OMA-TS-REST_NetAPI_NMS-V1_0-20140318-D
Page 95 V(155)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for Network Message Storage

	Draft Version 1.0 – 18 Mar 2014

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_NMS-V1_0-20140318-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

111.
Scope

2.
References
12
2.1
Normative References
12
2.2
Informative References
13
3.
Terminology and Conventions
14
3.1
Conventions
14
3.2
Definitions
14
3.3
Abbreviations
14
4.
Introduction
16
4.1
Version 1.0
16
5.
Network Message Storage API definition
18
5.0
Concepts
18
5.0.1
Object
18
5.0.2
Folder
19
5.0.3
Box
19
5.0.4
Managing local storage mirror (cache) at the client
19
5.0.4.1
Strict Synchronization
20
5.0.4.2
Simplified Synchronization
21
5.0.4.3
Subscriptions and notifications
21
5.0.5
Root folder(s) discovery
22
5.0.6
Deletion
22
5.0.7
External content
22
5.0.8
Inline content
23
5.0.9
Batched retrieval
23
5.0.10
Bulk Creation
24
5.1
Resources Summary
24
5.2
Data Types
32
5.2.1
XML Namespaces
32
5.2.2
Structures
32
5.2.2.1
Type: Object
32
5.2.2.2
Type: ObjectList
34
5.2.2.3
Type: ObjectReference
35
5.2.2.4
Type: ObjectReferenceList
35
5.2.2.5
Type: Flag
35
5.2.2.6
Type: FlagList
35
5.2.2.7
Type: Attribute
36
5.2.2.8
Type: AttributeList
37
5.2.2.9
Type: ReferenceList
37
5.2.2.10
Type: TargetSourceRef
37
5.2.2.11
Type: Folder
37
5.2.2.12
Type: FolderList
40
5.2.2.13
Type: FolderReference
40
5.2.2.14
Type: FolderReferenceList
40
5.2.2.15
Type: SelectionCriteria
40
5.2.2.16
Type: SearchCriteria
41
5.2.2.17
Type: SearchCriterion
41
5.2.2.18
Type: SearchField
42
5.2.2.19
Type: SortCriterion
42
5.2.2.20
Type: SortField
42
5.2.2.21
Type: NmsSubscriptionList
42
5.2.2.22
Type: NmsNotificationSubscription
42
5.2.2.23
Type: NmsNotificationSubscriptionUpdate
45
5.2.2.24
Type: NmsEventNotificationList
45
5.2.2.25
Type: DeletedObject
46
5.2.2.26
Type: DeletedFolder
46
5.2.2.27
Type: ChangedObject
47
5.2.2.28
Type: ChangedFolder
47
5.2.2.29
Type: NmsEventNotification
47
5.2.2.30
Type: PayloadPartInfo
48
5.2.2.31
Type: PathList
49
5.2.2.32
Type: ObjectCreationResponse
49
5.2.2.33
Type: ObjectCreationResponseList
49
5.2.3
Enumerations
49
5.2.3.1
Enumeration: SearchFieldEnum
49
5.2.3.2
Enumeration: LogicalOperatorEnum
51
5.2.3.3
Enumeration: SortFieldEnum
51
5.2.3.4
Enumeration: RetrievalOrderEnum
52
5.2.4
Values of the Link “rel” attribute
52
5.2.5
Correlation (Informative)
52
5.2.5.1
Introduction
52
5.2.5.2
Correlation ID
52
5.2.5.3
Correlation tag
53
5.3
Sequence Diagrams
53
5.3.1
Subscription to NMS notifications
53
5.3.2
Synchronization with NMS
54
5.3.2.1
Strict Synchronization
54
5.3.2.2
Simplified Synchronization
55
5.3.3
Subscription to filtered NMS Notifications
56
5.3.4
Operations on folders
57
5.3.5
Operations on objects
59
5.3.6
Retrieving a large list of objects
62
5.3.7
Discovering the user’s storage hierarchical structure
64
6.
Detailed specification of the resources
67
6.1
Resource: Resource containing all objects
67
6.1.1
Request URL variables
67
6.1.2
Response Codes and Error Handling
68
6.1.3
GET
68
6.1.4
PUT
68
6.1.5
POST
68
6.1.5.1
Example 1: Object creation by parentFolder, response with a location of created resource (Informative)
68
6.1.5.1.1
Request
68
6.1.5.1.2
Response
69
6.1.5.2
Example 2: Object creation by parentFolderPath, response creation failure due to a non-existent parent folder (Informative)
69
6.1.5.2.1
Request
69
6.1.5.2.2
Response
70
6.1.5.3
Example 3: Object creation by parentFolderPath, response creation failure due to prohibited location (i.e. requested parent folder) (Informative)
71
6.1.5.3.1
Request
71
6.1.5.3.2
Response
72
6.1.6
DELETE
72
6.2
Resource: A stored object
72
6.2.1
Request URL variables
72
6.2.2
Response Codes and Error Handling
73
6.2.3
GET
73
6.2.3.1
Retrieve information about an object (Informative)
73
6.2.3.1.1
Request
73
6.2.3.1.2
Response
73
6.2.4
PUT
74
6.2.5
POST
74
6.2.6
DELETE
74
6.2.6.1
Example 1: Delete an object, response with “204 No Content” (Informative)
74
6.2.6.1.1
Request
74
6.2.6.1.2
Response
74
6.2.6.2
Example 2: Delete an object, response with “200 OK” (Informative)
74
6.2.6.2.1
Request
74
6.2.6.2.2
Response
75
6.3
Resource: Flags associated with the stored object
75
6.3.1
Request URL variables
76
6.3.2
Response Codes and Error Handling
76
6.3.3
GET
76
6.3.3.1
Retrieve flags associated with an object (Informative)
76
6.3.3.1.1
Request
76
6.3.3.1.2
Response
76
6.3.4
PUT
77
6.3.4.1
Add a flag to flaglist of an object (Informative)
77
6.3.4.1.1
Request
77
6.3.4.1.2
Response
77
6.3.5
POST
78
6.3.6
DELETE
78
6.4
