OMA-TS-REST_NetAPI_QoS-V1_0-20130123-D
Page 76 V(76)

	[image: image1.jpg]
	

	RESTful Network API for Quality of Service

	Draft Version 1.0 – 24 Mar 2014

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_QoS-V1_0-20140324-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
11
4.1
Version 1.0
11
5.
Quality of Service API definition
12
5.1
Resources Summary
12
5.2
Data Types
19
5.2.1
XML Namespaces
19
5.2.2
Structures
19
5.2.2.1
Type: PredefinedQosFeatureList
19
5.2.2.2
Type: PredefinedQosFeature
19
5.2.2.3
Type: QosFeatureData
20
5.2.2.4
Type: BandwidthInformation
22
5.2.2.5
Type: IpFlowDescription
23
5.2.2.6
FlowDescription
23
5.2.2.7
Type: IpAddress
24
5.2.2.8
Type: AppliedQosFeatureList
24
5.2.2.9
Type: QosFeaturesSubscriptionList
24
5.2.2.10
Type: PredefinedQosFeaturesAvailabilitySubscription
25
5.2.2.11
Type: AppliedQosFeaturesEventSubscription
26
5.2.2.12
Type: PredefinedQosFeaturesAvailabilityNotification
27
5.2.2.13
Type: AppliedQosFeaturesEventNotification
28
5.2.3
Enumerations
28
5.2.3.1
Enumeration: MediaType
28
5.2.3.2
Enumeration: FlowStatus
29
5.2.3.3
Enumeration: ProtocolType
29
5.2.3.4
Enumeration: ReservationPriority
29
5.2.3.5
Enumeration: DefaultAction
29
5.2.3.6
Enumeration: QosEvent
30
5.2.4
Values of the Link “rel” attribute
30
5.3
Sequence Diagrams
30
5.3.1
Applying a predefined QoS feature on the end user connection
31
5.3.2
Applying a customized QoS feature on the end user connection
32
5.3.3
Updating a QoS feature applied on the end user connection
33
5.3.4
Subscription to notifications on availability of predefined QoS features
34
5.3.5
Subscription to notifications about events occurring for applied QoS features
36
5.3.6
A limit for applied QoS feature has been reached
38
6.
Detailed specification of the resources
40
6.1
Resource: Predefined QoS features available to a user
40
6.1.1
Request URL variables
40
6.1.2
Response Codes and Error Handling
41
6.1.3
GET
41
6.1.3.1
Example 1: Retrieving a list of predefined QoS features generally available to the end user (Informative)
41
6.1.3.1.1
Request
41
6.1.3.1.2
Response
41
6.1.3.2
Example 2: Retrieving a list of predefined QoS features currently available to the end user (Informative)
42
6.1.3.2.1
Request
42
6.1.3.2.2
Response
42
6.1.4
PUT
43
6.1.5
POST
43
6.1.6
DELETE
43
6.2
Resource: Applied QoS features on a temporary basis
43
6.2.1
Request URL variables
44
6.2.2
Response Codes and Error Handling
44
6.2.3
GET
44
6.2.3.1
Example: Retrieving a list of QoS features applied on an end user connection (Informative)
44
6.2.3.1.1
Request
44
6.2.3.1.2
Response
44
6.2.4
PUT
45
6.2.5
POST
45
6.2.5.1
Example 1: Request to apply a predefined QoS feature on an end user connection (Informative)
45
6.2.5.1.1
Request
45
6.2.5.1.2
Response
46
6.2.5.2
Example 2: Request to apply a predefined QoS feature on an end user connection, response with location of created resource (Informative)
46
6.2.5.2.1
Request
46
6.2.5.2.2
Response
47
6.2.5.3
Example 3: Request to apply a custom QoS feature on an end user connection (Informative)
47
6.2.5.3.1
Request
47
6.2.5.3.2
Response
48
6.2.5.4
Example 4: Request to apply a custom QoS feature on an end user connection, which is not supported by the server (Informative)
49
6.2.5.4.1
Request
49
6.2.5.4.2
Response
49
6.2.6
DELETE
50
6.3
Resource: Individual applied QoS feature on a temporary basis
50
6.3.1
Request URL variables
50
6.3.2
Response Codes and Error Handling
50
6.3.3
GET
50
6.3.3.1
Example: Retrieving a list of QoS features applied on an end user connection (Informative)
50
6.3.3.1.1
Request
50
6.3.3.1.2
Response
50
6.3.4
PUT (TBD!)
51
6.3.5
POST (TBD!)
51
6.3.6
DELETE
51
6.3.6.1.1
Request
51
6.3.6.1.2
Response
51
6.4
Resource: All subscriptions to QoS notifications
52
6.4.1
Request URL variables
52
6.4.2
Response Codes and Error Handling
52
6.4.3
GET
52
6.4.3.1
Example: Retrieving all subscriptions to notifications related to QoS features (Informative)
52
6.4.3.1.1
Request
52
6.4.3.1.2
Response
52
6.4.4
PUT
53
6.4.5
POST
53
6.4.6
DELETE
53
6.5
Resource: All subscriptions to predefined QoS features availability notifications
53
6.5.1
Request URL variables
53
6.5.2
Response Codes and Error Handling
54
6.5.3
GET
54
6.5.3.1
Example: Retrieving all subscriptions to notifications on availability of predefined QoS features (Informative)
54
6.5.3.1.1
Request
54
6.5.3.1.2
Response
54
6.5.4
PUT
55
6.5.5
POST
55
6.5.5.1
Example: Creating a new subscription for notifications on availability of predefined QoS features (Informative)
55
6.5.5.1.1
Request
55
6.5.5.1.2
Response
55
6.5.6
DELETE
56
6.6
Resource: Individual subscription to predefined QoS features availability notifications
56
6.6.1
Request URL variables
56
6.6.2
Response Codes and Error Handling
56
6.6.3
GET
56
6.6.3.1
Example: Retrieving an individual subscriptions to notifications on availability of predefined QoS features (Informative)
57
6.6.3.1.1
Request
57
6.6.3.1.2
Response
57
6.6.4
PUT
57
6.6.5
POST
57
6.6.6
DELETE
57
6.6.6.1
Example: Cancelling a subscription to notifications on availability of predefined QoS features (Informative)
57
6.6.6.1.1
Request
57
6.6.6.1.2
Response
58
6.7
Resource: All subscriptions to applied QoS features event notifications
58
6.7.1
Request URL variables
58
6.7.2
Response Codes and Error Handling
58
6.7.3
GET
58
6.7.3.1
Example: Retrieving all subscriptions to notifications about events occurring for applied QoS features (Informative)
58
6.7.3.1.1
Request
58
6.7.3.1.2
Response
58
6.7.4
PUT
59
6.7.5
POST
59
6.7.5.1
Example: Creating a new subscription for notifications about events occurring for applied QoS features (Informative)
59
6.7.5.1.1
Request
59
6.7.5.1.2
Response
60
6.7.6
DELETE
60
6.8
Resource: Individual subscription to applied QoS features event notifications
60
6.8.1
Request URL variables
60
6.8.2
Response Codes and Error Handling
61
6.8.3
GET
61
6.8.3.1
Example: Retrieving an individual subscription to notifications about events occurring for applied QoS features (Informative)
61
6.8.3.1.1
Request
61
6.8.3.1.2
Response
61
6.8.4
PUT
61
6.8.5
POST
61
6.8.6
DELETE
62
6.8.6.1
Example: Cancelling a subscription to notifications about events occurring for applied QoS features (Informative)
62
6.8.6.1.1
Request
62
6.8.6.1.2
Response
62
6.9
Resource: Client notification about availability of predefined QoS features
62
6.9.1
Request URL variables
62
6.9.2
Response Codes and Error Handling
62
6.9.3
GET
62
6.9.4
PUT
62
6.9.5
POST
62
6.9.5.1
Example: Creating a new subscription for notifications about events occurring for applied QoS features (Informative)
63
6.9.5.1.1
Request
63
6.9.5.1.2
Response
63
6.9.6
DELETE
63
6.10
Resource: Client notification about an event occurred for applied QoS features
63
6.10.1
Request URL variables
63
6.10.2
Response Codes and Error Handling
63
6.10.3
GET
64
6.10.4
PUT
64
6.10.5
POST
64
6.10.5.1
Example: Creating a new subscription for notifications about events occurring for applied QoS features (Informative)
64
6.10.5.1.1
Request
64
6.10.5.1.2
Response
64
6.10.6
DELETE
64
7.
Fault definitions
65
7.1
Service Exceptions
65
7.1.1
SVC[code number]: [Text for exception header]
65
7.2
Policy Exceptions
65
7.2.1
POL[code number]: [Text for exception header]
66
7.2.1
POL1003: Refund exceeds original charge amount
66
Appendix A.
Change History (Informative)
67
A.1
Approved Version History
67
A.2
Draft/Candidate Version 1.0 History
67
Appendix B.
Static Conformance Requirements (Normative)
68
B.1
SCR for REST.QoS Server
68
B.1.1
SCR for REST.QoS.FUNCTION Server
68
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
69
C.1
[Operation]
69
C.1.1
Example (Informative)
70
C.1.1.1
Request
70
C.1.1.2
Response
70
Appendix D.
JSON examples (Informative)
71
D.1
[Example Title] (section [section number cross reference])
71
Appendix E.
Light-weight Resources (Informative)
72
Appendix F.
Authorization aspects (Normative)
73
F.1
Use with OMA Authorization Framework for Network APIs
73
F.1.1
Scope values
73
F.1.1.1
Definitions
73
F.1.1.2
Downscoping
74
F.1.1.3
Mapping with resources and methods
74
F.1.2
Use of ‘acr:Authorization’
76

