OMA-TS-REST_NetAPI_MsgBCast-V1_0-20160708-D
Page 21 V(58)

	[image: image1.jpg]
	

	RESTful Network API for Message Broadcast

	

	Draft Version 1.0 – 08 July 2016

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_MsgBCast-V1_0-20160708-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
10
4.1
Version 1.0
10
5.
Message Broadcast API definition
11
5.1
Resources Summary
11
5.2
Data Types
14
5.2.1
XML Namespaces
14
5.2.2
Structures
14
5.2.2.1
Type: RequestList
14
5.2.2.2
Type: Request
14
5.2.2.3
Type: BroadcastArea
15
5.2.2.4
Type: LocationPoint
16
5.2.2.5
Type: Circle
16
5.2.2.6
Type: Polygon
16
5.2.2.7
Type: Status
16
5.2.2.8
Type: StatusData
17
5.2.2.9
Type: StatusInfo
17
5.2.3
Enumerations
18
5.2.3.1
Enumeration: BroadcastStatus
18
5.2.3.1
Enumeration: AreaType
18
5.2.3.1
Enumeration: MessagePriority
19
5.2.4
Values of the Link “rel” attribute
19
5.3
Sequence Diagrams
19
5.3.1
Requesting to send a broadcast message in specified geographic areas
19
5.3.2
Retrieve message broadcast delivery status
20
5.3.3
Deleting a broadcast message
21
6.
Detailed specification of the resources
23
6.1
Resource: Message broadcast request
23
6.1.1
Request URL variables
23
6.1.2
Response Codes and Error Handling
24
6.1.3
GET
24
6.1.3.1
Example 1: Retrieving a list of broadcast message requests (Informative)
24
6.1.3.1.1
Request
24
6.1.3.1.2
Response
24
6.1.4
PUT
26
6.1.5
POST
26
6.1.5.1
Example 1: Requesting to send a broadcast message in specified geographic areas (Informative)
26
6.1.5.1.1
Request
26
6.1.5.1.2
Response
27
6.1.6
DELETE
28
6.2
Resource: Message Broadcast Request Info
29
6.2.1
Request URL variables
29
6.2.2
Response Codes and Error Handling
29
6.2.3
GET
29
6.2.3.1
Example: Retrieve a submitted message broadcast request (Informative)
29
6.2.3.1.1
Request
29
6.2.3.1.2
Response
30
6.2.4
PUT
31
6.2.4.1
Example: Update submitted message broadcast request (Informative)
31
6.2.4.1.1
Request
31
6.2.4.1.2
Response
32
6.2.5
POST
33
6.2.6
DELETE
33
6.2.6.1
Example: Delete submitted message broadcast request (Informative)
33
6.2.6.1.1
Request
33
6.2.6.1.2
Response
33
6.3
Resource: Message Broadcast request Status
34
6.3.1
Request URL variables
34
6.3.2
Response Codes and Error Handling
34
6.3.3
GET
34
6.3.3.1
Example: Retrieve the message broadcast request status (Informative)
34
6.3.3.1.1
Request
34
6.3.3.1.2
Response
35
6.3.4
PUT
36
6.3.5
POST
36
6.3.6
DELETE
36
7.
Fault definitions
37
7.1
Service Exceptions
37
7.2
Policy Exceptions
37
Appendix A.
Change History (Informative)
38
A.1
Approved Version History
38
A.2
Draft/Candidate Version 1.0 History
38
Appendix B.
Static Conformance Requirements (Normative)
40
B.1
SCR for REST.MsgBCast Server
40
B.1.1
SCR for REST.MsgBCast.request Server
40
B.1.2
SCR for REST.MsgBCast.requestId Server
41
B.1.3
SCR for REST.MsgBCast.status Server
41
Appendix C.
JSON examples (Informative)
42
C.1
Retrieving a list of broadcast message requests (section 6.1.3.1)
42
C.2
Requesting to send a broadcast message in specified geographic areas (section 6.1.5.1)
44
C.3
Retrieve a submitted message broadcast request (section 6.2.3.1)
46
C.4
Update submitted message broadcast request (section 6.2.4.1)
48
C.5
Delete submitted message broadcast request (section 6.2.6.1)
50
C.6
Retrieve the message broadcast request status (section 6.3.3.1)
51
Appendix D.
Parlay X Operations (Informative)
53
Appendix E.
Light-weight Resources (Informative)
54
Appendix F.
Authorization aspects (Normative)
55
F.1
Use with OMA Authorization Framework for Network APIs
55
F.1.1
Scope values
55
F.1.1.1
Definitions
55
F.1.1.2
Downscoping
56
F.1.1.3
Mapping with resources and methods
56
F.1.2
Use of ‘acr:auth’
58

Figures

12Figure 1 Resource structure defined by this specification

21Figure 2 Flow for sending a broadcast message

22Figure 3 Flow for retrieving message delivery status

23Figure 4 Flow for deleting a broadcast message

Tables

53Table 1 Parlay X operations mapping

1. Scope

This specification defines a RESTful API for Message Broadcast using HTTP protocol bindings, based on the similar API defined in Parlay X Web Services; part 15, Message Broadcast (release 9) [3GPP TS 29.199-15].
2. References

