Doc# OMA-ARC-REST-NMS-2014-0023-CR_Sync.doc
Change Request

Doc# OMA-ARC-REST-NMS-2014-0023-CR_Sync.doc[image: image3.jpg]
Change Request

Change Request

	Title:
	Sync
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-REST_NMS WA

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-20140129-D

	Submission Date:
	30 Jan 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Elad Granot, Comverse, elad.granot@comverse.com

	Replaces:
	n/a

	Attachments:
	n/a

1 Reason for Change

Synchronization NMS Server and NMS Client is described high level in section 5.0.4. The details are then appear in a few other sections.
Given the overhead and performance penalty associated with extended state information, it is likely that at least some deployment scenarios will (intentionally) not support it, and will instead use NOMODSEQ response (as per RFCs 4551).
This CR extends the synchronization procedure to support such deployments and still allow efficient synchronization of most significant state (new objects, purged objects, non \Seen flag) at the cost of excluding insignificant flags from the synchronization.
The simplified sync requires the following changes:

1. Change objectId from string to unsigned number, and mandate increasing values.

2. Standardize the \Vanished flag, as a mark for a permanently deleted object.

3. Add ‘objectId’ search type to retrieve objects based on designated objectId value(s).

4. Define the simplified search, comprised of a 3-steps search:

a. Search new objects (those with objectId greater than highest objectId known to the client)
b. Search deleted objects (those with \Vanished flag)
c. Search for objects without \Seen flag

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is recommended to agree on the proposed changes in this CR.
6 Detailed Change Proposal

Change 1: Change objectId from string to unsigned number, and mandate increasing values.

5.0.1 Object
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes that contain meta data, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a positive unsigned 64-bit value that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the object is deleted). The objectId MUST be assigned by the storage server in a strictly ascending fashion in the box; as each object is added to the store it is assigned a higher objectId value than the object(s) which were added previously.
 The path for any object in the network storage is made up of a sequence of folder names starting from the root folder and ending with the given object’s unique Id (i.e. objectId) where the folder names and the objectId are separated by “/”(U+002F) character.

Change 2: Add high level description of two complementing sync methods (and add sub-section for each method)
5.0.4 Managing local storage mirror (cache) at the client
Clients may need to have a local cache, representing the storage at the server. In order to keep it up-to-date, any change made on the server needs to be mirrored in the local cache, which requires tracking of storage changes. Tracking such changes in a multi-device (multi-client) environment is a complicated task that requires extended state management. This tracking incurs overhead both in complexity (cost) of the client and server implementations and in their runtime performance when synchronizing the changes between the client(s) and the server.
Different deployment scenarios have different requirements with regards to the tradeoff made between strict change tracking at the expense of complexity/performance penalty and simplified tracking at the expense of excluding some information from the scope of changes synchronization.
Furthermore, in some use-cases a user may only be interested in selective tracking (e.g. she may only care about the most recent changes and consider older objects/folders irrelevant).
The NMS API offers two alternatives:
· Strict Synchronization: suitable for deployments that require full and accurate cache and willing to incur the extra cost.
· Simplified Synchronization: suitable for deployments that require simplicity and either prefer to or willing to have a selective cache, i.e. one that skips the mirroring of insignificant server changes.
5.0.4.1 Strict Synchronization
FFS: We would like consider (in addition) a more simplified approach which has some limitations (e.g., the situation prior to CR2014-0001, presented using the present syntax). This may be simpler for implementors. It must remain interoperable.
Each object also has a lastmodseq, which is a mod-sequence (modification sequence number – see below) value used to determine whether the object metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

…..
Change 3: Add high level description for simplified sync
5.0.4.2 Simplified Synchronziation
Extra server state information and persistent storage of mod-sequences may not always be supported, in which case the client receives such indication (as defined in section 3.1.2 in [RFC4551] and section 3.1 in [RFC5162]) from the NMS server. In this scenario the client SHALL follow the following steps:
1. Synchronize new objects: Fetch all objects whose objectId is greater than the last objectId known to the client.

2. Synchronize purged objects: Fetch objectIds of objects that have been flagged with Vanished flag, i.e. permanently deleted.
3. Synchronize significant flag changes:

a. Sync Read/Unread flag for all objects: search for objects that do not carry the “\Seen” flag. All objectIds returned by the search have the flag unset, and therefore all the others have the flag set.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

b. Optionally, use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.

Change 4: Standardize the \Vanished flag to denote a permanently deleted object

5.0.6 Deletion
There are two ways in which an object or folder can be deleted:

· A client may delete an object or folder by supplying a DELETE request over the API. This is called “user deletion”.

· The storage server MAY at any time spontaneously delete an object or folder. This is called “expiry”.

Both of these kinds of delete update the object or folder’s lastmodseq and trigger a notification. The notification indicates which has occurred.

Clients may choose to associate different semantics with these different kinds of delete, e.g., user deletion may result in the object or folder being removed from local storage, whereas expiry may be ignored (for instance to allow the user to hold onto the local copy of a server-deleted object).

If the server receives a subscription request from before the point at which the object or folder was deleted, the server SHOULD return a notification indicating the user-deletion or expiry. However the server MAY omit this notification. The server SHOULD NOT omit the notification unless a reasonable period of time has elapsed since the delete occurred (i.e., such that the client could reasonably be expected to have issued a subscription request within this period).