Figures

12Figure 1 Resource structure defined by this specification

30Figure 2 Applying a predefined QoS feature on the end user connection

31Figure 3 Applying a customized QoS feature on the end user connection

32Figure 4 Updating duration time for an applied QoS feature

34Figure 5 Subscription to notifications on availability of predefined QoS features

36Figure 6 Subscription to notifications about events occurring for applied QoS features

37Figure 7 A limit set for applied QoS feature has been reached

Tables

No table of figures entries found.
1. Scope

This specification defines a RESTful API for Quality of Service using HTTP protocol bindings.
2. References

2.1 Normative References

	[3GPP_TS_29.214]
	“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Rx reference point (Release 12),
URL: http://www.3gpp.org/DynaReport/29214.htm

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_QoS]
	“XML schema for the RESTful Network API for Quality of Service”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_qos-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4566]
	“SDP: Session Description Protocol”, M.Handley et. al, July 2006, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC6466]
	“IANA Registration of “image” Media Type for the Session Description Protocol (SDP)”,G.Salgueiro, December 2011, URL:http://www.ietf.org/rfc/rfc6466.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1 [only needed if application/x-www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not applicable.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete it..

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	QoS
	Quality of Service

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Quality of Service contains HTTP protocol bindings for QoS, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Retrieve a list of predefined QoS features available to an end user
· Request to apply a predefined QoS feature on an end user connection on a temporary basis

· Request to apply a specific QoS feature on an end user connection on a temporary basis

· Retrieve QoS features currently applied on an end user connection

· Update a QoS feature currently applied on an end user connection

· Manage subscriptions to notifications on availability of a predefined QoS feature(s) to an end user

· Notify a client when a predefined QoS feature(s) became available again to an end user

· Manage subscriptions to notifications about events occurring for QoS feature applied on an end user connection

· Notify a client about an event occurred for QoS feature applied on an end user connection

In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. Quality of Service API definition
This section is organized to support a comprehensive understanding of the Quality of Service API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This Network API provides methods that enable an application to govern the quality of service (QoS) applied on end user network connections on a temporary basis. The application can request a certain QoS to be applied on the end user connection by using either a predefined QoS feature, or a custom QoS feature, depending on the method supported by the server’s policy.

Predefined QoS features are defined by the service provider and as such have predetermined QoS properties (e.g. bandwidth, media type, priority, etc) associated with them for particular service usage. The API also provides support for an application to retrieve predefined QoS features available to an end user.

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.

Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix E provides a list of all Light-weight Resources, where applicable.
Appendix F defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Quality of Service
The "apiVersion" URL variable SHALL have the value “v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.emf]/{subscriptionId}

//{serverRoot}/qos/{apiVersion}/{userId }

/predefinedQosFeatures

/subscriptions/{featureId}/appliedQosFeatures

/{subscriptionId}

/predefinedQosFeatures/appliedQosFeatures

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: To allow client to retrieve a list of predefined QoS features that can be applied on the end user connection
	Resource
	URL
Base URL: http://{serverRoot}/qos /{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Predefined QoS features available to a user
	/predefinedQosFeatures
	PredefinedQosFeatureList
	Retrieve a list of available predefined QoS features that can be applied on the end user connection on a temporary basis.

Editor’s Note: A query string parameter will be used to select between a generaly available, and currently available QoS features.
	no
	no
	no

Purpose: To allow client to manage applied QoS features on the end user connection
	Resource
	URL
Base URL: http://{serverRoot}/qos /{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Applied QoS features on a temporary basis
	/appliedQosFeatures

	AppliedQosFeatureList
(used for GET)

QosFeatureData
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of all applied QoS features currently active for the end user identified by {userId}
	no

	Apply a new QoS feature on the end user connection on a temporary basis

	 no

	Individual applied QoS feature on a temporary basis
	/appliedQosFeatures/{featureId}
	QosFeatureData

	Retrieve a specified QoS feature applied on the end user connection on a temporary basis
	Update a specified QoS feature applied on the end user connection
	Update a particular data element(s) for a specified temporary QoS Feature

Editor’s Note: FFS whether child resources or Light-weight resources can be used instead. In any case only one of the methods, either PUT or POST, shall be used to update a QoS feature.
	Delete (remove) a specified QoS feature applied on the end user connection

Purpose: To allow client to manage all subscriptions for QoS features
	Resource
	URL
Base URL: http://{serverRoot}/qos /{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to QoS notifications
	/subscriptions
	QosSubscriptionList
	Retrieve a list of all active subscriptions to QoS feature notifications for the end user
	no
	no
	no

Purpose: To allow client to manage subscriptions to notifications about availability of predefined QoS features
	Resource
	URL
Base URL: http://{serverRoot}/qos /{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to predefined QoS features availability notifications
	/subscriptions/predefinedQosFeatures

	QosFeaturesSubscriptionList
 (used for GET)

PredefinedQosFeaturesAvailabilitySubscription
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of active subscriptions to notifications for predefined QoS features availability
	no
	Create a new subscription to notifications for predefined QoS features availability
	no

	Individual subscription to predefined QoS features availability notifications
	/subscriptions/predefinedQosFeatures/{subscriptionId}
	PredefinedQosFeaturesAvailabilitySubscription

	Retrieve a specified subscription to notifications for predefined QoS features availability
	no
	no
	Cancel a specified subscription and stop corresponding notifications

Purpose: To allow client to manage subscriptions to notifications about events occurring for applied QoS features on the end user connection
	Resource
	URL
Base URL: http://{serverRoot}/qos /{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to applied QoS features event notifications
	/subscriptions/appliedQosFeatures

	QosFeaturesSubscriptionList
 (used for GET)

AppliedQosFeaturesEventSubscription
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of active subscriptions to applied QoS features event notifications for the end user
	no
	Create a new subscription to applied QoS features event notifications
	no

	Individual subscription to applied QoS features event notifications
	/subscriptions/appliedQosFeatures/{subscriptionId}
	AppliedQosFeaturesEventSubscription

	Retrieve a specified subscription for applied QoS features event notifications
	no
	no
	Cancel a specified subscription and stop corresponding notifications

Purpose: To allow server to inform client about availability of predefined QoS features
	Resource
	URL
Base URL:

<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about availability of predefined QoS features
	Specified by client when the subscription is created or provisioned
	PredefinedQosFeaturesAvailabilityNotification
	no
	no
	Notify client that predefined QoS feature(s) is available again
	no

Purpose: To allow server to inform client about an event occurred for applied QoS features on an end user’s connection
	Resource
	URL
Base URL:

<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about an event occurred for applied QoS features
	Specified by client when the subscription is created or provisioned
	AppliedQosFeaturesEventNotification
	no
	no
	Notify client about applied QoS features event occurred on the end user connection
	no

Ed.Note: FFS to see whether notification for subscription cancellation shall be supported also.