Resource: Individual flag associated with the stored object
78
6.4.1
Request URL variables
78
6.4.2
Response Codes and Error Handling
78
6.4.3
GET
79
6.4.3.1
Example 1: Read an existing individual flag (Informative)
79
6.4.3.1.1
Request
79
6.4.3.1.2
Response
79
6.4.3.2
Example 2: Read a non-existing individual flag- using acr:auth (Informative)
79
6.4.3.2.1
Request
79
6.4.3.2.2
Response
79
6.4.4
PUT
79
6.4.4.1
Add “\Answered” flag to flaglist of an object (Informative)
80
6.4.4.1.1
Request
80
6.4.4.1.2
Response
80
6.4.5
POST
80
6.4.6
DELETE
80
6.4.6.1.1
Response
80
6.5
Resource: Stored content of an object payload
80
6.5.1
Request URL variables
81
6.5.2
Response Codes and Error Handling
81
6.5.3
GET
81
6.5.3.1
Example: Read payload of the stored object via an external reference (Informative)
81
6.5.3.1.1
Request
81
6.5.3.1.2
Response
81
6.5.4
PUT
82
6.5.5
POST
82
6.5.6
DELETE
82
6.6
Resource: Payload part of the stored object
82
6.6.1
Request URL variables
82
6.6.2
Response Codes and Error Handling
83
6.6.3
GET
83
6.6.3.1
Example: Read an object payload part via the NMS resource tree (Informative)
83
6.6.3.1.1
Request
83
6.6.3.1.2
Response
83
6.6.4
PUT
83
6.6.5
POST
83
6.6.6
DELETE
84
6.7
Resource: Information about a selected set of objects in the storage
84
6.7.1
Request URL variables
84
6.7.2
Response Codes and Error Handling
84
6.7.3
GET
84
6.7.4
PUT
84
6.7.5
POST
85
6.7.5.2.1
Request
88
6.7.5.3
Example 3: Search for a substring in all searchable text attributes and bodies (Informative)
90
6.7.6
DELETE
92
6.8
Resource: Resource URLs of a selected set of objects in the storage
92
6.8.1
Request URL variables
92
6.8.2
Response Codes and Error Handling
93
6.8.3
GET
93
6.8.3.1
Example 1: Retrieve object’s resource URL based on its path (Informative)
93
6.8.3.1.1
Request
93
6.8.3.1.2
Response
93
6.8.4
PUT
93
6.8.5
POST
94
6.8.5.1
Example 1: Retrieve list of objects’ resource URLs based on their paths (Informative)
94
6.8.5.1.1
Request
94
6.8.5.1.2
Response
94
6.8.6
DELETE
94
6.9
Resource: Bulk creation of objects
95
6.9.1
Request URL variables
95
6.9.2
Response Codes and Error Handling
95
6.9.3
GET
95
6.9.4
PUT
95
6.9.5
POST
96
6.9.5.1.1
Request
96
6.9.5.1.2
Response
98
6.10
Resource: Resource containing all folders
99
6.10.1
Request URL variables
99
6.10.2
Response Codes and Error Handling
99
6.10.3
GET
99
6.10.4
PUT
99
6.10.5
POST
100
6.10.5.1
Example 1: Folder creation by parentFolder path, response with a location of created resource (Informative)
100
6.10.5.1.1
Request
100
6.10.5.1.2
Response
100
6.10.5.2
Example 2: Folder creation by parentFolder path, response with a copy of created resource (Informative)
100
6.10.5.2.1
Request
100
6.10.5.2.2
Response
101
6.10.5.3
Example 3: Folder creation by parentFolder path, response creation failure due to an invalid folder path (Informative)
101
6.10.5.3.1
Request
101
6.10.5.3.2
Response
102
6.10.5.4
Example 4: Folder creation by parentFolder resourceURL, response with a copy of created resource (Informative)
102
6.10.5.4.1
Request
102
6.10.5.4.2
Response
102
6.10.5.5
Example 5: Folder creation by parentFolder resourceURL, response creation failure due to a non-existent parent folder (Informative)
103
6.10.5.5.1
Request
103
6.10.5.5.2
Response
103
6.10.5.6
Example 6: Folder creation by parentFolder path, response creation failure due to prohibited location (i.e. requested parent folder) (Informative)
103
6.10.5.6.1
Request
103
6.10.5.6.2
Response
104
6.10.6
DELETE
104
6.11
Resource: A folder
104
6.11.1
Request URL variables
104
6.11.2
Response Codes and Error Handling
105
6.11.3
GET
105
6.11.3.2
Example 2: Retrieve information about a non-existent folder (Informative)
106
6.11.4
PUT
106
6.11.5
POST
106
6.11.6
DELETE
106
6.11.6.1
Example 1: Delete a folder, response with “204 No Content” (Informative)
106
6.11.6.1.1
Request
106
6.11.6.1.2
Response
107
6.11.6.2
Example 2: Delete an folder, response with “200 OK” (Informative)
107
6.11.6.2.1
Request
107
6.11.6.2.2
Response
107
6.12
Resource: Individual folder data
107
6.12.1
Request URL variables
107
6.12.2
Response Codes and Error Handling
108
6.12.3
GET
108
6.12.3.1
Example: Retrieve a folder’s name (Informative)
108
6.12.3.1.1
Request
108
6.12.3.1.2
Response
109
6.12.4
PUT
109
6.12.5
POST
109
6.12.6
DELETE
109
6.13
Resource: Information about a selected set of folders in the storage
109
6.13.1
Request URL variables
110
6.13.2
Response Codes and Error Handling
110
6.13.3
GET
110
6.13.4
PUT
110
6.13.5
POST
110
6.13.6
DELETE
116
6.14
Resource: Resource URLs of a selected set of folders in the storage
116
6.14.1
Request URL variables