2.1 Normative References

	[3GPP TS 29.199-15]
	3GPP Technical Specification 29.199-15 V9.0.0, “Open Service Access (OSA); Parlay X Web Services; Part 15: Message Broadcast (Release 9)”, 3rd Generation Partnership Project, December 2009, URL:http://www.3gpp.org/

	[3GPP TS 23.032]
	3GPP TS 23.032 V12.0.0 “Universal Geographical Area Description (GAD) (Release 12)”, 3rd Generation Partnership Project, September 2014, URL: http://www.3gpp.org/

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[OMA ENCap-M2M]
	“Exposing Network Capabilities to M2M Requirements”, Open Mobile Alliance™, OMA-RD-ENCap_M-V1_0, URL:http://www.openmobilealliance.org

	[REST_NetAPI_ACR]
	“RESTful Network API for Anonymous Customer Reference Management ”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	 “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_BessageBroadcast]
	“XML schema for the RESTful Network API for Message Broadcast”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_messagebroadcast-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://tools.ietf.org/html/rfc2119.txt

	
	

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://tools.ietf.org/html/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://tools.ietf.org/html/rfc3986.txt

	[RFC7159]
	“The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014, URL: http://tools.ietf.org/html/rfc7159.txt

	[RFC7231]
	“Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, R. Fielding, Ed., J.Raschke, Ed., June 2014, URL: http://tools.ietf.org/html/rfc7231.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	[XMLSchema2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource.

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Message Broadcast contains HTTP protocol bindings for the Parlay X Web Services Part 15: Message Broadcast [3GPP TS 29.199-15] specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON).
This API is based on an existing SOAP API for Message Broadcast which allows a third-party to make use of Mobile Network broadcast capabilities to reach a group of Devices in a specified geographic area that are registered with that third-party.

A typical use case for this API describes the scenario when a third-party can alert or notify other registered devices about an activity, such as water flooding, accidents etc. See the detailed use cases in OMA Exposing Network Capabilities to M2M [ENCap_M2M].
4.1 Version 1.0

The RESTful Network API for Message Broadcast V1.0 is a part of the suite of OMA RESTful Network APIs. The requirements for this API are found in OMA Exposing Network Capabilities to M2M RD [OMA ENCap-M2M]. While this API is based on [3GPP TS 29.199-15], bug fixes and structural changes to fit that suite, as well as other functional enhancements to meet the requirements [OMA ENCap-M2M] are applied.
Version 1.0 of this specification supports the following operations:
· Send a broadcast message to Devices

· Specify geographic areas which the message should reach

· Specify the time slot and the number of broadcasting

· Check delivery status of the message
while the operations shown below are deferred for future releases
· Create subscriptions for notifications for results of broadcasting

· Delete subscriptions for notifications for results of broadcasting
In addition this specification provides::

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. Message Broadcast API definition
This section is organized to support a comprehensive understanding of the Message Broadcast API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. JSON examples are provided in Appendix C.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix D lists the Message Broadcast equivalent operation for each supported REST resource and method combination, where applicable. [This paragraph applies verbatim if there is a baseline specification such as Parlay X and may apply in a modified form if there is another baseline specification. For ParlayREST, substitute [Baseline specification] with “Parlay X”. Wording if there is no baseline spec is as follows:
“Appendix D provides the operations mapping to a pre-existing baseline specification, where applicable.”.]
Appendix E provides a list of all Light-weight Resources, where applicable.
Appendix F defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Message Broadcast.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.emf]/request//{serverRoot}/messagebroadcast/{apiVersion}/{requestId}/status

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: To allow an Application (client) to submit broadcast message to a specified area and obtain the status of the message broadcast request.
	Resource
	URL
Base URL: http://{serverRoot}/ messagebroadcast /{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Message broadcast request
	/request
	RequestList
(used for GET)

Request
(used for POST)[
	Retrieve list of broadcast message requests
	No
	Create a new broadcast message request

	No

	Message Broadcast Request Info
	/request/{requestId}
	Request
(used for GET and PUT)
	Retrieve broadcast message request
	Update the message request
	No
	Delete a broadcast message request

	Message Broadcast request Status
	/request/{requestId}/status
	Status
	Retrieve the status of message broadcast request
	No
	No
	No

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Message Broadcast data types is:

urn:oma:xml:rest:messagebroadcast:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_MessageBroadcast].
5.2.2 Structures

The subsections of this section define the data structures used in the Message Broadcast API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: RequestList
A type containing list of broadcast message requests.
	Element
	Type
	Optional
	Description

	request

	Request
[0..unbounded]
	Yes
	A submitted request to send a broadcast message in a specified geographic area

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL to RequestList.

