Doc# OMA-ARC-REST-NMS-2013-0067R01-CR_Notification_reliability.doc[image: image1.jpg]
Change Request

Doc# OMA-ARC-REST-NMS-2013-0067R01-CR_Notification_reliability.doc
Change Request

Change Request

	Title:
	Notification reliability
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1.0_20131111-D

	Submission Date:
	13 Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Keith Wansbrough, Metaswitch, Keith.Wansbrough@metaswitch.com
Shahram Mohajeri, AT&T, sm7084@att.com

	Replaces:
	n/a

1 Reason for Change

In the Bangkok meeting, Nokia requested that it should be possible for a client to update their subscription with a new highestModSeq value, to enable a client to restart the notification stream when reconnecting after being disconnected.

Furthermore, in Section 5.2.2.24 there is an editor’s note:

Editor’s note: FFS add a mechanism to enable the client to detect notification loss.
This CR resolves both of these concerns. It allows the client to detect lost notifications by comparing the lastModSeq of one notification with the firstModSeq of the next. If they do not match, a notification must have been lost or delayed. In this case, we add function that allows the client to update their subscription to the lastModSeq value, which causes the server to resend the missing notification.

The change is limited to three parts of the TS that relate to subscriptions. In s5.1 we allow a POST on a subscription to update it. In s5.2.2.x we add a data structure NmsNotificationSubscriptionUpdate which contains updates to a subscription. In s5.2.2.23 we add the first/lastModSeq fields and explain how they may be used. Finally in s6.15 we insert a placeholder for the example.
We also add a clarifying note to s5.2.2.22 that explains that when notifying changes in response to a highestModSeq request the server need not exactly replay the sequence of changes, as long as the effect of the replayed changes is the same as the actual changes. This allows the server to maintain a lastmodseq value per item (as illustrated in OMA-ARC-REST-NMS-2013-0026-INP_Notification_and_sync) rather than an event log.
If these changes are not accepted, clients will not be able to detect lost notifications, and would not be able to recover efficiently if they could.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The ARC group is recommended to accept the proposed changes to the NMS TS.
6 Detailed Change Proposal

Change 1: s5.1: Allow change to an existing subscription.
Purpose: To allow a client to manage subscriptions for storage changes
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions in the storage
	/subscriptions

	NmsSubscriptionList
(used for GET)

NmsNotificationSubscription
(used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieve all active NMS notification subscriptions
	no
	Create new subscription for notification for NMS changes
	no

	Individual subscription
	/subscriptions/{subscriptionId}

	NmsNotificationSubscription
(used for GET)
NmsNotificationSubscriptionUpdate
(used for POST)
	Retrieve an individual subscription
	no
	Update some details of an individual subscription.
	Cancel subscription and stop corresponding notifications

Change 2: s5.2.2.22: Explanation of highestModSeq.
5.2.2.22 Type: NmsNotificationSubscription

Individual subscription to notifications about inbound messages

	Element
	Type
	Optional
	Description

	[…]

	highestModSeq
	xsd:unsignedLong
	Yes
	The client’s last-known highestmodseq value.

If this element is present, all matching changes with a lastmodseq strictly greater than this value will be notified by the server in addition to any subsequent notifications.

If this element is absent, any changes from the time this subscription is created will be notified by the server.

A root element named nmsNotificationSubscription of type NmsNotificationSubscription is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
When the server notifies a sequence of changes that have already occurred prior to the subscription, i.e., in response to a subscription with a highestModSeq, that sequence of changes notified MUST have the same net effect as the actual sequence of changes that occurred, even though it may be different from the actual sequence. For example, if within the relevant period an object’s \Seen flag changed from unset to set and then back to unset again, the server may notify only that the object’s \Seen flag was unset; if an object is marked \Flagged and then it is deleted, the server may notify only that the object was deleted.
Change 3: New section 5.2.2.x: Details of a change of a subscription.
5.2.2.x Type: NmsNotificationSubscriptionUpdate
Change to individual subscription to notifications about inbound messages

	Element
	Type
	Optional
	Description

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.

This element MAY be given by the client in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	highestModSeq
	xsd:unsignedLong
	Yes
	The client’s last-known highestModseq value.

If this element is present, all matching changes with a lastModseq strictly greater than this value will be notified by the server in addition to any subsequent notifications.

If this element is absent, any changes from the time this subscription is created will be notified by the server.

A root element named nmsNotificationSubscriptionUpdate of type NmsNotificationSubscriptionUpdate is allowed in request and/or response bodies.
Clients can update their subscription with a new highestModSeq value, in order to restart the notification stream from where it left off. In this scenario, it is assumed that at the time of client reconnection with the server, the previously-created subscriptionId has not timed out yet (i.e. subscription’s “duration” hasn’t expired) and the client intends to reuse it to continue receiving the new events in addition to what it potentially missed during the time which it was disconnected.
Change 4: s5.2.2.23: Allow detection of lost notification lists.
5.2.2.23 Type: Type: NmsEventNotificationList
This type defines a list of NMS Notifications.
	Element
	Type

	Optional
	Description

	nmsEventNotification
	NmsEventNotification
[0..unbounded]
	Yes
	May contain an array of storage change notifications.

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events

See [REST_NetAPI_Common]

	resourceURL
	xsd:anyURI
	No
	Self referring URL

	firstModSeq
	xsd:unsignedLong
	No
	Box’s highestmodseq prior to the change(s) being notified (see Section 5.0.4).

In a stream of notification lists the firstModSeq of each notification list is precisely equal to the lastModSeq of the previous notification list, or if this is the first notification list in the stream, to the highestModSeq of the subscription.

If a client receives a notification list in which the firstModSeq does not have the expected value, it must be the case that at least one in-between notification list has been missed.

A client SHOULD use this fact to detect missing notification lists. It MAY request that the server resend those missing lists by updating the highestModSeq of the subscription to the lastModSeq of the last consecutive notification list received, via a POST on the subscription.
FFS: see where is the best place to move these paragraphs which describe the behaviour and make a reference from this table.

	lastModSeq
	xsd:unsignedLong
	No
	Box’s highestmodseq after the change(s) being notified (see Section 5.0.4).
This is always greater than or equal to the maximum lastModSeq value of the contained notifications (if any).

A root element named nmsEventNotificationList of type NmsEventNotificationList is allowed in notification request bodies..

Change 5: s6.15: Update details.
6.15 Resource: Individual subscription

The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions/{subscriptionId}
This resource is used to manage an individual event subscription. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.15.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	subscriptionId
	Identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.15.3 GET
This operation is used for reading an individual subscription.

6.15.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.15.5 POST

This operation is used for updating an individual subscription.

[add example]
6.15.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