117
6.14.2
Response Codes and Error Handling
117
6.14.3
GET
117
6.14.3.1
Example 1: Retrieve folder’s resource URL based on its path (Informative)
118
6.14.3.1.1
Request
118
6.14.3.1.2
Response
118
6.14.3.2
Example 2: Retrieve root folder’s resource URL (Informative)
118
6.14.3.2.1
Request
118
6.14.3.2.2
Response
118
6.14.4
PUT
118
6.14.5
POST
119
6.14.5.1
Example 1: Retrieve list of folders’ resource URLs based on their paths (Informative)
119
6.14.5.1.1
Request
119
6.14.5.1.2
Response
119
6.14.5.2
Example 2: Retrieve list of folders’ resource URLs based on their paths, response failure due to an invalid path in the list (Informative)
119
6.14.5.2.1
Request
120
6.14.5.2.2
Response
120
6.14.6
DELETE
120
6.15
Resource: Resource for triggering object(s)/folder(s) copying
120
6.15.1
Request URL variables
120
6.15.2
Response Codes and Error Handling
121
6.15.3
GET
121
6.15.4
PUT
121
6.15.5
POST
121
6.15.6
DELETE
123
6.16
Resource: Resource for triggering object(s)/folder(s) moving
123
6.16.1
Request URL variables
123
6.16.2
Response Codes and Error Handling
124
6.16.3
GET
124
6.16.4
PUT
124
6.16.5
POST
124
6.16.6
DELETE
126
6.17
Resource: All subscriptions in the storage
126
6.17.1
Request URL variables
126
6.17.2
Response Codes and Error Handling
127
6.17.3
GET
127
6.17.3.1
Example: Reading all active subscriptions (Informative)
127
6.17.3.1.1
Request
127
6.17.3.1.2
Response
127
6.17.4
PUT
128
6.17.5
POST
128
6.17.5.1
Example: Creating a new subscription, response with copy of created resource (Informative)
128
6.17.5.1.1
Request
128
6.17.5.1.2
Response
128
6.17.6
DELETE
129
6.18
Resource: Individual subscription
129
6.18.1
Request URL variables
129
6.18.2
Response Codes and Error Handling
129
6.18.3
GET
130
6.18.3.1
Example: Reading an individual subscription (Informative)
130
6.18.3.1.1
Request
130
6.18.3.1.2
Response
130
6.18.4
PUT
130
6.18.5
POST
130
6.18.5.1
Example: Updating the existing subscription (Informative)
130
6.18.5.1.1
Request
130
6.18.5.1.2
Response
131
6.18.6
DELETE
131
6.18.6.1
Example: Cancelling a subscription (Informative)
131
6.18.6.1.1
Request
131
6.18.6.1.2
Response
131
6.19
Resource: Client notification about storage changes
131
6.19.1
Request URL variables
132
6.19.2
Response Codes and Error Handling
132
6.19.3
GET
132
6.19.4
PUT
132
6.19.5
POST
132
6.19.5.1
Example 1: Notify a client about NMS object changes (Informative)
132
6.19.5.1.1
Request
132
6.19.5.1.2
Response
133
6.19.5.2
Example 2: Notify a client about NMS folder changes (Informative)
133
6.19.5.2.1
Request
133
6.19.5.2.2
Response
134
6.19.6
DELETE
134
7.
Fault definitions
135
7.1
Service Exceptions
135
7.1.1
SVC1009: Folder’s path needed
135
7.2
Policy Exceptions
135
7.2.1
POL1030: Folder cannot be renamed
135
Appendix A.
Change History (Informative)
136
A.1
Approved Version History
136
A.2
Draft/Candidate Version 1.0 History
136
Appendix B.
Static Conformance Requirements (Normative)
139
B.1
SCR for REST.NMS Server
139
B.1.1
SCR for REST.NMS.Objects Server
139
B.1.2
SCR for REST.NMS.AObject Server
139
B.1.3
SCR for REST.NMS.AObject.Flags Server
139
B.1.4
SCR for REST.NMS.AObject.IndFlag Server
139
B.1.5
SCR for REST.NMS.AObject.Payload Server
140
B.1.6
SCR for REST.NMS.AObject.PayloadPart Server
140
B.1.7
SCR for REST.NMS.Objects.Search Server
140
B.1.8
SCR for REST.NMS.Objects.PathToId Server
140
B.1.9
SCR for REST.NMS.Objects.bulkCreation Server
140
B.1.10
SCR for REST.NMS.Folders Server
141
B.1.11
SCR for REST.NMS.AFolder Server
141
B.1.12
SCR for REST.NMS. FolderName Server
141
B.1.13
SCR for REST.NMS.Folders.Search Server
141
B.1.14
SCR for REST.NMS.Folders.PathToId Server
141
B.1.15
SCR for REST.NMS.Folders.Copy Server
142
B.1.16
SCR for REST.NMS.Folders.Move Server
142
B.1.17
SCR for REST.NMS.Subscriptions Server
142
B.1.18
SCR for REST.NMS.IndSubscription Server
143
B.1.19
SCR for REST.NMS.Notifications Server
143
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
144
Appendix D.
JSON examples (Informative)
145
D.1
[Example Title] (section [section number cross reference])
145
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
146
Appendix F.
Light-weight Resources (Informative)
147
Appendix G.
Authorization aspects (Normative)
148
G.1
Use with OMA Authorization Framework for Network APIs
148
G.1.1
Scope values
148
G.1.1.1
Definitions
148
G.1.1.2
Downscoping
148
G.1.1.3
Mapping with resources and methods
148
G.1.2
Use of ‘acr:auth’
150
Appendix H.
Flag Names Table (Normative)
151
Appendix I.
RCS Object Attributes Table (Informative)
152
Appendix J.
RCS Folder Attributes Table (Informative)
154