A root element named ‘request’ of type ‘Request’ is allowed in request and/or response bodies.
5.2.2.2 Type: Request
A type containing broadcast message request information.
	Element
	Type
	Optional
	Description

	serial

	xsd:string
	No
	An identifier or a tag number of the request provided by the client application

	broadcastArea
	BroadcastArea
[1..unbounded]
	No
	geographical area(s) for which the message is intended to be broadcasted

	senderName
	xsd:string
	Yes
	If present, it indicates the sender's name of broadcast message, i.e. the string that is displayed on the user's terminal as the originator of the message

	charging
	Common:ChargingInformation.
	Yes
	Charge that applies to the message. This consists of description, currency, amount & code. ChargingInformation is defined in 6.2 and 6.3 of “Common definitions for RESTful Network APIs” [REST_NetAPI_Common]

	message
	xsd:string
	No
	Text to be sent in Message Broadcast

	priority
	MessagePriority
	Yes
	Priority of the message. If not present, the network will assign a priority based on an operator policy.

	deliveryTime
	xsd:dateTime
	Yes
	If present, it specifies the time to initiate message broadcast in the network. If not present, message is sent immediately

	totalBroadcasts
	xsd:unsignedInt
	Yes
	The number of broadcasts. If not present, default value is 1.

	interval
	Interval
	Yes
	The time difference between consecutive broadcasts. It presents only if totalBroadcasts > 1

5.2.2.3 Type: BroadcastArea
A type containing broadcast area information.
	Element
	Type
	Optional
	Description

	unionElement
	AreaType
	No
	Type of geographical area.(one of the following)

	alias
	xsd:string
	Yes
	An alias name of a geographical area. The alias name shall be understood and translated by network.

	circle
	Circle
	Yes
	Circle shaped broadcast area

	polygon
	Polygon
	Yes
	Polygon shaped broadcast area

5.2.2.4 Type: LocationPoint
A type containing geographical points information e.g. latitude and longitude.
	Element
	Type
	Optional
	Description

	latitude
	xsd:float
	No
	latitude value of a location

	longitude
	xsd:float
	No
	longitude value of a location

5.2.2.5 Type: Circle
A type containing circle area defining centre and radius information for the shape.
	Element
	Type
	Optional
	Description

	centre
	LocationPoint
	No
	The centre point of circle

	radius
	xsd:float
	No
	radius of circle (in meters)

5.2.2.6 Type: Polygon
A type containing polygon area defining vertices for an arbitrary shape.
	Element
	Type
	Optional
	Description

	locationPoints
	LocationPoint [3..15]
	No
	Set of location points to make a polygon. See also clause 5.4, 7.3.4 of 3GPP TS 23.032 [3GPP TS 23.032].

5.2.2.7 Type: Status
A type containing list of broadcast status for corresponding broadcast request messages.
	Element
	Type
	Optional
	Description

	statusResults

	StatusData
[1..unbounded]
	No
	Set of results for the request. It provides the broadcast status for each area with several supplementary data like the number of broadcast, success rate, broadcast end time. Possible status values are:

- MessageWaiting
- Broadcasting
- Broadcasted
- BroadcastImpossible
- BroadcastUnknown

	resourceURL
	xsd:anyURI
	No
	self referring URL.

5.2.2.8 Type: StatusData
A type containing area and its status.
	Element
	Type
	Optional
	Description

	area
	BroadcastArea
	No
	A submitted request to send a broadcast message in a specified geographic area

	reportStatus
	RetrievalStatus
	No
	Status of retrieval for this broadcast area. RetrievalStatus is defined in section 6.2.2.2 “Common definitions for RESTful Network APIs”. [REST_NetAPI_Common]

	currentStatus
	StatusInfo
	Yes
	Broadcast status of this area. It is only provided if reportStatus=Retrieved.

	errorInformation
	common:ServiceError
	Yes
	If reportStatus is Error, this is the reason for the error. ServiceError is defined in Annex B.1.4 “Common definitions for RESTful Network APIs”. [REST_NetAPI_Common]

5.2.2.9 Type: StatusInfo
A type containing broadcast status information of an area.
	Element
	Type
	Optional
	Description

	status

	BroadcastStatus
	No
	Broadcast status of this area.

	numberOfBroadcasts
	xsd:unsignedInt
	Yes
	The number of broadcasts successfully sent out. This is optional and present only if status is either Broadcasting or Broadcasted.

	successRate
	xsd:unsignedInt
	Yes
	Successful delivery rate expressed as a percentage. This is optional and present only if status is either Broadcasting or Broadcasted.

	broadcastEndTime
	xsd:dateTime
	Yes
	Completed time of broadcast. This is optional and present only if status is Broadcasted.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Message Broadcast API.
5.2.3.1 Enumeration: BroadcastStatus
An enumeration defining broadcast delivery status values.
	Enumeration
	Description

	MessageWaiting
	The message is still queued and not delivered to the network yet. Broadcasting has not commenced.

	Broadcasting
	Broadcasting is initiated and the network is still attempting to deliver messages: i.e., as many times as requested in the total broadcasts.

	Broadcasted
	A final state that indicates broadcast requests were successfully delivered to network: i.e., as many times as requested.

