
	Retrieve a list of all active group chat session - GET
	6.9.3
	

	REST-CHAT-GROUP-SESS-S-003-M
	Create a new group chat session – POST
	6.9.5
	

B.1.11 SCR for REST.CHAT.Group.IndSession Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-INDSESS-S-001-M
	Support for individual group chat sessions
	6.10

	

	REST-CHAT-GROUP-INDSESS-S-002-O
	Retrieve information about an individual group chat session – GET
	6.10.3
	

	REST-CHAT-GROUP-INDSESS-S-003-O
	Terminate individual group chat session – DELETE
	6.10.6
	

	REST-CHAT-GROUP-INDSESS-S-004-M
	Cancel individual group chat session – DELETE
	6.10.6
	

B.1.12 SCR for REST.CHAT.Group.IndSession.Participants Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-INDSESS-PART-S-001-M
	Support for Participants in a group chat session
	6.11
	

	REST-CHAT-GROUP-INDSESS-PART-S-002-O
	Read the list of all Participants in a group chat session – GET
	6.11.3
	

	REST-CHAT-GROUP-INDSESS-PART-S-003-M
	Add one or more Participants to a group chat session (invite, re-join) – POST
	6.11.5
	

B.1.13 SCR for REST.CHAT.Group.IndSession.IndParticipant Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-INDSESS-INDPART-S-001-M
	Support for individual Participants in a group chat session
	6.12
	

	REST-CHAT-GROUP-INDSESS-INDPART-S-002-O
	Read information about an individual Participant in a group chat session – GET
	6.12.3
	

	REST-CHAT-GROUP-INDSESS-INDPART-S-003-M
	Remove an individual Participant from a group chat session (leave); or decline invitation – DELETE
	6.12.6
	

B.1.14 SCR for REST.CHAT.Group.IndSession.IndParticipant. Status Server
	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-INDSESS-INDPART-S-001-M
	Support for the status of an individual group chat session Participant
	6.13
	

	REST-CHAT-GROUP-INDSESS-INDPART-S-003-M
	Accept group chat session invitation – PUT
	6.13.4
	

B.1.15 SCR for REST.CHAT.Group.Messages Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-MSG-S-001-M
	Support for chat messages in a group chat
	6.14
	

	REST-CHAT-GROUP-MSG-S-002-M
	Create (send) a group chat message – POST
	6.14.5
	

	REST-CHAT-GROUP-MSG-S-003-O
	Create (send) a group chat multimedia message – POST
	6.14.5
	

B.1.16 SCR for REST.CHAT.Group.IndMessage.Status Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-GROUP-INDMSG-STAT-S-001-M
	Support for individual message status in a group chat
	6.15
	

	REST-CHAT- GROUP-INDMSG.STAT-S-002-O
	Read the status of a group chat message – GET
	6.15.3
	

	REST-CHAT- GROUP-INDMSG.STAT-S-003-M
	Report the status of a group chat message – PUT
	6.15.4
	

B.1.17 SCR for REST.CHAT.Notifications.Message Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF MSG-S-001-M
	Support for notifications containing incoming chat message
	6.16
	

	REST-CHAT-NOTIF-MSG-S-002-M
	Notification containing incoming chat message – POST
	6.16.5
	

B.1.18 SCR for REST.CHAT.Notifications.Message.Status Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-MSG-STAT-S-001-M
	Support for notifications about message status
	6.17
	

	REST-CHAT-NOTIF-MSG-STAT-S-002-M
	Notification about message status – POST
	6.17.5
	

B.1.19 SCR for REST.CHAT.Notifications.OneToOne.Invite Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-ONE2ONE-INVITE-S-001-O
	Support for notifications about 1-1 chat session invitations
	6.18
	REST-CHAT-NOTIF-ONE2ONE-INVITE-S-002-O

	REST-CHAT-NOTIF-ONE2ONE-INVITE-S-002-O
	Notification about 1-1 chat session invitation – POST
	6.18.5
	

	REST-CHAT-NOTIF-ONE2ONE-INVITE-S-003-O
	Including an initial chat message in the notification
	6.18.5
	

	REST-CHAT-NOTIF-ONE2ONE-INVITE-S-004-O
	Including an initial multimedia chat message in the notification
	6.18.5
	

B.1.20 SCR for REST.CHAT.Notifications.Group.Invite Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-GROUP-INVITE-S-001-M
	Support for notifications about group chat session invitations
	6.19
	