Figures

25Figure 1 Resource structure defined by this specification

54Figure 2: Subscribing/unsubscribing to NMS notifications

54Figure 3: Strict synchronization with NMS

55Figure 4: Simplified synchronization with NMS

56Figure 5: Subscribing to filtered NMS notifications

58Figure 6: Operations on folders

61Figure 7: Operations on objects

63Figure 8: Retrieving a large list of objects

65Figure 9: Discovering the user’s storage hierarchical structure

Tables

132Table 1: 1-1 NMS event notification

151Table 2 Flag Names

153Table 3 Object Attributes

154Table 4 Folder Attributes

1. Scope

This specification defines a RESTful Network API for Network Message Storage using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IANA_Message_Headers]
	“Message Headers”, IANA protocol registry, URL: http://www.iana.org/assignments/message-headers/message-headers.xhtml

	[IETF_ACR_draft]
	The acr URI for anonymous users”, S.Jakobsson, K.Smith, March 1, 2012, URL: http://tools.ietf.org/html/draft-uri-acr-extension-04
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[OMA-CPM_TS_MessageStorage]
	“CPM Message Storage; Open Mobile Alliance ™, OMA-TS-CPM_MessageStorage-V2_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_NMS]
	“XML schema for the RESTful Network API for Network Message Storage Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_nms-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed, N. Borenstein, November 1996, URL: http://tools.ietf.org/html/rfc2045

	[RFC2047]
	“MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text”, K. Moore, November 1996, URL: http://tools.ietf.org/html/rfc2047

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://tools.ietf.org/html/rfc2119

	[RFC2388]
	“Returning Values from Forms: multipart/form-data”, L. Masinter, August 1998, URL: http://tools.ietf.org/html/rfc2388

	[RFC2557]
	“MIME Encapsulation of Aggregate Documents, such as HTML (MHTML)”, J. Palme, A. Hopmann, N. Shelness, March 1999, URL: http://tools.ietf.org/html/rfc2557

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL: http://tools.ietf.org/html/rfc2616

	[RFC3458]
	“Message Context for Internet Mail”, E. Burger, January 2003, URL: http://tools.ietf.org/html/rfc3458