	BroadcastImpossible
	Delivery of broadcast message is impossible. Reasons include: 'out of network coverage', 'network overloads', 'expiry of valid period'.

	BroadcastUnknown
	Delivery status unknown: e.g., delivery requested but no response.

	BroadcastNotificationNotSupported
	Unable to provide broadcast delivery receipt notification.

5.2.3.2 Enumeration: AreaType
An enumeration defining the types of area that may be used to define broadcast area for message broadcast request.
	Enumeration
	Description

	Alias
	Alias name shared by both application and network

	Circle
	Area represented as a circle shape

	Polygon
	Area represented as a polygon shape

5.2.3.3 Enumeration: MessagePriority
An enumeration defining delivery priority values for the message broadcast request.
	Enumeration
	Description

	Default
	Default message priority

	Low
	Low message priority

	Normal
	Normal message priority

	High
	High message priority

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· BaseInfo
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.3.1 Requesting to send a broadcast message in specified geographic areas
This figure below shows a scenario for requesting the server to send a broadcast message in specified geographic areas.
The resources:

· To request sending broadcast message,create resource under http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To retrieve the message broadcast status under requestId, readresource under http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}/status
[image: image3.png]
Figure 2 Flow for sending a broadcast message
Outline of the flows:

1. An application POSTs a request to the server. The request SHALL contain the representation of {requestId} resource. Then the server allocates a new {requestId} resource representing the request and respond to the application with the newly created resource URL. This response is a kind of acknowledgement of the request and does not have the result of broadcasting. The server, at the same time, starts sending the broadcast message with specified conditions and allocates a new {requestId}/status resource representing the status of broadcasting.
2. The application requests the delivery status of the sent broadcast message using GET method on requestId/status and server returns the delivery status contained in requestId/status.
5.3.2 Retrieve message broadcast delivery status
This figure below shows a scenario retrieving delivery status of a broadcast message send to a specific geographic area defined by an application.

The resources:

· To retrieve the issued list of message broadcasts, read resource under http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To retrieve the message broadcast status under requestId, read resource under http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}/status
[image: image4.png]
Figure 3 Flow for retrieving message delivery status
Outline of the flows:

1. An application requests the issued list of broadcast messages using GET method and server responds with the list broadcast messages and their requestIds.

2. The application requests the delivery status of the sent broadcast message using GET method on requestId/status and server returns status contained in requestId/status.
5.3.3 Deleting a broadcast message
This figure below shows a scenario for deleting a broadcast message send to a specific geographic area defined by an application.

The resources:
· To retrieve the issued list of message broadcasts, read resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To delete a message broadcast data under requestId, delete resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}
[image: image5.png]
Figure 4 Flow for deleting a broadcast message
Outline of the flows:

1. An application requests the issued list of broadcast messages using GET method and server responds with the list broadcast messages

2. The application decides to remove one of the broadcast messages in the list by using DELETE method on the resource and server returns a response with deletion confirmation.

6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [REST_NetAPI_ACR], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See F.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Message broadcast request
The resource used is:
http://{serverRoot}/messagebroadcast/{apiVersion}/request
This resource is used for retrieving an already issued message broadcast request list and for creating new requestId for submitting a new broadcast message.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Message Broadcast API, see section 7.
6.1.3 GET
This operation is used for querying about submitted broadcast message request list.

6.1.3.1 Example 1: Retrieving a list of broadcast message requests
(Informative)
In this example an application is querying about the list of message broadcast requests that have been submitted.
6.1.3.1.1 Request

	GET /exampleAPI/messagebroadcast/v1/request HTTP/1.1

Host: example.com

Accept: application/xm

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 07 Mar 2016 11:00:00 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<mb:requestList xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

<submitted>

 <request>

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <area>

 <UnionElement>Circle</UnionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

 </request>

 <resourceURL>http://example.com/exampleAPI/messagebroadcast/v1/request/b0001</resourceURL>

</submitted>

<submetted>

 <request>

 <serial>86066117</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.6054</latitude>

 <longitude>-0.1222</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>Harringay Fire Brigade</senderName>

 <message>Building on fire</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T14:00:00</deliveryTime>

 <totalBroadcasts>10</totalBroadcasts>

 <interval>7200</interval>

 </request>
 <resourceURL>http://example.com/exampleAPI/messagebroadcast/v1/request/b0002</resourceURL>

</submitted>

</mb:requestList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
6.1.5 POST
This operation is used for creating new requestId for a new broadcast message request.
6.1.5.1 Example 1: Requesting to send a broadcast message in specified geographic areas
(Informative)
In this example an application requests the server to send a broadcast message in specified geographic areas. When the application submits a request to the server, the server allocates a new {requestId} resource representing the request.
6.1.5.1.1 Request

	POST /exampleAPI/messagebroadcast/v1/request HTTP/1.1

Host: example.com

Accept: application/xml

Content-Length: nnnn

MIME-Version: 1.0
<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

</mb:request>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Date: Mon, 07 Mar 2016 15:17:02 GMT

