Doc# OMA-ARC-REST-NMS-2014-0023R03-CR_Sync.doc
Change Request

Doc# OMA-ARC-REST-NMS-2014-0023R03-CR_Sync.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Change Request

	Title:
	Sync
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-REST_NMS WA

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-20140129-D

	Submission Date:
	10 Feb 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Elad Granot, Comverse, elad.granot@comverse.com

	Replaces:
	OMA-ARC-REST-NMS-2014-0023R02

	Attachments:
	CR23R03 OMA-TS-REST_NetAPI_NMS-V1_0-20140210-D

1 Reason for Change

Synchronization NMS Server and NMS Client is described high level in section 5.0.4. The details are then appear in a few other sections.
Given the overhead and performance penalty associated with extended state information, it is likely that at least some deployment scenarios will (intentionally) not support it, and will instead use NOMODSEQ response (as per RFCs 4551).
This CR extends the synchronization procedure to support such deployments and still allow efficient synchronization of most significant state (new objects, purged objects, non \Seen flag) at the cost of excluding insignificant flags from the synchronization.
The simplified sync requires the following changes:

1. Change objectId from string to unsigned number, and mandate increasing values.

2. Standardize the \Vanished flag, as a mark for a permanently deleted object.

3. Add ‘objectId’ search type to retrieve objects based on designated objectId value(s).

4. Define the simplified search, comprised of a 3-steps search:

a. Search new objects (those with objectId greater than highest objectId known to the client)
b. Search deleted objects (those with \Vanished flag)
c. Search for objects without \Seen flag

R01 responds to some offline comments:

Comment 1: changing of objectId to unsignedLong and requiring that it is assigned strictly sequentially is extremely restrictive for implementations: for example, it prevents a distributed implementation where each node assigns random object IDs. It’s even hard to see how you could implement it over IMAP, which assigns object IDs sequentially per folder not per box.
· please note that backwards compatibility is officially (process-wise) required only after a spec has been released. It is not required in Draft stages of an evolving spec.
· instead of objectId R01 uses a new element, objectSeq.
· R01 clarifies that only loose sequencing (rather than strict sequencing) is required, i.e. the sequence MUST be monotonically increasing, but MAY skip values (i.e. 1,2,3,10,20 is still valid).
· Changing the requirement for loose sequencing to be per-folder (rather than per box) would reduce the efficiency of the sync, because it would require the client to perform multiple sync round-trip (each per folder) instead of allowing a single sync per box. For this reason, R01 keeps the scope of (loose) sequencing per box.
Comment 2: allowing the server to omit lastModSeq prevents clients from relying on it, which means that a developer cannot write an NMS client which uses strict synchronization – since they cannot be assured of server support. If we want to define two kinds of NMS servers, then we should do this explicitly and declare it up front, so that a server implementor has to say “This server implements the Simplified NMS API” or “This server implements the Strict NMS API”. Just making an element optional is not explicit enough.
· The intention is to allow a server/client to support either of the sync options or both, depending on the deployment’s use-cases, needs, policies, etc. This is no different than any other deployment option in any other spec.
· Similar to IMAP, we may consider adding capabilities query to the API, but this would be in a separate CR and should cover other aspects, e.g. supported search types.
· For identifying the kind of sync supported by the server:

· A server supporting Strict Sync would return lastModSeq

· A server supporting Simplified Sync would return objectSeq
Comment 3: refers to RFC4551 and RFC5162, saying that an NMS client may receive a NOMODSEQ response from the NMS server. This makes no sense – NOMODSEQ is an IMAP response; there’s no such data structure in NMS so it cannot be returned to a client.
· This was a copy paste mistake. Fixed in R01.
Comment 4: s5.0.4.2 “SHALL” – we should not mandatorily constrain the client usage of the API in this way. Clients are allowed to use the API in any valid way; we can’t insist that they SHALL make three particular searches in a particular order. This should just be a suggestion, with no RFC2119 language.