	[RFC3501]
	“INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1”, M. Crispin, March 2003, URL: http://tools.ietf.org/html/rfc3501

	[RFC3938]
	“Video-Message Message-Context”, T. Hansen, October 2004, URL: http://tools.ietf.org/html/rfc3938

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://tools.ietf.org/html/rfc3966

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://tools.ietf.org/html/rfc3986

	[RFC7159]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://tools.ietf.org/html/rfc7159

	[RFC5322]
	“Internet Message Format”, P. Resnick, Ed., October 2008, URL: http://tools.ietf.org/html/rfc5322

	[RFC5438]
	“Instant Message Disposition Notification (IMDN)”, E. Burger., February 2009, URL: http://tools.ietf.org/html/rfc5438

	[RFC5788]
	“IMAP4 Keyword Registry”, A. Melnikov, March 2010, URL: http://tools.ietf.org/html/rfc5788

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures Second Edition, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	
	

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

	
	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Messaging]
	“RESTful Network API for Messaging”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Messaging-V1_0, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC2392]
	“Content-ID and Message-ID Uniform Resource Locators”, E. Levinson, August 1998, URL: http://tools.ietf.org/html/rfc2392

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002, URL: http://www.ietf.org/rfc/rfc3261.txt

	[RFC4551]
	“IMAP Extension for Conditional STORE Operation or Quick Flag Changes Resynchronization”, A. Melnikov, S.Hole, June 2006, URL: http://www.ietf.org/rfc/rfc4551.txt

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary [OMADICT] apply.
	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource.

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	CPM
	Converged IP Messaging

	GSM
	Global System for Mobile

	GSMA
	GSM Association

	ID
	Identity

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	MMS
	Multimedia Messaging Service

	MSISDN
	Mobile Subscriber ISDN Number

	NMS
	Network Message Storage

	NTP
	Network Time Protocol

	OMA
	Open Mobile Alliance

	RCS
	Rich Communication Suite

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	SMS
	Short Message Service

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Network Message Storage contains HTTP protocol bindings for Network Message Storage, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Create a folder.

· Delete a folder

· Rename a folder

· Move folder(s)

· Copy folder(s)

· Store an object (e.g., message, file, etc.) in the storage, in a particular folder

· Delete an object

· Move object(s)

· Copy object(s)

· Bulk Creation of objects (e.g. bulk upload of objects from the device storage to the network storage)

· Retrieve information about a stored object (e.g. message, file, etc.), such as:

· size

· hierarchical location (i.e. the equivalent of a full pathname in a file system)

· flags (string labels) associated with the object

· Update flags (string labels) associated with an object
· Search and retrieve information about a set of selected objects, for example a list of messages, including associated header information such as subject, date and time

· Retrieve the payload (i.e. stream of bytes) of a stored object

· Retrieve individual attachments of an object
· Retrieve information about a folder, such as:

· hierarchical location (i.e. the equivalent of a full pathname in a file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

· Search and retrieve information about a set of folders (e.g. root folder)
· Manage subscriptions to event notifications on changes occurring in the network storage

· Notify client(s) about network message storage events

· Manage synchronization between client local storage and network storage

· Subscribe to filtered notifications

In addition, this specification provides:

· Support for scope values used with the authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. Network Message Storage API definition
This section is organized to support a comprehensive understanding of the Network Message Storage API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].
The remainder of this document is structured as follows:

Section 5 starts with a description of the concepts used by this API (section 5.0). This is followed by a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with at least one example of a request a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.

Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable.

Appendix G defines authorization aspects to control access to the resources defined in this specification.

Appendix H provides a list of the most common object flags.

Appendix I provides a list of object attributes.

Appendix J provides a list of folder attributes.

Note: Throughout this document client and application are used interchangeably.

5.1 Concepts

5.1.1 Object
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes that contain metadata, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)
· top-level MIME headers (e.g., Content-Type, Content-Location)
· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the object is deleted). The objectId is assigned by the storage server.

 The path for any object in the network storage is made up of a sequence of folder names starting from the root folder and ending with the given object’s objectId where the folder names and the objectId are separated by a “/” (U+002F) character.
5.1.2 Folder
Similar to the abstract model of a file system, a folder in the context of this specification is a container with a designated location (pathname) that can contain objects and/or sub-folders (i.e. be considered as their parent in the location hierarchy). The folder resource in the context of this specification comprises of:

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

Each folder resource in a given storage is identified by folderId, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the folder is deleted). The folderId is assigned by the storage server.