	REST-CHAT-NOTIF-GROUP-INVITE-S-002-M
	Notification about group chat session invitation – POST
	6.19.5
	

B.1.21 SCR for REST.CHAT.Notifications.Events Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-EVENT-S-001-M
	Support for notifications about chat session events
	6.20
	

	REST-CHAT-NOTIF-EVENT-S-002-M
	Notification about chat session event – POST
	6.20.5
	

B.1.22 SCR for REST.CHAT.Notifications.Group.Participants Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-GROUP-PART-S-001-M
	Support for notifications about changes of Participant status
	6.21
	

	REST-CHAT-NOTIF-GROUP-PART-S-002-M
	Notification about changes of Participant status – POST
	6.21.5
	

B.1.23 SCR for REST.CHAT.Notifications.SubscriptionCancellation Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-SUBCXL-S-001-M
	Support for notifications about subscription cancellation
	6.22
	

	REST-CHAT-NOTIF-SUBCXL-S-002-M
	Notification about subscription cancellation – POST
	6.22.5
	

B.1.24 SCR for REST.CHAT.Notifications.MultimediaMessage Server

	Item
	Function
	Reference
	Requirement

	REST-CHAT-NOTIF-MMMSG-S-001-O
	Support for notifications about multimedia message availability for download
	6.23
	

	REST-CHAT-NOTIF-MMMSG-S-002-O
	Notification about a new multimedia chat message being available for download – POST
	6.23.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.
Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Reading all active chat notification subscriptions (section 6.1.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

{"chatSubscriptionList": {

 "chatNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7037",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"

 },

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions"

}}

D.2 Creating a new subscription to chat notifications, response with copy of created resource (section 6.1.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"chatNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT
{"chatNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.3 Creating a new subscription to chat notifications, response with location of created resource (section 6.1.5.2)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"chatNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

{"resourceReference": {
 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"
}}

D.4 Creating a new subscription to chat notifications, requiring support of Confirmed 1-1 Chats which the server does not provide (section 6.1.5.3)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"chatNotificationSubscription": {

 "adhocChatSupported": "false",

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "confirmedChatSupported": "true",

 "duration": "7200"

}}

Response:
	HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT
{"requestError": {"policyException": {

 "messageId": "POL1013",

 "text": "Confirmed 1-1 chats are not supported."

}}}

D.5 Reading an individual subscription (section 6.2.3.1)
Request:

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001?resFormat=JSON HTTP/1.1
Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT
{"chatNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/chat/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.6 Cancelling a subscription (section 6.2.6.1)
Request:
	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

D.7 Creating a 1-1 chat session (section 6.3.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: example.com
Content-Length: nnnn

{"chatSessionInformation": {

 "clientCorrelator": "23456",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001
{"chatSessionInformation": {

 "clientCorrelator": "23456",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001",

 "status": "Invited",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.8 Creating a 1-1 chat session with initial message (section 6.3.5.2)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: example.com
Content-Length: nnnn

{"chatSessionInformation": {

 "chatMessage": {

 "reportRequest": "Displayed",

 "text": "What about dinner tonight at 8pm at our favorite restaurant? "

 },

 "clientCorrelator": "23456",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess002

{"chatSessionInformation": {

 "clientCorrelator": "23456",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess002",

 "status": "Invited",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.9 Retrieving chat session information of a 1-1 session (section 6.4.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"chatSessionInformation": {

 "clientCorrelator": "23456",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001",

 "status": "Invited",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.10 Retrieving chat session information of a 1-1 session that was previously extended to a group chat session (section 6.4.3.2)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1
Accept: application/json
Content-Type: application/json

Response:
	HTTP/1.1 303 See Other

Content-Type: application/json
Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"resourceReference": {
 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"
}}

D.11 Terminating a 1-1 chat session, or declining an invitation (section 6.4.6.1)
Request:
	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.12 Accepting a 1-1 chat invitation (section 6.5.4.1)
Request:
	PUT /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sess001/status HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"participantSessionStatus": {

 "status": "Connected"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2011 17:51:59 GMT

D.13 Extending a Confirmed 1-1 Chat to a group chat session (section 6.6.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/extend HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"extensionParameters": {

 "isClosed": "false",

 "participant": {

 "address": "tel:+B19585550102",

 "clientCorrelator": "ABCDE",

 "name": "Ted"

 }

}}

Response:
	HTTP/1.1 303 See Other

Content-Type: application/json
Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

{"resourceReference": {
 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"
}}

D.14 Creating a chat message, using tel URI and returning the location of the created resource (section 6.7.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"chatMessage": {

 "reportRequest": "Displayed",

 "text": "How are you?"