· R01 changed SHALL to SHOULD
Comment 5: This CR significantly complicates the spec, because it requires clients to implement two different sync algorithms – one to be used in the normal case, and one to be used when it receives a NOMODSEQ response from the API. Elsewhere we have tried to keep just one way of doing things, to make interop easier to achieve
· The CR does not mandate one way or the other. That will be a deployment option. On the contrary, we see complexity with the existing mod-seq mechanism, but for now we do not object it, as long as we also allow a simplified alternative. Then each deployment can choose what works best for its use case.
Comment 6: This CR introduces a \Vanished flag. It’s not at all clear what this means, but at a guess the CR means that if I DELETE /objects/123 and then GET /objects/123 I get not a 404 but a 200 with an Object that contains the \Vanished flag? That’s certainly incorrect. A deleted message is deleted from the store and cannot be retrieved. Also, what happens if I PUT /objects/123/flags/%5CVanished – does that delete the message? Does DELETE /objects/123/flags/%5CVanished restore it again?

· We agree that the \Vanished flag does not behave like other flags, therefore R01 drops this flag and instead specifies that the server maintains a list of objects that have been recently permanently deleted.
· If the application performs DELETE /objects/123 and then GET /objects/123 the server should respond with 404. In R01 this becomes clear, as we no longer use a /Vanished flag.
Comment 7: The first three paragraphs of s5.0.4 are unnecessarily negative. If a developer wants to design a multi-client system, this is exactly the right API to be looking at and it makes no sense to discourage her from using it.

· There is no intention to be either negative or positive. We are not “judging” anything. We try to capture the properties of each option, so that each deployment can understand the consequences of selecting each option.
So far we got no proposals for a better description, but we are open for subsequent CRs to improve any description including this one.
· Alternatively, we could also omit most of this descriptive text and just specify the two alternatives, but then we assume that every reader will be able to understand the pros/cons of each option. Even some related RFCs use extensive text to describe various implementation considerations, so we don’t see a reason why we can’t do the same.

Comment 8: The sequence diagram in s5.3.2.2 has text that is too small to read.

· The intention is for the editor to use the same tools that generated the other diagrams. We tried to edit existing diagrams, but they were not editable, so we just used an online tool to generate the content. We trust the editor to re-generate the same diagram using better tools.
· R01 adds an editor’s note to update the diagram
Comment 9: Appendix H; “/Vanished”: What’s the difference with the already defined (RFC3501) “/Deleted”? Why can’t “/Deleted” be used?

· In IMAP: \Vanished is for permanently deleted objects (unrecoverable), whereas \Deleted is a flag for messages that were marked to-be deleted (typically displayed with a strike-out formatting). IMAP Expunge command turns /Deleted objects to /Vanished
· R01 no longer uses /Vanished.
Comment 10: s5.3.2.2 Simplified Synchronization: It seems that this is a pull-based (while limited) sync purely based on existing search mechanism. Once the queries (set of searches) are done, the client is assumed to perform the search on period basis in order to keep in sync (in a limited way) with the server. This periodic pull assumption also needs to be mentioned somewhere in the text
· R01 includes new text to denote the ‘pull’ semantics.
· Note that the simplified sync is not necessarily periodic, and could be also be initiated by other triggers.
Comment 11: in Section 5.0.4 refer to a new Appendix which explains how the existing Search mechanism can be used to perform Simplified Synchronization; Add a new Appendix called “Search-based Synchronization”: in this appendix explain the mechanism as proposed in CR: s5.0.4.2 and s5.3.2.2

· Simplified sync is an equally normative alternative to strict sync, therefore we see no reason to list one within the spec and another in an Appendix.
· Moving text from a structured section to an Appendix does not help reduce complexity and might even be confusing to the reader.
· The (positive) fact that the sync mechanism re-uses other existing features of the API (i.e. Strict sync re-uses notifications and Simplified sync reuses search) does not imply that these sync mechanisms should be demoted to an appendix.
· If we decide to move the sync details to an Appendix then this decision should apply to all types of sync. In any case, this is more of an editorial preference, and can be addressed in a future CR during CONR.
R02 addresses a few more comments:

Comment 1:Change 2, 5.0.4.2: step 1 “whose objectIdSeq is greater than the last objectIdSeq known…”

· R02 fixes the typo.
Comment 2: Change 8: objectId should remain a string, not change to xsd:unsignedLong.
· R02 withdraws change 8.
Comment 3: Change 1, 5.0.1: please make objectSeq only present on servers that support Simplified Sync.

· R02 withdraws change 1 and instead updates change 3 with further refined text .
Comment 4: Change 4 is unnecessary because it’s already stated, and it’s also too strong:

· R02 refines change 4.
Comment 5: Is the objectSeq serialised wrt the box or the folder?
· Indeed R01 included by mistake draft text that made this unclear wheather objectSeq is sequential per-box or per-folder. R02 clears the confusion and clarifies that it is per-box.
Comments addressed in R03:
Comment 1: 5.0.4.2 Simplified Synchronziation

“Extra server state information and persistent storage of mod-sequences may not always be supported, in which case the client will receive an error code when subscribing to notifications. “

The sentence about “Extra server state information …” is not clear (seems like out of context and not going with the previous paragraph). Need to further clarification.