Location: http://example.com/exampleAPI/messagebroadcast/v1/request/b0001

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

</mb:request>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
6.2 Resource: Message Broadcast Request Info
The resource used is:

://{serverRoot}/messagerequest/{apiVersion}/request/{requestId}

This resource is used for retrieving, updating and deleting a particular message broadcast request related to a requestId.
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:
	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	requestId
	Identifier of a particular message broadcast request

6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Message Broadcast API, see section 6.2.
6.2.3 GET
This operation is used to retrieve the message broadcast request related to a particular requestId.
6.2.3.1 Example: Retrieve a submitted message broadcast request
(Informative)
In this example, a query is initiated by an application to retrieve the message broadcast request related to a particular requestId residing in the network server.
6.2.3.1.1 Request
	GET /exampleAPI/messagebroadcast/v1/request/b0001 HTTP/1.1
Host: example.com

Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 07 Mar 2016 11:00:00 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

</mb:request>

6.2.4 PUT

This operation is used to update the message broadcast request related to a particular requestId.

6.2.4.1 Example: Update submitted message broadcast request
(Informative)
In this example, a request is initiated by an application to update the submitted broadcast message for an existing requestId.

6.2.4.1.1 Request

	PUT /exampleAPI/ messagebroadcast/v1/request/b0001 HTTP/1.1
Host: example.com

Accept: application/xml

Content-Length: nnnn

MIME-Version: 1.0
<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>3000</radius>

 </circle>

 </area>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

</mb:request>

6.2.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 07 Mar 2016 11:00:00 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <serial>A00001EF</serial>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>3000</radius>

 </circle>

 </area>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging applied="true">

 <amount>2.00</amount> <!-- amount to pay -->

 <code>E24</code> <!-- charging service code -->

 <currency>GBP</currency> <!-- currency code -->

 <description>Subscription to emergency messaging service</description> <!-- description string -->

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority type="high" />

 <deliveryTime>2016-03-26T18:00:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval></mb:request>

6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE] field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
6.2.6 DELETE

This operation is used to delete a message broadcast request if required.

6.2.6.1 Example: Delete submitted message broadcast request
 (Informative)
In this example, a request is initiated by an application to delete a submitted broadcast message for an existing requestId.
6.2.6.1.1 Request

	DELETE/exampleAPI/messagebroadcast/v1/request/b0001 HTTP/1.1

Accept: application/xml

Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Date: Tue, 7 Mar 2016 10:50:00 GMT

6.3 Resource: Message Broadcast request Status
The resource used is:
http://{serverRoot}/messagebroadcast/{apiVersion}/info/{requestId}/status

This resource is used for retrieving status of message broadcast request related to a particular requestId.
6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	requestId
	Identifier of a particular message broadcast request

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Message Broadcast API, see section 7.
6.3.3 GET
This operation is used for retrieving the status of a message broadcast request of a particular requestId.
6.3.3.1 Example: Retrieve the message broadcast request status
(Informative)
In this example, a query is initiated by an application to retrieve the status of a message broadcast request related to a particular requestId residing in the network server.
6.3.3.1.1 Request

	GET /exampleAPI/messagebroadcast/v1/request/b0001/status HTTP/1.1
Accept: application/xml
Host: example.com

6.3.3.1.2 Response

	HTTP/1.1 200 OK
Date: Tue, 7 Mar 2016 10:50:00 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<mb:status xmlns:mb="urn:oma:xml:rest:netapi:messagebroadcast:1">

 <resourceURL>http://example.com/exampleAPI/messagebroadcast/v1/request/b0001/status</resourceURL>

 <statusResults>

 <statusData>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>3000</radius>

 </circle>

 </area>

 <reportStatus status="Retrieved" />

 <currentStatus>

 <status type="Broadcasted" />

 <numberOfBroadcasts>15</numberOfBroadcasts>

 <successRate>100</successRate>

 <broadcastEndTime>2016-03-26T21:32:52</broadcastEndTime>

 </currentStatus>
 </statusData>

 <statusData>

 <area>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </area>

 <reportStatus status="Retrieved" />

 <currentStatus>

 <status type="BroadcastImpossible" />

 <numberOfBroadcasts>0</numberOfBroadcasts>

 <successRate>0</successRate>

 <broadcastEndTime>2016-03-26T21:32:52</broadcastEndTime>

 </currentStatus>

 <errorInformation>

 <ServiceError>

 <messageId>SVC0300</messageId>

 <text>Broadcast Area not supported</text>

 </ServiceError>

 </errorInformation>
 </statusData>

 </statusResults>

</mb:status>

6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
6.3.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful Message Broadcast API.
7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Policy Exception codes defined for the RESTful Message Broadcast API.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _MsgBCst-V1_0
	18 Jan 2016
	All
	First draft

	
	19 Feb 2016
	1,

4
	Incorporated CRs:

· OMA-REST_MsgBCast-2016-0002R01-CR_Content_for_Scope,_introduction_and_Version_1.0_sections_of_REST_MsgBCast_spec