Ed.Note: This is a preliminary version of resource definition based on the current version of the RD requirements. If there are new requirements to be considered this definitions may change.

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Quality of Service data types is:

urn:oma:xml:rest:netapi:qos:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_QoS].
5.2.2 Structures

The subsections of this section define the data structures used in the Quality of Service API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.

5.2.2.1 Type: PredefinedQosFeatureList

This type represents a list of predefined QoS features.
	Element
	Type
	Optional
	Description

	predefinedQosFeature
	PredefinedQosFeature [0…unbounded]
	Yes
	Array of predefined QoS features available to a user

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named predefinedQosFeatureList of type PredefinedQosFeatureList is allowed in response bodies.

5.2.2.2 Type: PredefinedQosFeature

This type represents a predefined QoS feature that can be applied on the end user connection on a temporary basis.
	Element
	Type
	Optional
	Description

	predefinedQosFeatureId
	xsd:string
	No
	Contains an identifier of a predefined QoS feature

	predefinedQosFeatureName
	xsd:string
	Yes
	Contains a displayname of a predefined QoS feature (e.g. Gold, Silver, or VideoGold, VideoSilver, etc).

	mediaType
	MediaType
	Yes
	If present, gives information about the media type the predefined QoS feature can be used with.

	bandwidth
	BandwidthInformation
	Yes
	If present, gives information about the bandwidth that should be available to use with the predefined QoS feature.

	reservationPriority
	ReservationPriority
	Yes
	If present, gives information about the priority level the predefined QoS feature should have during a resource reservation.

	link
	common:Link [0..unbounded]
	Yes
	Link to other information relating to that particular predefined QoS feature.

5.2.2.3 Type: QosFeatureData

This type represents a QoS feature to be applied on the end user connection on a temporary basis. The data type can be used for implementation where only predefined QoS features are supported as well for the implementation where customised QoS features are supported.
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This field SHOULD be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate transaction creation in such situations.
In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	predefinedQosFeatureId
	xsd:string
	Yes
	Contains an identifier of the predefined QoS feature that shall be applied for the specified end user connection (IP flow).

The parameter SHALL be specified only if predefined QoS feature is to be applied for the specified end user connection (IP flow).
Note that some servers may support only predefined QoS features and in such case this element MUST be included in the request to create resource.

A predefined QoS feature is defined by operator and it has fixed QoS properties (e.g. bandwidth, media type, etc) that cannot be changed by an application.

	mediaType
	MediaType
	Yes
	Specifies the type of media that will be used on the specified connection/IP flow.

If element predefinedQosFeatureId is specified and that implicitly includes media type information then this element SHOULD NOT be specified.

	requestedBandwidth
	BandwidthInformation
	Yes
	Specifies the bandwidth requested for the specified connection/IP flow (e.g. max/min bandwidth in UL/DL directions).

Note that server may not be able to provide the requested bandwidth and in such case the server SHALL include the accepted bandwidth in the response to the request.

If element predefinedQosFeatureId is specified and that implicitly includes bandwidth information then this element SHOULD NOT be specified.

	ipFlowDescription
	IpFlowDescription
	Yes
	Describes the end points of the connection/IP flow for which the requested QoS feature is to be applied (e.g. IP addresses, port numbers , and protocols)

	reservationPriority
	ReservationPriority
	Yes
	Specified desired priority for handling of the request to apply selected QoS feature on the specified connection/IP flow.
If not specified, a default value “Low” is assumed.

If element predefinedQosFeatureId is specified and that implicitly includes reservation priority information then this element SHOULD NOT be specified.

	duration
	xsd:int
	Yes
	Period of time (in seconds) this particular QoS feature is requested for (e.g.”60 minutes”)

If the parameter is omitted, the requested QoS feature will apply until the maximum duration time, which is specified by the service policy, or the requested QoS feature is removed by the application itself. In the response to the request the server SHALL include accepted duration.

If both “duration” and “volume” are specified then the first threshold that has been reached will apply.

	volume
	xsd:unsignedInt
	Yes
	Specifies a volume data limit in kilobytes (1 kilobyte (kB) =1000 bytes) that shall be allocated for the requested QoS feature.
If both “duration” and “volume” are specified then the first threshold that has been reached will apply.
Note that if the server cannot track volume usage a policy exception POL XXXX will be issed.

	defaultAction
	DefaultAction
	Yes
	Specifies a default action the server shall perform in case the allocated volume limit is reached, or QoS duration timer expires.

If not specified, a default action “AutoCancellation” is assumed.

	sponsorId
	xsd:string
	Yes
	Identity of the party that shall be charged for the requested temporary QoS feature.

If not present then the application requesting this particular temporary QoS feature will be charged.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named qosFeatureData of type QosFeatureData is allowed in request and/or response bodies.
Editor’s Note: FFS to check whether for new developments xsd:duration data type can be used for duration. With this date type, duration is expressed in a format PnYn MnDTnH nMnS (e.g. P2DT6H30M, which means 2 days, 6 hours and 30 minutes).

Editor’s Note: Many of OMA APIs use xsd:int data type for duration, and this data type allows both positive and negative numbers to be specified. It would be more appropriate to use xsd:unsignedInt that allows only positive numbers and if the group decide to use it then it should be aligned across all APIs.
5.2.2.4 Type: BandwidthInformation
This type describes the bandwidth for an end user connection/IP flow.
	Element
	Type
	Optional
	Description

	minUplinkBitRate
	xsd:unsignedInt
	Yes
	Defines a minimum bit rate in kilobits per second (kbit/s or kbps, where 1 kilobit = 1000 bits) requested in uplink (UL) direction (e.g. “2048 kbps”).
The parameter is also referred as Guaranteed Bit Rate (GBR) in UL direction.
The server may change desired bit rate however the server SHALL specify in the response the minimum bit rates that will be applied in UL direction on an end user connection.

	maxUplinkBitRate
	xsd:unsignedInt
	Yes
	Defines a maximum bit rate in kilobits per second requested in uplink direction (e.g. 4096 kbps”).

The server may change desired bit rate however the server SHALL specify in the response the maximum bit rates that will be applied in UL direction on an end user connection.

	minDownlinkBitRate
	xsd:unsignedInt
	Yes
	Defines a minimum bit rate in kilobits per second requested in downlink (DL) direction (e.g. “8192 kbps”).

The parameter is also referred as Guaranteed Bit Rate (GBR) in DL direction.

The server may change desired bit rate however the server SHALL specify in the response the minimum bit rates that will be applied in DL direction on an end user connection.

	maxDownlinkBitRate
	xsd:unsignedInt
	Yes
	Defines a maximum bit rate in kilobits per second requested in downlink direction (e.g. “16384 kbps”).

The server may change desired bit rate however the server SHALL specify in the response the maximum bit rates that will be applied in DL direction on an end user connection.