Each folder also has a name, which is used to construct the location (path). The name is a string which MUST be unique in the context of the folder’s parent folder in the hierarchy of the storage.
The path for any folder in the network storage is made up of a sequence of folder names starting from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.
While a folder in a file system model conceptually contains objects and sub-folders, the resource tree shown in Figure 1 does not mimic that hierarchy. For the purpose of the API, objects and folders are identified by objectId and folderId respectively, and not by their location (pathname). However, through RESTful operations and queries on the resource tree, it is possible for a client to discover the location (full pathname) of all objects and folder in the storage; hence it is possible to map the full hierarchy. It is also possible to perform a query to resolve a pathname (of a folder or an object) to the equivalent identifier (folderId or objectId).
5.1.3 Box
Editor’s note: FFS “A box within the context of this specification comprises of…”
5.1.4 Managing local storage mirror (cache) at the client
Clients may need to have a local cache, representing the storage at the server. In order to keep it up-to-date, any change made on the server needs to be mirrored in the local cache, which requires tracking of storage changes. Tracking such changes in a multi-device (multi-client) environment is a complicated task that requires extended state management. This tracking incurs overhead both in complexity (cost) of the client and server implementations and in their runtime performance when synchronizing the changes between the client(s) and the server.

Different deployment scenarios have different requirements with regards to the tradeoff made between strict change tracking at the expense of complexity/performance penalty and simplified tracking at the expense of excluding some information from the scope of changes synchronization.

Furthermore, in some use-cases a user may only be interested in selective tracking (e.g. she may only care about the most recent changes and consider older objects/folders irrelevant).

The NMS API offers two alternatives:

· Strict Synchronization: suitable for deployments that require full and accurate cache and willing to incur the extra cost.

· Simplified Synchronization: suitable for deployments that require simplicity and either prefer to or willing to have a selective cache, i.e. one that skips the mirroring of insignificant server changes.
5.1.4.1 Strict Synchronization
Each object also has a lastModSeq, which is a mod-sequence (modification sequence number – see below) value used to determine whether the object metadata has changed since some known moment. Whenever the metadata changes the lastModSeq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastModSeq.

Each folder also has a lastModSeq, which is a mod-sequence value used to determine whether the folder metadata has changed since some known moment. Whenever the metadata changes the lastModSeq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastModSeq.

A mod-sequence is a positive unsigned 64-bit value. When a relevant operation is performed the storage MUST obtain a mod-sequence value, and MUST set the lastModSeq value of the object or folder being acted upon to that value. The server MUST guarantee that each relevant operation performed on the same object or folder (including simultaneous operations on different metadata items from different connections) will get a different mod-sequence value. Also, for any two successful relevant operations performed on the same object or folder, the mod-sequence of the second completed operation MUST be greater than the mod-sequence of the first completed. Note that the latter rule disallows the use of the system clock as a mod-sequence, because if the system time changes (e.g., an NTP (Network Time Protocol) client adjusting the time), the next generated value might be less than the previous one. See [RFC4551] for an informative discussion of mod-sequences.

The following operations (and only these operations) cause the lastModSeq of an object to be updated:

· creation (whether direct or as part of a recursive operation)

· user deletion (whether direct or as part of a recursive operation)

· expiry

· parentFolder change

· flag change

The following operations (and only these operations) cause the lastModSeq of a folder to be updated:

· creation (whether direct or as part of a recursive operation)

· user deletion (whether direct or as part of a recursive operation)

· expiry

· parentFolder change

· change of any lightweight resource within a folder, as described in Section 6.11.1.1“ Light-weight relative resource paths”, e.g., changing its folderName.

In particular:

· Changing the folderName of a folder causes the lastModSeq of that folder to be updated, but the lastModSeq values of any subfolders or objects within it are not updated (their path and parentFolderPath values are changed, but these do not cause a lastModSeq update).

· Adding or deleting an object within a folder causes the lastModSeq of that object to be updated, but the lastModSeq value of the folder itself is not updated (its objects value changes, but this does not cause a lastModSeq update).

· Adding or deleting a subfolder within a parent folder causes the lastModSeq of the subfolder to be updated, but the lastModSeq value of the parent folder itself is not updated (its subFolders value changes, but this does not cause a lastModSeq update).

· Moving a folder to a new location causes the lastModSeq of the moved folder to be updated (since its parentFolder changes), but the lastModSeq values of any subfolders or objects within it are not updated (only their path and parentFolderPath values are changed), and the lastModSeq value of the new location (folder) is not updated (only its subFolders value is changed).

In order for the storage to correctly notify changes that include deletion events, it is necessary for the storage to retain the lastModSeq value and objectId or folderId of each deletion operation of an object or folder.

A client which is intending to keep in sync with the server should record the lastModSeq value of each object and folder. When it receives a change notification for a particular object or folder, it should compare the lastModSeq value of the notification with the current lastModSeq value of the object or folder. If the lastModSeq of the notification is less than or equal to the current value, the notification is out of order and should be ignored. This ensures correct operation even when notifications are reordered or duplicated, or arrive interleaved with objects and folders retrieved by other means (e.g., search).

5.1.4.2 Simplified Synchronization
Each box has a creationCursor, which is a varying implementation-specific string value. The creationCursor enables a client to request retrieval of objects that were created in the store but not yet known to the client.