}}

Response:
	HTTP/1.1 201 Created
Content-Type: application/json

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT
{"resourceReference": {

 "resourceURL":
 "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001"
}}

D.15 Creating a chat message, using ACR and returning a copy of the created resource (section 6.7.5.2)
Request:
	POST /exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/adhoc/messages HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com
{"chatMessage": {

 "reportRequest": "Displayed",

 "text": "How are you?"

}}

Response:
	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/adhoc/messages/msg001
Content-Type: application/json

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"chatMessage": {

 "reportRequest": "Displayed",

 "resourceURL":
 "http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/adhoc/msg001",

 "text": "How are you?"

}}

D.16 Creating an “isComposing” message (section 6.7.5.3)

Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"isComposing": {

 "contenttype": "text/plain",

 "refresh": "90",

 "state": "active"

}}

Response:
	HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg002
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"resourceReference": {
 "resourceURL":
 "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg002"
}}

D.17 Creating a chat message during session set-up in Confirmed 1-1 Chat mode (see section 6.7.5.4)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/messages HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"chatMessage": {

 "reportRequest": "Displayed",

 "text": "How are you?"

}}

Response:
	HTTP/1.1 403 Forbidden

Content-Type: application/json

Content-Length: nnnn

Date: Mon, 28 Jun 2010 17:51:59 GMT

{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sess001/messages/msg002",

 "rel": "ChatMessage"

 },

 "policyException": {

 "messageId": "POL1012",

 "text": "Messages during session setup not supported."

 }

}}

D.18 Creating a multimedia chat message, using tel URI and returning the location of the created resource (see section 6.7.5.5)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages HTTP/1.1

Accept: application/json
Host: example.com

Content-Length: nnnn
Content-Type: multipart/form-data;boundary="===============123456==";
MIME-Version: 1.0

--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/json
Content-Length: nnnn

{"outgoingMultimediaChatMessage": {

 "reportRequest": "Displayed",

}}
--===============123456==

Content-Disposition: form-data; name=”attachments”

Content-Type: multipart/mixed; boundary=”====aaabbb”

--====aaabbb

Content-Disposition:attachment;filename=”textBody.txt”;

Content-Type: text/plain
Content-Transfer-Encoding: 8 bit

Look at the attached picture

--====aaabbb

Content-Disposition:attachment;filename=”image1.png”;

Content-Type: image/png
MIME-Version: 1.0
Content-ID: <99334422@example.com>

ëPNG...binary image data...

--====aaabbb--

--===============123456==--

Response:
	HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg003
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"resourceReference": {
 "resourceURL":
 "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg003"
}}

D.19 Example: Reading the status of an individual message (section 6.8.3.1)

Request:

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001/status HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Mon, 28 Jun 2010 17:51:59 GMT

{"messageStatusReport": {"status": "Displayed"}}

D.20 Reporting the status of a chat message (section 6.8.4.1)
Request:
	PUT /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/adhoc/messages/msg001/status HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"messageStatusReport": {"status": "Displayed"}}

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.21 Creating a new group chat session (section 6.9.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group HTTP/1.1

Content-Length: nnnn
Content-Type: application/json
Accept: application/json
Host: example.com
{"groupChatSessionInformation": {

 "clientCorrelator": "12345",

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted"

 }

],

 "subject": "Dinner tonight"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT
{"groupChatSessionInformation": {

 "clientCorrelator": "12345",

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002",

 "status": "Invited"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003",

 "status": "Invited"

 }

],

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001",

 "subject": "Dinner tonight"

}}

D.22 Retrieving the list of active group chat session (section 6.10.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

{"groupChatSessionInformationList": {

 "groupChatSessionInformation": [

 {

 "subject": "Dinner Tonight",

 "clientCorrelator": "12345",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"
 },

 {

 "subject": "Lunch tomorrow",

 "clientCorrelator": "12345",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess002"
 },

],

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group"
}}

D.23 Retrieving group chat session information (section 6.10.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

{"groupChatSessionInformation": {

 "clientCorrelator": "12345",

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002",

 "status": "Invited"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003",

 "status": "Invited"