5.2.2.5 Type: IpFlowDescription

This data type represents IP flow(s) for which QoS feature is to be applied. For bidirectional (two-ways) traffic, both downlinkFlow and uplinkFlow elements are used to represent an IP flow. For unidirectional (one-way) traffic, depending on the direction of the information flow either downlinkFlow or uplinkFlow element is used to represent an IP flow.
	Element
	Type
	Optional
	Description

	downlinkFlow
	FlowDescription
	Yes
	Describes IP flow in downlink (DL) direction.

	uplinkFlow
	FlowDescription
	Yes
	Description of IP flow in uplink (UL) direction

5.2.2.6 FlowDescription

This data type describes one media IP flow.
	Element
	Type
	Optional
	Description

	protocolType
	ProtocolType
	Yes
	Specifies the transport protocol to be used on the flow (e.g. TCP, UDP, etc).
If not specified, a default value “TCP” is assumed.

	flowStatus
	FlowStatus
	Yes
	Specifies in which status the flow shall be after the QoS feature has been applied (e.g. Enabled, or Disabled).

If not specified, a default value “Enabled” is assumed.

	destinationIpAddress
	IpAddress
	Yes
	IP addresses of the party receiving the IP packets

	sourceIpAddress
	IpAddress
	Yes
	IP addresses of the party sending the IP packets

	destinationPortNumber
	xsd:unsignedShort
	Yes
	Port number where IP packets are received (e.g. 100)

If not specified, depending on the protocol type used it could mean that either it is not required, or any port can be used.

	sourcePortNumber
	xsd:unsignedShort
	Yes
	Port number from which IP packets are originated (e.g. 10)

If not specified, depending on the protocol type used it could mean that either it is not required, or any port can be used.

5.2.2.7 Type: IpAddress

This data type represents one IP address.
	Element
	Type
	Optional
	Description

	ipV4Address
	xsd:string
	Choice
	Contains a valid routable IPv4 address

	ipV6Address
	xsd:string
	Choice
	Contains a valid routable IPv6 address

XSD modeling uses a “choice” to select either “ipV4Address” or “ipV6Address”, but not both of them.
Editor’s. Note: FFS. Currently there is no XSD data type that is uniquely used to specify an IP address. For this API there are 2 options: either to specify own data type and mandate to use it, or to use a “xsd:string” data type and leave to implementations to decide on the format to be used.
5.2.2.8 Type: AppliedQosFeatureList

This type represents a list of applied QoS features on the end user connection on a temporary basis.
	Element
	Type
	Optional
	Description

	qosFeature
	QosFeatureData [0…unbounded]
	Yes
	Array of temporary QoS features

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named appliedQosFeatureList of type AppliedQosFeatureList is allowed in response bodies.

5.2.2.9 Type: QosFeaturesSubscriptionList

This type represents a list of all subscriptions to notifications about events concerning both predefined and applied QoS features.
	Element
	Type
	Optional
	Description

	predefinedQosFeaturesAvailabilitySubscription
	PredefinedQosFeaturesAvailabilitySubscription [0..unbounded]
	Yes
	Array of predefined QoS availability subscriptions

	appliedQosFeaturesEventSubsscription
	AppliedQosFeaturesEventSubscription [0..unbounded]
	Yes
	Array of applied QoS event subscriptions

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named qosFeaturesSubscriptionList of type QosFeaturesSubscriptionList is allowed in response bodies.

5.2.2.10 Type: PredefinedQosFeaturesAvailabilitySubscription

This type represents a subscription to notifications about availability of predefined QoS features.
	Element
	Type
	Optional
	Description

	callbackReference
	Common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	duration
	xsd:int
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.

This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present.

Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	predefinedQosFeatureId
	xsd:string [1…unbounded]
	No
	Contains a list of predefined QoS feature identities, temporary unavailable to a user, which need to be monitored when they became available again to the user.

	multipleNotificationsRequested
	xsd:boolean
	Yes
	This OPTIONAL element signals whether a notification shall be sent after each occurrence where the specified predefined QoS feature became available again (after period of unavailability), or just after the first occurrence.
Default value is “false” which means that a notification SHALL be sent only after the first occurrence where the QoS feature became available again. After the notifications have been sent for all features included in the subscription, the server SHALL remove the subscription.
Note that a server according to its policy MAY NOT support multiple notifications (element value set to “true”) and in such case POLXXXX will be returned.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named predefinedQosFeaturesAvailabilitySubscription of type PredefinedQosFeaturesAvailabilitySubscription is allowed in request and/or response bodies.

5.2.2.11 Type: AppliedQosFeaturesEventSubscription

This type represents a subscription to notifications about events occurring for applied QoS features on the end user connection.
	Element
	Type
	Optional
	Description

	callbackReference
	Common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	duration
	xsd:int
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.

This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present.

Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	eventType
	QosEvent [0…unbounded]
	Yes
	Specifies QoS events for which notifications shall be sent.
If not specified, then notifications shall be sent for all QoS events concerning applied QoS features.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named appliedQosFeaturesEventSubscription of type AppliedQosFeaturesEventSubscription is allowed in request and/or response bodies.

5.2.2.12 Type: PredefinedQosFeaturesAvailabilityNotification

This type represents a notification that predefined QoS feature(s) that were temporary unavailable become available again.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about QoS events
See [REST_NetAPI_Common]

	predefinedQosFeatureId
	xsd:string [1…unbounded]
	No
	Contains a list of predefined QoS features that became available again to an end user.

	link
	Common:Link [0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification.
The server SHOULD also include a link to the related subscription.

A root element named predefinedQosFeaturesAvailabilityNotification of type PredefinedQosFeaturesAvailabilityNotification is allowed in notification request bodies.

5.2.2.13 Type: AppliedQosFeaturesEventNotification

This type represents a notification about an event occurred for applied QoS feature(s) on the user connection.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about QoS events
See [REST_NetAPI_Common]

	eventType
	QosEvent
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

	link
	Common:Link [0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification.
The server SHOULD also include a link to the related subscription.

A root element named appliedQosFeaturesEventNotification of type AppliedQosFeaturesEventNotification is allowed in notification request bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Quality of Service API.
5.2.3.1 Enumeration: MediaType
This enumeration defines possible media types that can be specified for the end user connection (IP flow) for which a QoS is requested. The enumeration values listed below corresponds to media type definitions in [3GPP_TS_29.214], [RFC4566], and [RFC6466].
	Enumeration
	Description

	Audio
	Indicates that the requested QoS feature will be used for voice conversation

	Video
	Indicates that the requested QoS feature will be used for video applications (e.g. live streaming)

	Application
	Indicates that the requested QoS feature will be used for a media flow such as whiteboard information etc.

	Text
	Indicates that the requested QoS feature will be used for text based services.

	Message
	Indicates that the requested QoS feature will be used for messaging services/applications (e.g. e-mail, chat)

	Image
	Indicates that the requested QoS feature will be used for a media stream whose content consists of one or more images that require appropriate hardware to display

	Other
	Indicates that the requested QoS feature will be used for other purposes.

5.2.3.2 Enumeration: FlowStatus

This enumeration defines possible values to be used to specify the status for an IP flow on the end user connection.
	Enumeration
	Description

	Enabled
	The value should be used to enable an IP flow.

	Disabled
	The value should be used to disable an IP flow

	Removed
	The value should be used to remove an IP flow

5.2.3.3 Enumeration: ProtocolType

This enumeration defines possible values for a protocol used for an IP flow on the end user connection.
	Enumeration
	Description

	TCP
	Used to indicate that TCP protocol is to be used for a media IP flow.

	UDP
	Used to indicate that UDP protocol is to be used for a media IP flow

	SCTP
	Used to indicate that SCTP protocol is to be used for a media IP flow

5.2.3.4 Enumeration: ReservationPriority
This enumeration defines possible values that can be used to specify reservation priority level for a QoS feature that is be applied on the end user connection.
	Enumeration
	Description

	High
	Priority level recommended for services that shall be given a high priority for resource reservation during the network congestion.