	
	29 Apr 2016
	2.1,

5.1,

5.2,
5.3,
6
	Incorporated CRs:

· OMA-REST_MsgBCast-2016-0003R01-CR_Message_Broadcast_REST_API_resource_structure
· OMA-REST_MsgBCast-2016-0004R01-CR_Message_Broadcast_REST_API_resource_tree
· OMA-REST_MsgBCast-2016-0005R02-CR_Data_Types_for_message_broadcast
· OMA-REST_MsgBCast-2016-0006-CR_Sequence_diagrams_for_message_broadcast
· OMA-REST_MsgBCast-2016-0008R01-CR_XML_examples_for_request_resource_section_6

	
	10 May 2016
	7,
Appendix B,

Appendix D

Appendix E

Appendix F
	· OMA-REST_MsgBCast-2016-0007-CR_fault_definitions_for_section_7
· OMA-REST_MsgBCast-2016-0010R01-CR_SCR_tables
· OMA-REST_MsgBCast-2016-0013-CR_description_for_appendix_D_and_E
· OMA-REST_MsgBCast-2016-0014R01-CR_Content_for_appendix_F_authorisation_aspects

	
	15 May 2016
	Front page
	· Dates changed and aligned

	
	05 July 2016
	All

	· OMA-REST_MsgBCast-2016-0015R01-CR_Resolution_of_editorial_review_comments_of_MsgBCast_API
· OMA-REST_MsgBCast-2016-0016R01-CR_Section_4_Introduction_MsgBCast_Concepts
· OMA-REST_MsgBCast-2016-0017R01-CR_Resolution_of_comments_A015_A018_of_MsgBCast_CONR
· OMA-REST_MsgBCast-2016-0018-CR_To_address_comment_A008_on_MsgBCast_1.0_operations
· OMA-REST_MsgBCast-2016-0019-CR_o_address_comments_A010_A012_of_MsgBCast_1.0_CONR
· OMA-REST_MsgBCast-2016-0020-CR_To_address_comments_A019__A020_of_MsgBCast_CONR
· OMA-REST_MsgBCast-2016-0021R01-CR_To_address_comments_A024__A036_of_MsgBCast_CONR
· OMA-REST_MsgBCast-2016-0022-CR_To_address_comments_A042_A044_of_MsgBCast_CONR
· OMA-REST_MsgBCast-2016-0023-CR_To_address_comment_A045_on_JSON_examples_for_MsgBCast
· Gf

· OMA-REST_MsgBCast-2016-0025-CR_To_address_comment_C001_on_ERELD_normative_references

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for REST.MsgBCast Server

	Item
	Function
	Reference
	Requirement

	REST-MsgBCast-SUPPORT-S-001-M
	Support for the RESTful MsgBCast API
	5, 6
	

	REST- MsgBCast-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST- MsgBCast-SUPPORT-S-003-M
	Support for the JSON request & response format
	6, Appendix C
	

B.1.1 SCR for REST.MsgBCast.request Server
	Item
	Function
	Reference
	Requirement

	REST-MsgBCast - REQUEST-S-001-M
	Support for allocation of resource for a message broadcast request and return to the client the newly created URL and support for retrieval of submitted requests list
	6.1
	

	REST- MsgBCast - REQUEST -S-002-M
	Support for querying about a list of submitted requests of message broadcast -GET
	6.1.3
	

	REST- MsgBCast - REQUEST -S-003-M
	Support for creating new requestId for submitting a new broadcast message-POST

Support for allocation of a new resource for a submitted request of message broadcast – POST
	6.1.5
	

B.1.2 SCR for REST.MsgBCast.requestId Server
	Item
	Function
	Reference
	Requirement

	REST- MsgBCast - REQUESTID-S-001-M
	Support for retrieving, and deleting a request of message broadcast
	6.2
	

	REST- MsgBCast - REQUESTID-S-002-M
	Retrieve a request of message broadcast - GET

	6.2.3
	

	REST- MsgBCast - REQUESTID-S-003-M
	Update the request of message broadcast – PUT
	6.2.4
	

	REST- MsgBCast - REQUESTID-S-004-M
	Delete a request of message broadcast if required – DELETE
	6.2.6
	

B.1.3 SCR for REST.MsgBCast.status Server
	Item
	Function
	Reference
	Requirement

	REST- MsgBCast -STATUS-S-001-M
	Support for retrieving the status of the requested message broadcast
	6.3.3
	

	REST-MSGBCAST-STATUS-S002-M
	Retrieve the status of message broadcast – GET
	6.3.3
	

Appendix C. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

C.1 Retrieving a list of broadcast message requests (section 6.1.3.1)
Request:
	GET /exampleAPI/messagebroadcast/v1/request HTTP/1.1

Host: example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Thu, 07 Mar 2016 11:00:00 GMT

Content-Type: application/json

Content-Length: nnnn

{

 "mb:requestList": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "submitted": [

 {

 "request": {

 "serial": "A00001EF",

 "broadcastArea": [

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5573",

 "longitude": "-0.3930"