The creationCursor is set by the server and returned to the client in each createdObjects search response. At any point, the client can use a known creationCursor (that was returned in a previous createdObjects search response). The server then returns all existing objects in the store created since the point indicated by the creationCursor.
An illustrative example for creationCursor implementation can use an unsigned long integer (converted to a string representation) that is managed by the server as follows: as each object is added to the box it is assigned a creation sequence number which is higher than all the creation sequence numbers previously assigned (but not necessarily contiguous). The creation sequence number is immutable. When responding to createdObjects search the server will return the highest creation sequence number in the box as the value of the creationCursor.

To perform the simplified synchronization the client SHOULD follow the following steps:

1. Synchronize new objects: Fetch all objects created since the last synchronization performed by the client (using the creationCursor).

2. Synchronize purged objects: Fetch objectIds of objects that have been permanently deleted.

3. Synchronize significant flag changes:

a. Sync Read/Unread flag for all objects: search for objects that do not carry the “\Seen” flag. All objectIds returned by the search have the flag unset, and therefore the client infers that all other objects have the “\Seen” flag set.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

b. Optionally, use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.

5.1.4.3 Subscriptions and notifications
Notifications are subject to loss, reordering, and duplication. The lastModSeq mechanism ensures that reordering and duplication are of no concern, but clients must still detect and recover from loss. This section describes how this is achieved.

Within a particular subscription, each notification (NmsEventNotificationList) contains an index. This starts at 1 when the subscription is created, and increments for each notification. When a subscription is updated the index is not reset, but continues to increment, so that within the sequence of notifications from a particular subscription, each index is unique. The response to the subscription update contains the current index, so the client knows which index to expect after the update.

Lost notifications are detected as follows. The client observes the index values of the notifications which are received. If a particular index is not received after an appropriate timeout, even though a greater index has been received, the client can infer that a notification has been lost.

The subscription also contains a restartToken. This is a varying implementation-specific string value which represents the current point in the stream of notifications. The restartToken is set when the subscription is created, and continually updated as notifications are issued. It is returned to the client in the restartToken element when the subscription is created or updated. Also, each notification (NmsEventNotificationList) contains the subscription’s restartToken at the point immediately after the notification was issued.

At any point, the client can update the subscription to set a previous value of the restartToken. The server then issues notifications representing all changes since the point indicated by the restartToken. In general this will cause some change notifications to be duplicated. This is not a concern, because the lastModSeq mechanism will be used to ensure only non-duplicated changes are applied.

Lost notifications are recovered as follows. The client keeps track of the most recent restartToken received in consecutive notifications. If a lost notification is detected, the client simply updates the subscription to restart from the restartToken received immediately before the lost notification.

A special case of loss is when a client has been shut down or disconnected. In this case, when the client restarts it should supply the latest previously-received restartToken when it makes an NmsNotificationSubscription request, so that the server will notify all changes since that point. If there were already lost notifications when it was shut down or disconnected, the restartToken supplied should be the restartToken received immediately before the first lost notification.
5.1.5 Root folder(s) discovery
Similar to object, a folder can also be assigned attributes that contain metadata. A client can perform batch search for objects/folders by their attributes.

A client can perform traversal of the storage hierarchical structure, provided that it can discover the root folder(s) of the hierarchy (i.e. the starting point(s) for traversal). Folder attributes are used to identify root folder(s) in the message storage. A folder attribute named “Root” with the value “Yes” designates such a starting point. In some deployment scenarios other well-known attribute values may be used and other restrictions may apply (e.g. mandating only single root folder). For further information see section 5.2.3.1.
When the client retrieves the root folder it will discover its name. By default, the name of the root folder is an empty string unless specifically assigned to be some other name by the server.
Renaming a folder (e.g. a root folder) may be prohibited by server policy.

5.1.6 Deletion
There are two ways in which an object or folder can be deleted:

· A client may delete an object or folder by supplying a DELETE request over the API. This is called “user deletion”.

· The storage server MAY at any time spontaneously delete an object or folder. This is called “expiry”.

Both of these kinds of delete update the object or folder’s lastModSeq and trigger a notification. The notification indicates which has occurred.

Clients may choose to associate different semantics with these different kinds of delete, e.g., user deletion may result in the object or folder being removed from local storage, whereas expiry may be ignored (for instance to allow the user to hold onto the local copy of a server-deleted object).

If the server receives a subscription request that includes a restartToken from before the point at which the object or folder was deleted, the server SHOULD return a notification indicating the user-deletion or expiry. However the server MAY omit this notification. The server SHOULD NOT omit the notification unless a reasonable period of time has elapsed since the delete occurred (i.e., such that the client could reasonably be expected to have issued a subscription request within this period).
If the server receives a search request for VanishedObjects, it SHOULD return a reference to every object that has been user-deleted recently, where the definition of “recently” is subject to service provider’s policy (e.g., last 30 days, last 1000 objects). Objects that have recently expired MAY also be returned in this response, subject to service provider’s policy.
5.1.7 External content
The content (i.e., payload and payload parts) of an object is made available from one of two places. It can be available via the NMS resource tree, or it can be available via an external reference. This allows NMS implementations to place the payload and/or payload parts in an external server, so that clients can access them without placing load on the NMS itself.