An Object carrying the \Vanished flag is considered to be permanently deleted.
Change 5: Add flow diagram for simplified sync
5.3.2 Synchronization with NMS
5.3.2.1 Strict Synchronization
This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Synchronization with the NMS is yet another form of subscribing to events to NMS notifications with the inclusion of the “highestModSeq” parameter the client application is aware of (from the last modification (“lastModSeq”) notification it received prior to going off-line).

The resources:

· To subscribe to NMS notifications while needing to synchronize, include “highestModSeq” parameter in the request to create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
[image: image1.png]
Figure 3: Strict synchronization with NMS
Outline of the flows:
1. An application subscribes to NMS notifications using the POST method to submit the NmsNotificationSubscription data structure including “highestModSeq” element to the resource containing all subscriptions

2. The application receives the result resource URL containing the subscriptionId.
3. The server compares the client’s “highestModSeq” received in the subscription request with it’s own “highestModSeq”. Assuming that the client’s “highestModSeq” is smaller that the server’s “highestModSeq”, the server formulates a list of events the client has missed (while being off-line) and sends that in a NmsEventNotificationList data structure to the client.

4. After some time new changes takes place in the NMS which results in the application receiving a new list of notifications. Please note that the notifications list reported in step #3 and #4 may be filtered by the server if instructed by the client application (see section 5.3.3. for further information on notification filtering mechanism use case).
5.3.2.2 Simplified Synchronization
This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS, by leveraging the simplified selective synchronization. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Simplified synchronization with the NMS comprises of a set of search operations based on the last objectId value that the client application is aware of (from the last simplified synchronization performed prior to going off-line).

The resources:

To search NMS needing to synchronize, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
[image: image2.png]
Figure 3: Simplified synchronization with NMS
the client SHALL follow the following steps:

1. Search for new objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = objectId, field.name omitted, value = highest objectId known to the application.
2. Th server responds with all objects whose objectId is greater than the last objectId known to the client.
3. Search for purged objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = Flag, field.name = \Vanished, value = true
4. The server responds with all objects that have been flagged with Vanidhsed flag, i.e. permanently deleted.
5. Search for objects that do not carry the “\Seen” flag.
SelectionCriteria.searchCriteria.criterion[1]: field.type = Flag, field.name = \Seen, value = false.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

6. The server responds with all objects that have the flag unset, and therefore all the others have the flag set.
7. Optionally (not shown in the diagram), use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.

Change 6: Relax the requirement to always maintain server modification sequence
5.2.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	…
	…
	…
	…

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

The server MAY provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	…
	…
	…
	…

A root element named object of type Object is allowed in request and/or response bodies.
XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.

FFS: In some scenarios, the NMS will be able to calculate the uniqueId itself, rather than requiring the client to supply it. Consider allowing it to do so.
Change 7: make objectId an unsigned

5.2.2.3 Type: ObjectReference

Reference to stored object

	Element
	Type
	Optional
	Description

	objectId
	xsd:unsignedLong
	No
	The object identifier

	resourceURL
	xsd:anyURI
	Yes
	The object resource URL

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage

Change 8: Add objectId search
5.2.3.1 Enumeration: SearchFieldEnum
	Enumeration
	Description

	 Conversation
Editor’s note: consider a clarification note to avoid confusion with CPM conversation.
	 Searching for conversation with particular user, identified by user ID(s).

.
· SearchField.name element is not applicable.

· SearchCriterion.value element MUST contain one or more user IDs separated by comma. If multiple IDs are provided, they are all assumed to belong to the same (single) user, hence a logical OR is implied between them.
Empty value denotes “all conversations”

	…
	…

	objectId
	Searching for objects that whose objectId match the specified criterion:

· SearchField.name element is not applicable.
· SearchCriterion.value element contains a query string of the following format:

minObjectId={minObjectId} – all objects with objectId greater than {minObjectId} exclusive

minObjectId={minObjectId}&maxObjectId={maxObjectId} – all objects with objectId value between {minObjectId} exclusive and {maxObjectId} inclusive

maxObjectId={maxObjectId} – all objects with objectId smaller than {maxObjectId} inclusive.

Change 9: Add the Vanished flag

Appendix H. Flag Names Table
(Normative)

The following table lists the most common flag names as defined by [RFC3501], [RFC5788] and [OMA-CPM_TS_MessageStorage].

	Flag Name
	Description

	 References

	\Seen

	Message has been read
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Answered
	Message has been answered
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Flagged
	Message is "flagged" for urgent and/or special attention
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Deleted
	Message is "deleted" for removal by later internal message store process
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Draft
	Message has not completed composition (marked as a draft)
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Recent
	Message is "recently" arrived in this mailbox
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	$MDNSent
	A disposition notification has been sent for this message
	[RFC5788],[OMA-CPM_TS_MessageStorage]

	$Forwarded
	Message has been forwarded
	[RFC5788],[OMA-CPM_TS_MessageStorage]

	\read-report-sent
	A read receipt has been sent for this message
	[OMA-CPM_TS_MessageStorage]

	\Vanished
	Object has been permanently deleted
	Section 5.0.6.

Table 1 Flag Names
Note that in addition to the strings listed in the above table, deployments MAY also support other strings.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