	Medium
	Priority level recommended for services that shall be given a medium priority for resource reservation during the network congestion.

	Low
	Priority level recommended for services that do not require priority for resource reservation during the network congestion.

5.2.3.5 Enumeration: DefaultAction

This enumeration defines possible values that can be used to specify a default action that is be performed automatically by a server in cases such as: volume data limit is reached, or QoS duration timer expires.
	Enumeration
	Description

	AutoRenewal
	The application data traffic flow continues with the same QoS feature.

	AutoCancellation
	The application data traffic flow is stopped and the requested QoS is removed.

5.2.3.6 Enumeration: QosEvent

This enumeration defines possible values that can be used to describe an event occurring for applied QoS feature(s) on the end user connection.
	Enumeration
	Description

	AbnormalConnectionTermination
	End user connection(s) terminated abnormally because of a fault in the network causing all applied QoS features that were active on the connection(s) to be released as well.

	NormalConnectionTermination
	End user connection(s) terminated normally – e.g. user(s) have logged off – causing all applied QoS features active on the connection(s) to be automatically released

	AppliedQosFeatureReleased
	Applied QoS feature that was active on the end user connection has been released because the threshold set by one of the service attributes (e.g. elapsed duration) has been reached

	AppliedQosFeatureRenewed
	Applied QoS feature that was active on the end user connection has been renewed and continues with the same settings.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· One

· Two

<< Include a bullet list with possible “rel” string values >>
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.3.1 Applying a predefined QoS feature on the end user connection
The figure below shows a scenario where a client requested a predefined QoS feature to be applied on the end user connection on a temporary basis.
A predefined QoS features are features that have defined QoS properties (for example: max/min bit rates up/down link, media type, priority, etc), by the operator (service provider) and as such they are packed under different names (e.g. gold, silver, bronze) and then offered to their users.
The resources:

· To retrieve predefined QoS features available for the end user connection, read the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/predefinedQosFeatures
· To request a predefined QoS feature to be applied on the end user connection, create a new resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures
· To remove a predefined QoS feature that has been applied on an end user connection, delete the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures/{featureId}
[image: image3.png]
Figure 2 Applying a predefined QoS feature on the end user connection

Outline of the flows:

1. The application requests the server to provide a list of predefined QoS features available to a user, by using GET method on the resource.

2. The server returns in the response to the GET request a list of available predefined QoS features with their names, and their properties (this is dependent on the server policy)

3. The application requests the server to apply a selected predefined QoS feature on the end user connection.

4. The server returns in the response to the POST request a resource URL which can be used in subsequent HTTP methods to identify the QoS feature applied on the end user connection.

5. The application decides to remove the QoS feature applied on the end user connection by using DELETE method on the resource identified by the resource URL which has been received in step 4.
6. The server returns an HTTP response.
5.3.2 Applying a customized QoS feature on the end user connection
The figure below shows a scenario where a client requested specific properties for a QoS feature that is to be applied on the end user connection on a temporary basis.
The resources:
· To request a specific QoS feature properties to be applied on the end user connection, create a new resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures
· To remove a temporary QoS feature that has been applied on an end user connection, delete the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures/{featureId}

[image: image4.png]
Figure 3 Applying a customized QoS feature on the end user connection
Outline of the flows:
1. The application requests the server to apply a QoS feature with specific properties on the end user connection, by using POST request which includes desired QoS feature properties.

2. The server returns in the response to the POST request a resource URL which can be used in subsequent HTTP methods to identify the QoS feature applied on the end user connection.

3. The application decides to remove the QoS feature applied on the end user connection by using DELETE method on the resource identified by the resource URL received in the step 2.

4. The server returns an HTTP response.

5.3.3 Updating a QoS feature applied on the end user connection
The figure below shows a scenario where a client updates parameters for the QoS feature that has been applied on the end user connection.
The resources:
· To retrieve a specified QoS features available for an end user connection, read the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures/{featureId}
· To update parameters for a temporary QoS feature that has been applied on an end user connection, update the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/appliedQosFeatures/{featureId}

[image: image5.png]
Figure 4 Updating duration time for an applied QoS feature

Outline of the flows:
1. The application requests the server to retrieve a specified QoS feature that has been applied on an end user connection, by using GET method on the resource identified by the resource URL received in the response from the server when the resource was created.

2. The server in the response to the GET request returns parameters for the specified QoS feature.

3. The application decides to change the duration that was initially specified for the QoS feature by using POST method on the resource identified by the resource URL received in the response from the server when the resource was created.

4. The server returns an HTTP response confirming updated duration.

5.3.4 Subscription to notifications on availability of predefined QoS features
The figure below shows a scenario for a subscription to notifications on availability of predefined QoS features that are currently not available to the end user due to underlying conditions (e.g. user’s location, network condition, time of day, etc).

The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:
· To create a new subscription to notifications on availability of predefined QoS features, create a new resource under
 http://{serverRoot}/qos/{apiVersion}/{userId}/subscriptions/predefinedQosFeatures
· To terminate (remove) an individual subscription to notifications on availability of predefined QoS features, delete the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/subscriptions/predefinedQosFeatures/{subscriptionId}
· The notifications from the server on availability of predefined QoS features are done on the notification URL provided by the application during the subscription to notifications.
[image: image6.png]
Figure 5 Subscription to notifications on availability of predefined QoS features
Outline of the flows:

1. An application subscribes to notifications on availability of a particular predefined QoS feature(s) by using the POST method to the resource containing subscriptions for predefined QoS features.

2. The application receives the result resource URL containing the subscriptionId.
3. The application receives notification that desired predefined QoS feature(s) has become available again to the end user.

4. The application returns an HTTP response.

5. The application stops receiving notifications by using DELETE method with the resource URL containing the subscriptionId.

6. The server returns an HTTP response.

5.3.5 Subscription to notifications about events occurring for applied QoS features
The figure below shows a scenario for a subscription for notifications about events relating to QoS features applied on an end user connection.

The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:
· To create a new subscription for notifications about QoS events, create a new resource under
 http://{serverRoot}/qos/{apiVersion}/{userId}/subscriptions/appliedQosFeatures
· To terminate (remove) an individual subscription for QoS event notifications, delete the resource under http://{serverRoot}/qos/{apiVersion}/{userId}/subscriptions/appliedQosFeatures/{subscriptionId}
· The notifications from the server about QoS events are done on the notification URL provided by the application during the subscription to notifications.
[image: image7.png]
Figure 6 Subscription to notifications about events occurring for applied QoS features
Outline of the flows:

1. An application subscribes to notifications about the events occurring for the applied QoS features by using the POST method to the resource containing subscriptions for applied QoS features.

2. The application receives the result resource URL containing the subscriptionId.
3. The application receives notification that a certain QoS event has occurred on the end user connection.

4. The application returns an HTTP response.

5. The application stops receiving notifications by using DELETE method with the resource URL containing the subscriptionId.

6. The server returns an HTTP response.

5.3.6 A limit for applied QoS feature has been reached
The figure below shows a scenario where a limit (either duration timed out, or allocated volume) for a particular QoS feature applied on the end user connection has been reached.
The resources:
· The notification about the action taken by the server is done on the notification URL provided by the application during the subscriptions to notifications.
[image: image8.png]
Figure 7 A limit set for applied QoS feature has been reached

Outline of the flows:
A limit for applied QoS feature (either duration timed out, or allocated volume) has been reached and the application receives a notification from the server. There are 2 possible alternatives depending on the settings for “defaultAction” parameter:
Alternative 1: In the request to apply that particular QoS feature, the application had set the parameter “defaultAction” to “AutoCancellation” or the parameter was completely omitted.