 },

 "radius": "3000"

 }

 },

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 }

],

 "senderName": "South Ruislip Traffic Police",

 "charging": {

 "description": "Test amount transaction \"Charged\"",

 "currency": "GBP",

 "amount": "10",

 "code": "TEST-012345"

 },

 "message": "Major Traffic Accident at the Polish War Memorial",

 "priority": "High",

 "deliveryTime": "2016-06-23T18:45:00-07:00",

 "totalBroadcasts": "15",

 "interval": "7200"

 },

 "resourceURL": "http://example.com/exampleAPI/messagebroadcast/v1/request/m0001"

 },

 {

 "request": {

 "serial": "86066117",

 "broadcastArea": {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.6054",

 "longitude": "-0.1222"

 },

 "radius": "2000"

 }

 },

 "senderName": "Harringay Fire Brigade",

 "message": "Building on fire",

 "priority": "High",

 "deliveryTime": "2016-03-26T18:45:00-07:00",

 "totalBroadcasts": "10",

 "interval": "7200"

 },

 "resourceURL": "http://example.com/exampleAPI/messagebroadcast/v1/request/m0002"

 }

]

 }

}

C.2 Requesting to send a broadcast message in specified geographic areas (section 6.1.5.1)
Request:

	POST /exampleAPI/messagebroadcast/v1/request HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: nnnn

MIME-Version: 1.0

{

 "mb:request": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "serial": "A00001EF",

 "broadcastArea": [

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5573",

 "longitude": "-0.3930"

 },

 "radius": "3000"

 }

 },

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 }

],

 "senderName": "South Ruislip Traffic Police",

 "charging": {

 "description": "Test amount transaction \"Charged\"",

 "currency": "USD",

 "amount": "10",

 "code": "TEST-012345"

 },

 "message": "Major Traffic Accident at the Polish War Memorial",

 "priority": "High",

 "deliveryTime": "2016-06-23T18:45:00-07:00",

 "totalBroadcasts": "15",

 "interval": "7200"

 }

}

Response:

	HTTP/1.1 201 Created

Date: Mon, 07 Mar 2016 15:17:02 GMT

Location: http://example.com/exampleAPI/messagebroadcast/v1/request/b0001

Content-Type: application/json

Content-Length: nnnn

{

 "mb:request": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "serial": "A00001EF",

 "broadcastArea": [

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5573",

 "longitude": "-0.3930"

 },

 "radius": "3000"

 }

 },

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 }

],

 "senderName": "South Ruislip Traffic Police",

 "charging": {

 "description": "Test amount transaction \"Charged\"",

 "currency": "USD",

 "amount": "10",

 "code": "TEST-012345"

 },

 "message": "Major Traffic Accident at the Polish War Memorial",

 "priority": "High",

 "deliveryTime": "2016-06-23T18:45:00-07:00",

 "totalBroadcasts": "15",

 "interval": "7200"

 }

}

C.3 Retrieve a submitted message broadcast request (section 6.2.3.1)
	GET /exampleAPI/messagebroadcast/v1/request/b0001 HTTP/1.1
Host: example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 7 Mar 2016 10:50:00 GMT

Content-Type: application/json

Content-Length: nnnn

{

 "mb:status": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "statusResults": [

 {

 "area": {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.6054",

 "longitude": "-0.1222"

 },

 "radius": "2000"

 }

 },

 "reportStatus": "Retrieved",

 "currentStatus": {

 "status": "Broadcasted",

 "numberOfBroadcasts": "15",

 "successRate": "100",

 "broadcastEndTime": "2016-03-26T18:45:00-00:00"

 }

 },

 {

 "area": {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 },

 "reportStatus": "Retrieved",

 "currentStatus": {

 "status": "BroadcastImpossible",

 "numberOfBroadcasts": "0",

 "successRate": "0",

 "broadcastEndTime": "2016-03-26T21:32:00-00:00"

 },

 "errorInformation": {

 "messageId": "SVC0300",

 "text": "Broadcast Area not supported"

 }

 }

],

 "link": {

 "-rel": "baseInfo",

 "-href": "http://example.com/exampleAPI/messagebroadcast/v1/request/b0001/status"

 }

 }

}

C.4 Update submitted message broadcast request (section 6.2.4.1)

	PUT /exampleAPI/ messagebroadcast/v1/request/b0001 HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<mb:request xmlns:mb="urn:oma:xml:rest:messagebroadcast:1">

 <serial>A00001EF</serial>

 <broadcastArea>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5573</latitude>

 <longitude>-0.3930</longitude>

 </centre>

 <radius>4000</radius>

 </circle>

 </broadcastArea>

 <broadcastArea>

 <unionElement>Circle</unionElement>

 <circle>

 <centre>

 <latitude>51.5758</latitude>

 <longitude>-0.4212</longitude>

 </centre>

 <radius>2000</radius>

 </circle>

 </broadcastArea>

 <senderName>South Ruislip Traffic Police</senderName>

 <charging>

 <description>Test amount transaction "Charged"</description>

 <currency>USD</currency>

 <amount>10</amount>

 <code>TEST-012345</code>

 </charging>

 <message>Major Traffic Accident at the Polish War Memorial</message>

 <priority>High</priority>

 <deliveryTime>2016-06-23T18:45:00-07:00</deliveryTime>

 <totalBroadcasts>15</totalBroadcasts>

 <interval>7200</interval>

</mb:request>

Response:

	HTTP/1.1 200 OK

Date: Thu, 07 Mar 2016 11:00:00 GMT

Content-Type: application/json

Content-Length: nnnn

{

 "mb:request": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "serial": "A00001EF",

 "broadcastArea": [

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5573",

 "longitude": "-0.3930"

 },

 "radius": "4000"

 }

 },

 {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 }

],

 "senderName": "South Ruislip Traffic Police",

 "charging": {

 "description": "Test amount transaction \"Charged\"",

 "currency": "USD",

 "amount": "10",

 "code": "TEST-012345"

 },

 "message": "Major Traffic Accident at the Polish War Memorial",

 "priority": "High",

 "deliveryTime": "2016-06-23T18:45:00-07:00",

 "totalBroadcasts": "15",

 "interval": "7200"

 }

}

C.5 Delete submitted message broadcast request (section 6.2.6.1)

	DELETE/exampleAPI/messagebroadcast/v1/request/b0001 HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 204 No Content

Date: Date: Tue, 7 Mar 2016 10:50:00 GMT

C.6 Retrieve the message broadcast request status (section 6.3.3.1)

	GET /exampleAPI/messagebroadcast/v1/request/b0001/status HTTP/1.1
Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK

Date: Tue, 7 Mar 2016 10:50:00 GMT

Content-Type: application/json

Content-Length: nnnn

{

 "mb:status": {

 "-xmlns:mb": "urn:oma:xml:rest:messagebroadcast:1",

 "statusResults": [

 {

 "area": {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.6054",

 "longitude": "-0.1222"

 },

 "radius": "2000"

 }

 },

 "reportStatus": "Retrieved",

 "currentStatus": {

 "status": "Broadcasted",

 "numberOfBroadcasts": "15",

 "successRate": "100",

 "broadcastEndTime": "2016-03-26T18:45:00-00:00"

 }

 },

 {

 "area": {

 "unionElement": "Circle",

 "circle": {

 "centre": {

 "latitude": "51.5758",

 "longitude": "-0.4212"

 },

 "radius": "2000"

 }

 },

 "reportStatus": "Retrieved",

 "currentStatus": {

 "status": "BroadcastImpossible",

 "numberOfBroadcasts": "0",

 "successRate": "0",

 "broadcastEndTime": "2016-03-26T21:32:00-00:00"

 },

 "errorInformation": {

 "messageId": "SVC0300",

 "text": "Broadcast Area not supported"

 }

 }

],

 "link": {

 "-rel": "baseInfo",

 "-href": "http://example.com/exampleAPI/messagebroadcast/v1/request/b0001/status"

 }

 }

}

Appendix D. Parlay X Operations
(Informative)
The table below illustrates the mapping between REST resources/methods defined in this specification and Parlay X [3GPP 29.199-15] equivalent operations.

	REST Resource
	REST
Method
	REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	

Table 1 Parlay X operations mapping
Appendix E. Light-weight Resources
(Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
Appendix F. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Message BroadcastAPI in combination with some authorization frameworks.

F.1 Use with OMA Authorization Framework for Network APIs
The RESTful Message Broadcast API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Message Broadcast

API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

F.1.1 Scope values
F.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Message Broadcast API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_messagebroadcast.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_messagebroadcast_request
	Provides access to all defined operations for request and {requestId} resources
	No

	oma_rest_messagebroadcast.status
	Provides access to all defined operations on status resource
	No

Table 2: Scope values for RESTful Message BroadcastAPI
F.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_messagebroadcast.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:
· oma_rest_messagebroadcast.request
F.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section F.1.1.1 for the RESTful Message Broadcast API map to the REST resources and methods of this API. In these tables, the root “oma_rest_messagebroadcast.request” of scope values is omitted for readability reasons.
	Resource
	URL
Base URL:

http://{serverRoot}/MessageBroadcast/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Message Broadcast Request
	/request
	6.1
	all_{apiVersion}
or

request
	no
	all_{apiVersion}
or

request
	no

	Message Broadcast Request Info
	/request/{requestId}
	6.2
	all_{apiVersion}
or

request
	all_{apiVersion}
or

request
	no
	all_{apiVersion}
or

request

	Status
	/request/{requestId}/status
	6.3.
	all_{apiVersion}
or

status
	no
	no
	no

Table 3: Required scope values for: Message Broadcast request management and request status enquiry

F.1.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

Note: ‘acr:auth’ in place of the end user identifier part of a resource URL path is not used in this specification since end user identifier (e.g. {userId}, {address}, etc.) is not part of the resource URL path defined in this specification.
(2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20160101-I]
(2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20160101-I]

