Doc# OMA-ARC-REST-NMS-2013-0053R01-CR_System_deletion.doc[image: image1.jpg]
Change Request

Doc# OMA-ARC-REST-NMS-2013-0053R01-CR_System_deletion.doc
Change Request

Change Request

	Title:
	System deletion
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1.0_20130930-D

	Submission Date:
	11 Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Keith Wansbrough, Metaswitch, Keith.Wansbrough@metaswitch.com
Shahram Mohajeri, AT&T, sm7084@att.com

	Replaces:
	CR53

1 Reason for Change

Any storage server will have finite capacity. A common way of coping with this is expiry (sometimes called system deletion or aging): the server spontaneously deletes objects or folders to free up space. Usually it does this according to some implementation-specific policy, such as “all objects over 90 days old which have not been marked \Flagged”.

The present CR allows the storage server to perform expiry, and defines how expiry is notified to clients. It does not specify any particular expiry policy. It encourages the storage server to retain information about user-deleted and expired objects (“tombstones”) for a reasonable period, but does not require it to retain this information forever.
The core of the change is a new section 5.0.5 (assuming CR45 is adopted – otherwise at the start of section 5), which describes user deletion and expiry and how they are notified to clients. There are also changes to s5.0.4 (explaining that expiry results in a lastmodseq update) and s5.2.2.21 (adding the new notification event types for expiry).

Furthermore, the deletion notifications currently in the TS do not contain the lastmodseq value. The present CR corrects this oversight by adding new data types DeletedObject and DeletedFolder to s5.2.2.x and using it in s5.2.2.21.

Finally, this CR clarifies the uniqueness requirement for objectId and folderId.
If these changes are not accepted, NMS implementations will not be able to expire messages and folders.
R01: Add FFS re combining DeletedObject and DeletedFolder data structures, as proposed by Comverse.
I propose that ARC should not consider this FFS now, but should defer consideration until further details of the data structures are worked out. In particular, a forthcoming CR on correlation will add additional fields to one or both of these data structures, which might impact such a decision. More generally, it is only once ARC has arrived at a sufficient set of data structures for the TS as a whole that it would be appropriate to consider how to simplify that set.
Also added Mr Shahram Mohajeri (AT&T) as co-author.

2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The ARC group is recommended to accept the proposed changes to the NMS TS.
6 Detailed Change Proposal

Change 1: 5.0.1 Uniqueness of {objectId}
Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the object is deleted). The objectId is assigned by the storage server.

Change 2: 5.0.2 Uniqueness of {folderId}
Each folder resource in a given storage is identified by folderId, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the folder is deleted). The folderId is assigned by the storage server.

Change 3: 5.0.4 Expiry causes lastmodseq to be updated

The following operations (and only these operations) cause the lastmodseq of an object to be updated:

· creation (whether direct or as part of a recursive operation)

· user deletion (whether direct or as part of a recursive operation)

· expiry

· parentFolder change

· flag change

The following operations (and only these operations) cause the lastmodseq of a folder to be updated:

· creation (whether direct or as part of a recursive operation)

· user deletion (whether direct or as part of a recursive operation)

· expiry

· parentFolder change

· change of any lightweight resource within a folder, as described in Section 6.11.1.1 “Light-weight relative resource paths”, e.g., changing its folderName.

Change 4: Add new s5.0.5 Deletion
There are two ways in which an object or folder can be deleted:

· A client may delete an object or folder by supplying a DELETE request over the API. This is called “user deletion”.

· The storage server MAY at any time spontaneously delete an object or folder. This is called “expiry”.

Both of these kinds of delete update the object or folder’s lastmodseq and trigger a notification. The notification indicates which has occurred.

Clients may choose to associate different semantics with these different kinds of delete, e.g., user deletion may result in the object or folder being removed from local storage, whereas expiry may be ignored (for instance to allow the user to hold onto the local copy of a server-deleted object).

If the server receives a subscription request with a highestmodseq lower than the deleted object or folder’s lastmodseq, the server SHOULD return a notification indicating the user-deletion or expiry. However the server MAY omit this notification. The server SHOULD NOT omit the notification unless a reasonable period of time has elapsed since the delete occurred (i.e., such that the client could reasonably be expected to have issued a subscription request within this period).
Change 5: New sections after s5.2.2.23: Add new data structures for deletion notification
5.2.2.24 Type: DeletedObject
An object that has been deleted.
	Element
	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resource URL of the deleted object.

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the deleted object.

5.2.2.25 Type: DeletedFolder
A folder that has been deleted.
	Element
	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resource URL of the deleted folder.

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the deleted folder.

FFS: Consider whether this can be combined with DeletedObject into a single data structure.
Change 6: s5.2.2.21 NmsEventNotification
5.2.2.21a NmsEventNotification

Notification about changes in the storage

	Element
	Type
	Optional
	Description

	
	
	
	

	newObject
	Object
	Choice
	The new object

	newFolder
	Folder
	Choice
	The new folder

	deletedObject
	DeletedObject
	Choice
	Reference to the user-deleted object

	deletedFolder
	DeletedFolder
	Choice
	Reference to the user-deleted folder

	expiredObject
	DeletedObject
	Choice
	Reference to the expired object

	expiredFolder
	DeletedFolder
	Choice
	Reference to the expired folder

	movedObject
	Object
	Choice
	The moved object

	movedFolder
	Folder
	Choice
	The moved folder

	renamedFolder
	Folder
	Choice
	The renamed folder

	messageFlagChange
	Object
	Choice
	The object with the flagList containing all the current flags

	quotaExceed
	xsd:string
	Choice
	An operation failed (typically new message arrival) because the user's mailbox exceeded one of the quotas (e.g., disk quota, message quota, etc.).

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the changed resource.

Editor’s note: FFS add a mechanism to enable the client to detect notification loss.
XSD modelling uses a “choice” to select either newObject, newFolder, deletedObject, deletedFolder, expiredObject, expiredFolder, movedObject, movedFolder, renamedFolder, messageFlagChange or quotaExceed.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