1. The application receives a notification from the server that the QoS feature is terminated and the resource has been removed.

2. The application returns an HTTP response.

Alternative 2: In the request to apply that particular QoS feature, the application had set the parameter “defaultAction” to “AutoRenewal”.

3. The application receives a notification from the server that the QoS feature is renewed and continues with the same settings
4. The application returns an HTTP response.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See F.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].

6.1 Resource: Predefined QoS features available to a user
The resource used is:
http://{serverRoot}/qos /{apiVersion}/{userId}/predefinedQosFeatures
This resource is used by a client for retrieving a list of predefined QoS features that are available to an end user.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.1.3 GET
This operation is used for retrieving a list of predefined QoS that are available to an end user.
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	currentlyAvailableOnly
	xsd:boolean
	Yes
	Indicates what type the request is.

If set to “True” then the request is to retrieve predefined QoS feature that are available to the end user at the time the request is received by the server.

If set to “False” then the request is to retrieve predefined QoS features that are generally available to the end user.

Default value is “False”.

6.1.3.1 Example 1: Retrieving a list of predefined QoS features generally available to the end user
(Informative)

6.1.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/predefinedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeatureList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">

 <predefinedQosFeature>
 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <predefinedQosFeatureName>VideoGold</predefinedQosFeatureName>
 <mediaType>Video</mediaType>

 <reservationPriority>Medium</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/hdv1080"/>

 </predefinedQosFeature>

 <predefinedQosFeature>
 <predefinedQosFeatureId>dvdv768</predefinedQosFeatureId>

 <predefinedQosFeatureName>VideoSilver</predefinedQosFeatureName>

 <mediaType>Video</mediaType>

 <reservationPriority>Medium</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/dvdv768"/>

 </predefinedQosFeature>
 <predefinedQosFeature>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>

 <predefinedQosFeatureName>AudioGold</predefinedQosFeatureName>

 <mediaType>Audio</mediaType>

 <reservationPriority>Medium</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/audio16"/>

 </predefinedQosFeature>
 <predefinedQosFeature>
 <predefinedQosFeatureId>avg8768</predefinedQosFeatureId>

 <predefinedQosFeatureName>GamingSilver</predefinedQosFeatureName>

 <mediaType>Application</mediaType>

 <reservationPriority>Low</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/avg8768"/>

 </predefinedQosFeature>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/predefinedQosFeatures
 </resourceURL>

</qos:predefinedQosFeatureList>

6.1.3.2 Example 2: Retrieving a list of predefined QoS features currently available to the end user
(Informative)
Following is an example where a client is interested in to know which predefined QoS features are available to the end user at that time at that location.
6.1.3.2.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/predefinedQosFeatures?currentlyAvailableOnly=”True” HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.2.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeatureList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">

 <predefinedQosFeature>
 <predefinedQosFeatureId>dvdv768</predefinedQosFeatureId>

 <predefinedQosFeatureName>VideoSilver</predefinedQosFeatureName>

 <mediaType>Video</mediaType>

 <reservationPriority>Medium</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/dvdv768"/>

 </predefinedQosFeature>
 <predefinedQosFeature>
 <predefinedQosFeatureId>avg8768</predefinedQosFeatureId>

 <predefinedQosFeatureName>GamingSilver</predefinedQosFeatureName>

 <mediaType>Application</mediaType>

 <reservationPriority>Low</reservationPriority>

 <link rel="PredefinedQosFeatures"

 href=" http://example.com/qos/predefinedQosFeatures/avg8768"/>

 </predefinedQosFeature>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/predefinedQosFeatures

 </resourceURL>

</qos:predefinedQosFeatureList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.1.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Applied QoS features on a temporary basis
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/appliedQosFeatures
This resource is used by a client for retrieving a list of applied QoS features an end user connection as well as for requesting a certain QoS feature to be applied to the end user connection.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.2.3 GET
This operation is used for retrieving a list of QoS features that have been applied on an end user connection.

6.2.3.1 Example: Retrieving a list of QoS features applied on an end user connection
(Informative)

6.2.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:appliedQosFeatureList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">

 <qosFeature>
 <clientCorrelator>v1234</clientCorrelator>
 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080
 </resourceURL>

 </qosFeature>
 <qosFeature>
 <clientCorrelator>gm1234</clientCorrelator>

 <mediaType>Application</mediaType>

 <duration>7200</duration>

 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/app001
 </resourceURL>

 </qosFeature>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures
 </resourceURL>

</qos:appliedQosFeatureList>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST

This operation is used by an application to request a certain QoS feature to be applied on an end user connection. In the request, the application can specify either a predefined QoS feature or a custom QoS feature depending on the method supported by server.
To find out predefined QoS features available for a user, the application can use a method described in 6.1.3.

6.2.5.1 Example 1: Request to apply a predefined QoS feature on an end user connection
(Informative)
In the following example, the predefined QoS feature has predetermined media type, bandwidth information, and reservation priority. The feature is requested for streaming a video from a service provider to the user and it is sponsored by the service provider.
6.2.5.1.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnn
<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

</qos:qosFeatureData>

6.2.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <ipFlowDescription>
 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>
 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080</resourceURL>

</qos:qosFeatureData>

6.2.5.2 Example 2: Request to apply a predefined QoS feature on an end user connection, response with location of created resource
(Informative)
This is the same as Example 1, except that the server returns only a reference to the created resource, rather than a copy of it (defined in [REST_NetAPI_Common] as an alternative way of resource creation responses).
6.2.5.2.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnn
<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

</qos:qosFeatureData>

6.2.5.2.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080</resourceURL>

</common:resourceReference>

6.2.5.3 Example 3: Request to apply a custom QoS feature on an end user connection
(Informative)
In the following example, rather than using a predefined QoS feature in the request, the application specifies own values for QoS properties such as bandwidth, media type, and reservation priority. Note that min/max uplink bit rates are not specified since the traffic is only in one direction (downlink).
6.2.5.3.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnn
<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <mediaType>Video</mediaType>

 <requestedBandwidth>

 <minDownlinkBitRate>7000</minDownlinkBitRate>

 <maxDownlinkBitRate>10000</maxDownlinkBitRate>

 </requestedBandwidth>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <reservationPriority>Medium</reservationPriority>
 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

</qos:qosFeatureData>

6.2.5.3.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/app100
Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <mediaType>Video</mediaType>

 <requestedBandwidth>

 <minDownlinkBitRate>7000</minDownlinkBitRate>

 <maxDownlinkBitRate>10000</maxDownlinkBitRate>

 </requestedBandwidth>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <reservationPriority>Medium</reservationPriority>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/app100</resourceURL>
</qos:qosFeatureData>

6.2.5.4 Example 4: Request to apply a custom QoS feature on an end user connection, which is not supported by the server
(Informative)
In the following example, an application is trying to apply a custom QoS feature on an end user connection however it fails since the server does not support custom QoS features.
6.2.5.4.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnn
<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <mediaType>Video</mediaType>

 <requestedBandwidth>

 <minDownlinkBitRate>7000</minDownlinkBitRate>

 <maxDownlinkBitRate>10000</maxDownlinkBitRate>

 </requestedBandwidth>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <reservationPriority>Medium</reservationPriority>

 <duration>5400</duration>

 <sponsorId>sp100</sponsorId>

</qos:qosFeatureData>

6.2.5.4.2 Response

	HTTP/1.1 403 Forbiden
Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/app100

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POLxxxx</messageId>

 <text>Custom QoS features are not supported</text>

 </policyException>

</common:requestError>

6.2.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.3 Resource: Individual applied QoS feature on a temporary basis
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/appliedQosFeatures/{featureId}
This resource is used by a client for managing (retrieve, update, delete) an individual QoS features applied on an end user connection.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	featureId
	Identifier of QoS feature applied on an end user connection

