OMA-ARC-REST-NMS-2013-0020R01-CR_root.doc
OMA-ARC-REST-NMS-2013-0020R01-CR_root.doc
Page 2 V(5)

Change Request

	Title:
	root
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D

	Submission Date:
	07 October 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Elad Granot, elad.granot@comverse.com, Comverse

	Replaces:
	OMA-ARC-REST-NMS-2013-0020

1 Reason for Change

The current spec has specified reserved ‘hard coded’ name and id for the root folder.

The objective of this CR is to preserve the ability to have a root folder, but to improve the design by:

· removing ‘hard coded’ or reserved values, hence allowing more freedom of choice

· allowing other structure, such as “forest” (a user has multiple roots)
While the objective of this CR is to make NMS API more expressive and flexible to support various use cases, it is likely that RCS profile will add some restrictions on using this flexibility to it’s full extent.

R01 is follow up to the discussion of OMA-ARC-REST-NMS-2013-0043-INP_Root, held in Bangkok.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For easier presentation, following is an informative UML diagram of the selection criteria structure:

6 Detailed Change Proposal
Change 1: In section 5.1 remove “root” as a reserved value.

[image: image2.emf]Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/

/flags

/payload

/{objectId}

/folders

/{folderId}

/objects

subscriptions

/{subscriptionId}

/pathToId

/batch

/pathToId

/batch

/attributes

/attributes

/{flagName}

/[ResourceRelPath]

/copyToFolder

/moveToFolder

/payloadParts

/{payloadpartId}

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
….
Purpose: To allow a client to manage individual folders
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Resource containing all folders
	/folders

	Folder

common:ResourceReference (optional alternative for POST response)
Editor’s Note: FFS whether this should be FolderReference so as to include path.
	no
	no
	Create a folder
	no

	A folder

	/folders/{folderId}

	Folder

FFS: for DELETE provide section 6 examples for both: HTTP “200 OK” with Object data type in the body as well as “204 No Content”
	Retrieve the folder properties (such as its location and list of contained objects/sub-folders)
	no
	no
	Delete a folder from the storage, including contained folders and objects (with their payload)

	Individual folder data
	/folders/{folderId}/[ResourceRelPath]

	The data structure corresponds to an element within the Folder structure pointed out by the resource URL.

(used for PUT/GET)
	Retrieve individual folder information parameters (e.g “name” parameter)
	Update individual folder information parameters (e.g. Rename the folder by changing its “name” parameter)

	no
	no

Change 2: In section 6.10.1 remove “root” as a reserved value.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	folderId
	Folder identifier.

Change 3: Describe how folders can be assigned a root attribute, and how clients can the root folder(s) by making the relevant query.
5. Network Message Storage API definition

This section is organized to support a comprehensive understanding of the Network Message Storage API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes that contain meta data, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The objectId is assigned by the storage server.

Each object also has a name, which is used to construct the location (path).
Similar to the abstract model of a file system, a folder in the context of this specification is a container with a designated location (pathname) that can contain objects and/or sub-folders, i.e. be considered as their parent in the location hierarchy. The folder resource in the context of this specification comprises of:

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

Each folder resource in a given storage is identified by folderId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The folderId is assigned by the storage server.

Each folder also has a name, which is used to construct the location (path).

Editor’s note: FFS details of how path is constructed from object/folder names.
A folder can also be assigned with attributes that contain meta data, such as:

· root (a designation that this folder is considered a starting point for hierarchical traversal)
· Depending on the deployment environment, some restrictions might apply, such as mandating that only one folder can be assigned this property at any given time.

A client can perform batch search for objects/folders by their attributes. For example, a client can discover the root folder(s) in the storage by making a batch query for folders that carry the root attribute.
While a folder in a file system model conceptually contains objects and sub-folders, the resource tree shown in Figure 1 does not mimic that hierarchy. For the purpose of the API, objects and folders are identified by objectId and folderId respectively, and not by their location (pathname). However, through RESTful operations and queries on the resource tree, it is possible for a client to discover the location (full pathname) of all objects and folder in the storage; hence it is possible to map the full hierarchy. It is also possible to perform a query to resolve a pathname (of a folder or an object) to the equivalent identifier (folderId or objectId).
Editor’s note: FFS “A box within the context of this specification comprises of…”
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]

[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/

/flags

/payload

/{objectId}

/folders

/{folderId}

/objects

subscriptions

/{subscriptionId}

/pathToId

/batch

/pathToId

/batch

/attributes

/attributes

/{flagName}

Reserved value: “root” for user’s root folder

/[ResourceRelPath]

/copyToFolder

/moveToFolder

/payloadParts

/{payloadpartId}

Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/

/flags

/payload

/{objectId}

/folders

/{folderId}

/objects

subscriptions

/{subscriptionId}

/pathToId

/batch

/pathToId

/batch

/attributes

/attributes

/{flagName}

/[ResourceRelPath]

/copyToFolder

/moveToFolder

/payloadParts

/{payloadpartId}