 }

],

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001",

 "subject": "Dinner tonight"

}}

D.24 Retrieving group chat session information when being disconnected (section 6.10.3.2)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.25 Cancelling or terminating a group chat session (section 6.10.6.1)
Request:
	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.26 Retrieving the list of Participants in a group chat session (section 6.11.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"participantList": {

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003",

 "status": "Connected"

 }

],

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants"

}}

D.27 Retrieving the list of Participants in a group chat session when being disconnected (section 6.11.3.2)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.28 Retrieving the list of Participants in a group chat session when not having access rights (section 6.11.3.3)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 403 Forbidden

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants",

 "rel": "ParticipantList"

 },

 "policyException": {

 "messageId": "POL2003",

 "text": "Access denied."

 }

}}

D.29 Adding one Participant to a group chat, or re-joining a group chat (section 6.11.5.1)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"participantInformation": {

 "address": "tel:+19585550103",

 "clientCorrelator": "12345",

 "name": "John"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT
{"participantInformation": {

 "address": "tel:+19585550103",

 "clientCorrelator": "12345",

 "name": "John",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004",

 "status": "Invited"

}}

D.30 Adding multiple Participants to a group chat (section 6.11.5.2)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"participantList": {

 "participant": [

 {

 "address": "tel:+19585550103",

 "clientCorrelator": "12345",

 "name": "John"

 },

 {

 "address": "tel:+19585550104",

 "clientCorrelator": "67890",

 "name": "Peter"

 }

]
}}

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"participantList": {

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550103",

 "clientCorrelator": "12345",

 "name": "John",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004",

 "status": "Invited"

 },

 {

 "address": "tel:+19585550104",

 "clientCorrelator": "67890",

 "name": "Peter",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part005",

 "status": "Invited"

 }

],

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants"

}}

D.31 Error situation when trying to re-join a group chat session (section 6.11.5.3)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 404 Not Found

Content-Type: application/json
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants",

 "rel": "ParticipantList"

 },

 "serviceException": {

 "messageId": "SVC0004",

 "text": "No valid addresses provided in message part %1",

 "variables": "Request-URI"

 }

}}

D.32 Retrieving information about an individual group chat Participant (section 6.12.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"participantInformation": {

 "address": "tel:+19585550103",

 "clientCorrelator": "12345",

 "name": "John",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004",

 "status": "Invited"

}}

D.33 Leaving a group chat session (section 6.12.6.1)
Request:
	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.34 Accepting a group chat invitation (section 6.13.4.1)
Request:
	PUT /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001/status HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"participantSessionStatus": {"status": "Connected"}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.35 Creating a group chat message, using tel URI and returning the location of the created resource (section 6.14.5.1)

Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"chatMessage": {

 "reportRequest": "Displayed",

 "text": "How are you?"

}}

Response:
	HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"resourceReference": {

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001"

}}

D.36 Creating a multimedia group chat message, using tel URI and returning the location of the created resource (see section 6.14.5.2)
Request:
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages HTTP/1.1

Accept: application/json

Host: example.com

Content-Length: nnnn
Content-Type: multipart/form-data;boundary="===============123456==";
MIME-Version: 1.0

--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/json
Content-Length: nnnn

{"outgoingMultimediaChatMessage": {

 "reportRequest": "Displayed",

}}
--===============123456==

Content-Disposition: form-data; name=”attachments”

Content-Type: multipart/mixed; boundary=”====aaabbb”

--====aaabbb

Content-Disposition:attachment;filename=”textBody.txt”;

Content-Type: text/plain
Content-Transfer-Encoding: 8 bit

Look at the attached picture

--====aaabbb

Content-Disposition:attachment;filename=”image1.png”;

Content-Type: image/png
MIME-Version: 1.0
Content-ID: <99334422@example.com>

ëPNG...binary image data...