· This phrase is copied from some RFC that explains the overhead of maintaining mod-sequence, which provides the rationale for having the simplified sync as an alternative.
· Indeed, this sentence could be moved to the sub-section of strict sync.

· For R03 the sentence has been removed, as it has no normative impact.
Comment 2: 5.0.4.2 Simplified Synchronziation

Ambiguous sentence: “will receive an error code when subscribing to notifications”. Is subscription to notification supported in Simplified Sync alternative or not supported? It should say “receive an error when requesting a rstrict sync operation (i.e. passing in restartToken”) via subscription to notification”. The point is that the existing statement is not clear whether subscription to notifications is not supported in general or asking for a strict sync (which is also done through subscription to notification) is not supported.

Is error mechanism upon trying strict Sync the only method via which the client is going to learn about what alternative the server supports? Need to add other features if there is other ways for the client to find out (may be part of other CRs but would like to see the complete story in Sorrento to better appreciate the full impact).

· R03 removes the sentence and adds description on how the client can detect which sync method is supported.
Comment 3: 5.0.4.2 Simplified Synchronziation

“2. …and therefore all the others have the flag set .”

Please further clarify… something like “The client infers that all other objects should have the flag set as /Seen and take appropriate action locally”

· Sentence rephrased in R03 (but without the suffix “take appropriate action locally”, because we do not specify the local operations).
Comment 4: 5.2.3.1 SearchFieldEnum

Enum values start with capital case letter: vanishedObjects should be VanishedObjects, objectSeq should be ObjectSeq. throughout the CR in sections 5.3.2.2 and 5.0.6 also correct accordingly.

· Fixed in R03.
Comment 5: For strict sync either we have to have a resource called “sync” or have that intention for sync as part of an existing resource which we chose “subscription” resource. So, the client uses a known resource to signal to the server that it wants to sync through a parameter called “restartToken”. However, that is not the case with Simplified sync, The server only knows the client is invoking a series of searches which may be for a variety of other purposes (e.g. a client for non-sync purposes may invoke search for objects with flags of non “/Seen” or vanished objects). Only the client really knows the end intention of such series of searches which may or may not be done in the order suggested. That’s why suggested search-based sync as a title may be a more appropriate and well-describing title.

· We are not aware of the use-case or requirement for the server to know or care about the client’s intention.
· The API is a contract of well-defined input and output. As long as both the server and the client respect that, we don’t even need to call it “synchronization”. We do use this word, because it’s easier for the reader to follow the logic and intention of specifying things the way they are specified.
· If there is a use-case that requires server awareness for the fact that an operation is part of a sync – then we can easily add this information (e.g. as another input parameter in the search) in a separate CR (once the use case is available).
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is recommended to agree on the proposed changes in this CR.
6 Detailed Change Proposal

Change 1: Change objectId from string to unsigned number, and mandate increasing values. – this change is withdrawn in R02 (moved text to change 3 and further refined it)
Change 2: Add high level description of two complementing sync methods (and add sub-section for each method) – see sections 5.0.4, 5.0.4.1 in the attached file
Change 3: Add high level description for simplified sync – see section 5.0.4.2 in the attached file
Change 4: Mandate maintenance of permanently deleted object list – see section 5.0.6 in the attached file
Change 5: Add objectSeq element to the Object structure – see section 5.2.2.1 in the attached file
Change 6: Add flow diagram for simplified sync– see sections 5.3.2, 5.3.2.1, 5.3.2.2 in the attached file
Change 7: Relax the requirement to always maintain server modification sequence - see section 5.2.2.1 in the attached file
Change 8: make objectId an unsigned – withdrawn in R02
Change 9: Add objectId search - see section 5.2.3.1 in the attached file
Change 10: Add the Vanished flag – R01 withdraws this change
Change 11: R03 - Make lastModSeq optional in notifications and use indexing to skip duplicates – see sections 5.0.4.3, 5.2.2.25-28 in the attached file
Change 12: R03 – Add detection of sync method supported by the server – see section 5.1, 5.2.2.32 in the attached file
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