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.3.3 GET
This operation is used for retrieving an individual QoS feature applied on an end user connection.
6.3.3.1 Example: Retrieving a list of QoS features applied on an end user connection
(Informative)

6.3.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080 HTTP/1.1
Accept: application/xml
Host: example.com

6.3.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<qos:qosFeatureData xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <clientCorrelator>v1234</clientCorrelator>

 <predefinedQosFeatureId>hdv1080</predefinedQosFeatureId>

 <ipFlowDescription>

 <downlinkFlow>

 <protocolType>TCP</protocolType>

 <flowStatus>Enabled</flowStatus>

 <destinationIpAddress>

 <ipV4Address>192.0.2.0</ipV4Address>

 </destinationIpAddress>

 <sourceIpAddress>

 <ipV4Address>192.0.2.10</ipV4Address>

 </sourceIpAddress>

 <destinationPortNumber>10</destinationPortNumber>

 <sourcePortNumber>100</sourcePortNumber>

 </downlinkFlow>

 </ipFlowDescription>

 <duration>4400</duration>

 <sponsorId>sp100</sponsorId>

 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080</resourceURL>

</qos:qosFeatureData>

6.3.4 PUT (TBD!)
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST (TBD!)
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.3.6 DELETE
This operation is used by an application to remove (terminate) an individual QoS feature applied on an end user connection.
6.3.6.1.1 Request

	DELETE /exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080 HTTP/1.1

Accept: application/xml

Host: example.com

6.3.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

6.4 Resource: All subscriptions to QoS notifications
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/subscriptions
This resource is used for retrieving all subscriptions to notifications related to predefined and applied QoS features.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.4.3 GET
This operation is used for retrieving all subscriptions to notifications related to predefined and applied QoS features.
6.4.3.1 Example: Retrieving all subscriptions to notifications related to QoS features
(Informative)
6.4.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeaturesSubscriptionList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <predefinedQosFeaturesAvailabilitySubscription>

 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7000</duration>

 <clientCorrelator>p1234</clientCorrelator>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001

 </resourceURL>
 </predefinedQosFeaturesAvailabilitySubscription>

 <appliedQosFeaturesEventSubscription>

 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>efgh</callbackData>

 </callbackReference>

 <duration>6000</duration>

 <clientCorrelator>v1234</clientCorrelator>
 <eventType>AppliedQosFeatureReleased</eventType>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002

 </resourceURL>
 </appliedQosFeaturesEventSubscription>
 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</qos:qosFeaturesSubscriptionList>

6.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.4.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.5 Resource: All subscriptions to predefined QoS features availability notifications
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/subscriptions/predefinedQosFeatures
This resource is used for retrieving all subscriptions to notifications about availability of predefined QoS features to an end user.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.5.3 GET
This operation is used for retrieving all subscriptions to notifications related to availability of predefined QoS features to an end user.

6.5.3.1 Example: Retrieving all subscriptions to notifications on availability of predefined QoS features
(Informative)
6.5.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com

6.5.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeaturesSubscriptionList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <predefinedQosFeaturesAvailabilitySubscription>

 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7000</duration>

 <clientCorrelator>p1234</clientCorrelator>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001

 </resourceURL>
 </predefinedQosFeaturesAvailabilitySubscription>
 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures
 </resourceURL>

</qos:qosFeaturesSubscriptionList>

Editor’s Note: FFS if a separate root element needs to be created for retrieving subscriptions for predefined QoS features. If not, then the description of QosFeaturesSubscriptionList in section 5.2.2.9 shall be updated to state when a particular element is used.
6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.5.5 POST

This operation is used to create a new subscription for notifications on availability of predefined QoS features to an end user. The application can subscribe to these notifications in cases where a requested predefined QoS feature is not available to the user due to some underlying conditions such as network coverage, location, time of the day etc. A Boolean parameter “multipleNotificationsRequested” can be used to signal to the server whether a notification shall be sent only after the first occurrence the feature becomes available or for every occurrence in case of multiple occurrences.
6.5.5.1 Example: Creating a new subscription for notifications on availability of predefined QoS features
(Informative)
In the following example, Boolean parameter “multipleNotificationsRequested” is not included which means that the application is requesting just a single notification.
6.5.5.1.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn
Host: example.com
<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeaturesAvailabilitySubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7000</duration>

 <clientCorrelator>p1234</clientCorrelator>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>
</qos:predefinedQosFeaturesAvailabilitySubscription>

6.5.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeaturesAvailabilitySubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7000</duration>

 <clientCorrelator>p1234</clientCorrelator>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001

 </resourceURL>
</qos:predefinedQosFeaturesAvailabilitySubscription>

6.5.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.6 Resource: Individual subscription to predefined QoS features availability notifications
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/subscriptions/predefinedQosFeatures/{subscriptionId}
This resource is used to manage (retrieve, delete) an individual subscription to notifications on availability of predefined QoS features that are available to an end user.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	Identifier of the subscription generated by the server.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.6.3 GET
This operation is used to retrieve an individual subscription for notifications on availability of predefined QoS features to an end user.

6.6.3.1 Example: Retrieving an individual subscriptions to notifications on availability of predefined QoS features
(Informative)
6.6.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeaturesAvailabilitySubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7000</duration>

 <clientCorrelator>p1234</clientCorrelator>
 <predefinedQosFeatureId>audio16</predefinedQosFeatureId>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001

 </resourceURL>
</qos:predefinedQosFeaturesAvailabilitySubscription>

6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.6.6 DELETE
6.6.6.1 Example: Cancelling a subscription to notifications on availability of predefined QoS features
(Informative)
6.6.6.1.1 Request

	DELETE /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.6.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.7 Resource: All subscriptions to applied QoS features event notifications
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/subscriptions/appliedQosFeatures
This resource is used for retrieving a list of subscriptions to notifications about events occurring for QoS features applied to an end user connection.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.7.3 GET
This operation is used for retrieving all subscriptions to notifications about events occurring for QoS features applied to an end user connection.
6.7.3.1 Example: Retrieving all subscriptions to notifications about events occurring for applied QoS features
(Informative)
6.7.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures HTTP/1.1
Accept: application/xml
Host: example.com

6.7.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:qosFeaturesSubscriptionList xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <appliedQosFeaturesEventSubscription>

 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>efgh</callbackData>

 </callbackReference>

 <duration>6000</duration>

 <clientCorrelator>v1234</clientCorrelator>
 <eventType>AppliedQosFeatureReleased</eventType>
 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002

 </resourceURL>
 </appliedQosFeaturesEventSubscription>
 <resourceURL>http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures</resourceURL>

</qos:qosFeaturesSubscriptionList>

Editor’s Note: FFS if a separate root element needs to be created for retrieving subscriptions for applied QoS features. If not, then the description of QosFeaturesSubscriptionList in section 5.2.2.9 shall be updated to state when a particular element is used.
6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.5 POST

This operation is used to create a new subscription for notifications about events occurring for a QoS features applied to an end user connection.
6.7.5.1 Example: Creating a new subscription for notifications about events occurring for applied QoS features
(Informative)
6.7.5.1.1 Request

	POST /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn
Host: example.com
<?xml version="1.0" encoding="UTF-8"?>

<qos:appliedQosFeaturesEventSubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>efgh</callbackData>

 </callbackReference>

 <duration>6000</duration>

 <clientCorrelator>v1234</clientCorrelator>
 <eventType>AppliedQosFeatureReleased</eventType>
</qos:appliedQosFeaturesEventSubscription>

6.7.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml
Location: http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:appliedQosFeaturesEventSubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>efgh</callbackData>

 </callbackReference>

 <duration>6000</duration>

 <clientCorrelator>v1234</clientCorrelator>
 <eventType>AppliedQosFeatureReleased</eventType>

 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002

 </resourceURL>
</qos:appliedQosFeaturesEventSubscription>

6.7.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Individual subscription to applied QoS features event notifications
The resource used is:

http://{serverRoot}/qos /{apiVersion}/{userId}/appliedQosFeatures/{subscriptionId}
This resource is used to manage (retrieve, delete) an individual subscription to notifications about events occurring for QoS features applied to an end user connection.