--====aaabbb--

--===============123456==--

Response:
	HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg002
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"resourceReference": {
 "resourceURL":
 "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg002"
}}

D.37 Reading the status of an individual message at the designated participant of a group chat (see section 6.15.3.1)
Request:
	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/messages/msg001/status/ tel%3A%2B171253124653 HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"messageStatusReport": {"status": "Displayed"}}

D.38 Reporting the status of a chat message for a designated participant in a group chat (see section 6.15.4.1)
Request:
	PUT /exampleAPI/chat/v1/tel%3A%2B19585550100/group/session123/messages/msg001/status/ tel%3A%2B171253124653 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"messageStatusReport": {"status": "Displayed"}}

Response:
	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

D.39 Notify a client about incoming messages (section 6.16.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"chatMessageNotification": {

 "callbackData": "abcd",

 "chatMessage": {

 "reportRequest": "Displayed",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001",

 "text": "Hello Alice"

 },

 "dateTime": "2001-12-17T09:30:47Z",

 "link": [

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 ",

 "rel": "ChatSessionInformation"

 },

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001",

 "rel": "ChatMessage"

 }

],

 "senderAddress": "tel:+19585550102",

 "senderName": "Ted"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.40 Notify a client about 1-1 message status (section 6.17.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com

{"chatMessageStatusNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/messages/msg001",

 "rel": "ChatSessionInformation"

 },

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/adhoc/ messages/msg001",

 "rel": "ChatMessage"

 }

],

 "status": "Displayed"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.41 Notify a client about 1-1 chat session invitations (section 6.18.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"chatSessionInvitationNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sess001",

 "rel": "ChatSessionInformation"

 }

],

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "subject": "Dinner tonight",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.42 Notify a client about group message status (see section 6.19.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"groupChatSessionInvitationNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001",

 "rel": "GroupChatSessionInformation"

 },

 {

 "href": " http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001/participants/part003",

 "rel": " ParticipantInformation"

 }

],

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "\n http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001\n ",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "\n http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002\n ",

 "status": "Invited"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "\n http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003\n ",

 "status": "Invited"

 }

],

 "subject": "Dinner tonight"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.43 Notify a client about group chat session invitations (section 6.19.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"groupChatSessionInvitationNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001",

 "rel": "GroupChatSessionInformation"

 },

 {

 "href": " http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001/participants/part003",

 "rel": " ParticipantInformation"

 }

],

 "participant": [

 {

 "address": "tel:+19585550100",

 "isOriginator": "true",

 "name": "Alice",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001\n ",

 "status": "Connected"

 },

 {

 "address": "tel:+19585550101",

 "name": "Bob",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002\n ",

 "status": "Invited"

 },

 {

 "address": "tel:+19585550102",

 "name": "Ted",

 "resourceURL": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003\n ",

 "status": "Invited"

 }

],

 "subject": "Dinner tonight"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.44 Notify a client about chat session events (section 6.20.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"chatEventNotification": {

 "callbackData": "abcd",

 "eventDescription": "The session has ended.",

 "eventType": "SessionEnded",

 "link": [

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001",

 "rel": "GroupChatSessionInformation"

 },

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "ChatNotificationSubscription"

 }

]

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.45 Notify a client about Participant status changes (section 6.21.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com
{"chatParticipantStatusNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001",

 "rel": "GroupChatSessionInformation"

 },

 {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "ChatNotificationSubscription"

 }

],

 "participant": [

 {

 "address": "tel:+19585550100",

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001",

 "rel": "ParticipantInformation"

 },

 "name": "Alice",

 "status": "Connected",

 "yourown": "true"

 },

 {

 "address": "tel:+19585550101",

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002",

 "rel": "ParticipantInformation"

 },

 "name": "Bob",

 "status": "Disconnected",

 "yourown": "false"

 }

]

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.46 Notify a client about Participant status changes (section 6.22.5.1)
Request:
	POST /chat/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application.example.com

{"chatSubscriptionCancellationNotification": {

 "callbackData": "abcd",

 "link": {

 "href": "http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "ChatNotificationSubscription"

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

As this version of the specification does not define any Light-weight Resources, this Appendix is empty.

Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Chat API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Chat API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Chat API supporting [Autho4API_10]:

· SHALL conform to the annex “Authorization aspects” of [REST_NetAPI_Common];
· SHALL conform to this section G.1.
G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Chat API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_chat.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in the next rows of this table.
	No

	oma_rest_chat.one_to_one
	Provide access to all defined operations regarding 1-1 chats
	No

	oma_rest_chat.group
	Provide access to all defined operations regarding groupchats
	No

Table 1: Scope values for RESTful Chat API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_chat.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· “oma_rest_chat.one_to_one”

· “oma_rest_chat.group”

G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful Chat API map to the REST resources and methods of this API. In these tables, the root “oma_rest_chat.” of scope values is omitted for readability reasons.

	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to chat event notifications
	/subscriptions
	6.1
	all_{apiVersion} or one_to_one or group
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

	Individual subscription to chat event notifications
	/subscriptions/{subscriptionId}
	6.2
	all_{apiVersion} or one_to_one or group
	n/a
	n/a
	all_{apiVersion} or one_to_one or group

Table 2: Required scope values for: Subscriptions
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All 1-1 chat sessions between two users
	/{otherUserId}
	6.3

	n/a
	n/a
	all_{apiVersion} or one_to_one
	n/a

	Individual 1-1 chat session
	/{otherUserId}/{sessionId}
	6.4
	all_{apiVersion} or one_to_one
	n/a
	n/a
	all_{apiVersion} or one_to_one

	1-1 chat session status
	/{otherUserId}/{sessionId}/status
	6.5
	n/a
	all_{apiVersion} or one_to_one
	n/a
	n/a

	Extend 1-1 chat to a group chat session
	/{otherUserId}/{sessionId}/extend
	6.6
	n/a
	n/a
	all_{apiVersion} or (one_to_one and group)
	n/a

	Chat messages in a 1-1 chat
	/{otherUserId}/{sessionId}/messages
	6.7
	n/a
	n/a
	all_{apiVersion} or one_to_one
	n/a

	Individual message status in a 1-1 chat
	/{otherUserId}/{sessionId}/messages/{messageId}/status
	6.8
	all_{apiVersion} or one_to_one
	all_{apiVersion} or one_to_one
	n/a
	n/a

Table 3: Required scope values for: 1-1 chats
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All group chat sessions
	/group
	6.9
	all_{apiVersion} or group
	n/a
	all_{apiVersion} or group
	n/a

	Individual group chat session
	/group/{sessionId}
	6.10
	all_{apiVersion} or group
	n/a
	n/a
	all_{apiVersion} or group

	All Participants in a group chat session
	/group/{sessionId}/participants
	6.11
	all_{apiVersion} or group
	n/a
	all_{apiVersion} or group
	n/a

	Individual Participant in a group chat session
	/group/{sessionId}/participants/{participantId}
	6.12
	all_{apiVersion} or group
	n/a
	n/a
	all_{apiVersion} or group

	Individual group chat session Participant status
	/group/{sessionId}/participants/{participantId}/status
	6.13
	n/a
	all_{apiVersion} or group
	n/a
	n/a

	Chat messages in a group chat session
	/group/{sessionId}/messages
	6.14
	n/a
	n/a
	all_{apiVersion} or group
	n/a

Table 4: Required scope values for: Group chats
	Resource
	URL
<specified by the client>
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification containing incoming message
	Specified by client when subscription is created or provisioned
	6.16
	n/a
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

	Client notification about message status
	Specified by client when subscription is created or provisioned
	6.17
	n/a
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

	Client notification about 1-1 chat session invitations
	Specified by client when subscription is created or provisioned
	6.18
	n/a
	n/a
	all_{apiVersion} or one_to_one
	n/a

	Client notification about group chat session invitations
	Specified by client when subscription is created or provisioned
	6.19
	n/a
	n/a
	all_{apiVersion} or group
	n/a

	Client notification about chat session events
	Specified by client when subscription is created or provisioned
	6.20
	n/a
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

	Client notification about changes of Participant status
	Specified by client when subscription is created or provisioned
	6.21
	n/a
	n/a
	all_{apiVersion} or group
	n/a

	Client notification about subscription cancellation
	Specified by client when subscription is created or provisioned
	6.22
	n/a
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

	Client notification about incoming multimedia message
	Specified by client when subscription is created or provisioned
	6.23
	n/a
	n/a
	all_{apiVersion} or one_to_one or group
	n/a

Table 5: Required scope values for: Notifications
Notifications are only sent to clients that have prior passed an authorization token with a matching scope in the related subscription.

G.1.2 Use of ‘acr:auth’
This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of the{userId} resource URL variable in the resource URL path, when the RESTful Chat API is used in combination with [Autho4API_10].
In the case the RESTful Chat API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}.

· SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’.
(2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20150101-I]
(2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20150101-I]

_1427809730.vsd

_1446045310.vsd

_1570274981.vsd

_1422616082.vsd

_1427726130.vsd

_1427726131.vsd
�

�

Application (orig.)

API Server (orig.)

1. POST GroupChatSessionInformation

Response

_1422616301.vsd

_1422615971.vsd