6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	Identifier of the subscription generated by the server.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service API, see section 7.
6.8.3 GET
This operation is used to retrieve an individual subscription for notifications about events occurring for QoS features applied to an end user connection.

6.8.3.1 Example: Retrieving an individual subscription to notifications about events occurring for applied QoS features
(Informative)
6.8.3.1.1 Request

	GET /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002 HTTP/1.1
Accept: application/xml
Host: example.com

6.8.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<qos:appliedQosFeaturesEventSubscription xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackReference>

 <notifyURL>http://application.example.com/qos/notifications/77777</notifyURL>

 <callbackData>efgh</callbackData>

 </callbackReference>

 <duration>6000</duration>

 <clientCorrelator>v1234</clientCorrelator>
 <eventType>AppliedQosFeatureReleased</eventType>

 <resourceURL>

 http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002

 </resourceURL>
</qos:appliedQosFeaturesEventSubscription>

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.8.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.8.6 DELETE
6.8.6.1 Example: Cancelling a subscription to notifications about events occurring for applied QoS features
(Informative)
6.8.6.1.1 Request

	DELETE /exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002 HTTP/1.1
Accept: application/xml
Host: example.com

6.8.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.9 Resource: Client notification about availability of predefined QoS features
This resource is a callback URL provided by the client for notification about availability of predefined QoS features. The RESTful QoS API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.9.5 .

6.9.1 Request URL variables

Client provided if any.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service, see section 7.
6.9.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST

This operation is used to notify the client that a particular predefined QoS feature is available to the end user.
6.9.5.1 Example: Creating a new subscription for notifications about events occurring for applied QoS features
(Informative)
6.9.5.1.1 Request

	POST /qos/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn
Host: example.com
<?xml version="1.0" encoding="UTF-8"?>

<qos:predefinedQosFeaturesAvailabilityNotification xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackData>abcd</callbackData>
 <predefinedQosFeatureId> audio16</predefinedQosFeatureId>
 <link rel=”PredefinedQoSfeaturesAvailabilitySubscription”
 href=”http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/predefinedQosFeatures/sub001”/>
</qos:predefinedQosFeaturesAvailabilityNotification>

6.9.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.9.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: Client notification about an event occurred for applied QoS features
This resource is a callback URL provided by the client for notification about events occurring for QoS features applied on an end user connection. The RESTful QoS API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.10.5. .

6.10.1 Request URL variables

Client provided if any.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Quality of Service, see section 7.
6.10.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10.5 POST

This operation is used to notify the client about an event occurred for QoS features applied to the end user..
6.10.5.1 Example: Creating a new subscription for notifications about events occurring for applied QoS features
(Informative)
In the following example, beside the event type the server has included also a reference to the subscription and a reference to the QoS feature for which the notification applies.
6.10.5.1.1 Request

	POST /qos/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn
Host: example.com
<?xml version="1.0" encoding="UTF-8"?>

<qos:appliedQosFeaturesEventNotification xmlns:qos="urn:oma:xml:rest:netapi:qos:1">
 <callbackData>efgh</callbackData>
 <eventType>AppliedQosFeatureReleased</eventType>

 <eventDescription>Duration time for the feature has elapsed</eventDescription>
 <link rel=”AppliedQoSfeaturesEventSubscription”
 href=”http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/subscriptions/appliedQosFeatures/sub002”/>
 <link rel=”QosFeatureData”
 href=”http://example.com/exampleAPI/qos/v1/tel%3A%2B19585550100/appliedQosFeatures/hdv1080”/>
</qos:appliedQosFeaturesEventNotification>

6.10.5.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

6.10.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment.>>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.
The original Service Exception codes from the baseline product (if any) are included unchanged.
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful [Functional Area] API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]

7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.
The original Policy Exception codes from the baseline product (if any) are included unchanged.
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]

 << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI_QoS-V1_0
	31-01-2013
	All
	First baseline

	
	01 Oct 2013
	1, 2, 3, 4, 5
	Implemented CRs:

OMA-ARC-REST-QoS-2013-0012R01-CR_TS_input_for_section_4
OMA-ARC-REST-QoS-2013-0013R01-CR_TS_section_5_resource_definitions

OMA-ARC-REST-QoS-2013-0014R01-CR_TS_section_5_data_type_definitions

OMA-ARC-REST-QoS-2013-0015R01-CR_TS_section_5_sequence_diagrams

	
	29 Nov 2013
	4,5
	Implemented CR

OMA-ARC-REST-QoS-2013-0020R02-CR_TS_subscriptions_for_predefined_QoS_features

	
	18 Feb 2014
	5.2
	Implemented CRs

OMA-ARC-REST-QoS-2014-0001-CR_QoS_TS_update_of_data_types
OMA-ARC-REST-QoS-2014-0002-CR_QoS_TS_Editor_notes_resolution

	
	10 Mar 2014
	4.1, 5, 5.1, 5.2, 5.3
	Implemented CRs

OMA-ARC-REST-QoS-2014-0003-CR_ TS_fixing_resource_and_data_type_names
OMA-ARC-REST-QoS-2014-0005R01-CR_ TS_more_calrifications_for_sections_4_and_5
OMA-ARC-REST-QoS-2014-0006-CR_ TS_subscription_to_predefinedQoS_sequence_flow

	
	24 Mar 2014
	6
	Implemented CR

OMA-ARC-REST-QoS-2014-0008R01-CR_TS_input_for_section_6

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.QoS Server

	Item
	Function
	Reference
	Requirement

	REST-QoS-SUPPORT-S-001-M
	Support for the RESTful for QualityOfService API
	[section(s)]
	

	REST-QoS-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-QoS-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-QoS-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.QoS.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

<< If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support application/x-www-form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of application/x-www-formurlencoded >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for application/x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no application/x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of application/x-www-form-urlencoded.>>

This section defines a format for the RESTful QoSAPI requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following QoS REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all QualityOfService REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. [Baseline specification] operations mapping
(Informative)
<< This appendix is only needed for specifications which define REST bindings for an existing interface / API, such as Parlay X.

For ParlayREST specifications, substitute [Baseline specification] with “Parlay X”. For other baselines, reword accordingly.

In case there is no baseline, the headline is “Operations mapping to a pre-existing baseline specification
(Informative)”

Delete this comment.>>

<<If there is no baseline, use the following wording. Delete this comment. >>

As this specification does not have a baseline specification, this appendix is empty.
<<If there is a baseline, use the following wording. Delete this comment. >>
The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline specification] [[BASELINE_REF]] equivalent operations.

	REST Resource
	REST
Method
	REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1 [Baseline specification] operations mapping
Appendix F. Light-weight Resources
(Informative)

<< This appendix lists Light-weight Resources defined in this specification. Delete this comment>>

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all QoS data structure elements that can be accessed individually as Light-weight Resources.
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this Row and the following table>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values.
Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Quality of Service API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Quality of Service API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Quality of Service API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section F.1.

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Quality of Service API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	
	
	

	
	
	

	

	oma_rest_qos.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	
	
	

Table 2: Scope values for RESTful Quality of Service API
G.1.1.2 Downscoping

Not applicable in this version of the specification as there is only one scope value defined.

·
G.1.1.3 Mapping with resources and methods

The single scope value defined in section G.1.1.1 above maps to all REST resources and methods defined in the subsections of section 6.

G.1.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {userId} when the the RESTful Quality of Service API is used in combination with [Autho4API_10].
In the case the RESTful Quality of Service API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}
· SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:auth’.
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]