The server indicates the location of a particular payload or payload part by placing a link to it within the PayloadPartInfo structure contained within the appropriate element. The link can refer to a resource within the NMS resource tree, or external to it.

Because the location is not under client control, clients SHOULD obtain this location from the appropriate PayloadPartInfo data structure. Clients SHOULD NOT attempt to construct this URL themselves, e.g. by assuming that content is always served directly by NMS.
5.1.8 Inline content
If an object payload can be represented as a textual string of a reasonable length then the NMS server MAY convert a payload resource to a string and add a TextContext attribute (see Appendix I) that will carry this string.

When performing the conversion the server MUST add the new attribute and MUST delete the original payload resource.

A common use-case for this conversion is an SMS object.

The decision on when to perform the conversion depends on service provider’s policy (e.g. if the resulting text is too long, it will not be converted) and is out of scope of this spec.

5.1.9 Batched retrieval

Object and folder search allow the client to retrieve a list of entries. This list of entries might be larger than the server or the client is prepared to handle at one time, and so these operations provide a mechanism for batched retrieval.

Batched retrieval uses the following elements of the search request and response data types:

· In search requests, the client supplies a maximum number of entries in the maxEntries element.

1. The maxEntries element indicates the maximum number of entries the client is prepared to accept in a single batch.

2. The server MUST NOT return more than this many entries in the response. It MAY choose to return fewer entries.

· In search responses, in addition to the batch of entries the server can also supply a cursor value (in the cursor element).

1. If the cursor element is present, it indicates that there may be further entries in the list beyond the end of this batch. (It does not indicate that there certainly are further entries. For example, if the server is performing a search it may return a cursor to indicate the search is not yet complete. It may in fact be the case that there are no further matches beyond this point, but because the server has not yet determined this it cannot omit the cursor.)
2. If the cursor element is absent, it indicates that there are no further entries, i.e., that the list is now complete.

3. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.
· In subsequent search requests, the client can supply a cursor value (in the fromCursor element) indicating the previous batch to be continued, in addition to the maximum number of entries (in the maxEntries element).

1. If the fromCursor element is absent, the batch starts from the first matching entry.

2. If the fromCursor element is present:

i. It MUST contain a cursor value obtained from a previous search response.

ii. This subsequent request MUST be to the same resource URL and have precisely the same searchCriteria, searchScope, and sortCriterion as the previous search request corresponding to the previous search response.

iii. The batch is a continuation of the previous batch, i.e., it starts from the first matching entry after the last entry of the previous search response. The server SHOULD make best efforts to start the response from at or near this position, or from the start of the matches if this is not possible.

3. Since the cursor encapsulates server state information which might be volatile, especially in a multi-device environment, the server is not required to ensure that each batch is a precise continuation of the previous batch. However, the server must make best efforts to ensure this is so.The cursor mechanism guarantees that:

i. If there are no intervening changes to the box (such as object or folder creations or deletions), the batch MUST be a precise continuation of the previous batch.

ii. If this is an object search, with default selection criteria (i.e., the searchCriteria, searchScope, and sortCriterion are all absent), then every object which existed in the box at the point of the first request and still exists at the point of the final response MUST appear at least in one of the batches (i.e. if the client retrieves all the batches it will not miss any stored object).
4. If the fromCursor is invalid (e.g., it has been modified by the client, or it came from a request with different selection criteria), the server MAY return either an HTTP error response or an arbitrary subset of matches.
Section 5.3.6 demonstrates the expected flow of requests and responses.

5.1.10 Bulk Creation
In bulk creation operation, the client intends to create multiple objects using a single request. The list of objects are passed in a single HTTP POST request (invoked on /bulkCreation resource). If the identified parent folder of a given object in the list does not exist, the server SHALL create the parent folder before creating and placing the object in the folder.

The response body includes a list of success or failure status for each object in the request list respectively. The HTTP response code reflects the status of the bulk operation as a whole, which is considered successful if at least one object was created successfully.

5.2 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Network Message Storage.
The "apiVersion" URL variable SHALL have the value “v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The "storeName" URL variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value for that variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

The "boxId" URL variable can be used to identify specific area (or a ‘box’) allocated within the store, The value for this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id)

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.png]Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxld}

:

/payloadParts

" Joperations —{ /Apayloadpartid} ()

?

L /operations

!

Figure 1 Resource structure defined by this specification

Note: pathToId resource is read as path-To-Id.
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: To allow a client to manage individual objects
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Resource containing all objects

	/objects

	Object

NmsResourceReference
(optional alternative for POST response)
	no
	no
	Create an object
	no

	A stored object

	/objects/{objectId}

	Object

	Retrieve the attributes (metadata) associated with the object
	no
	no
	Delete an object (including payload) from the storage

	Flags associated with the stored object
	/objects/{objectId}/flags

	FlagList

	Retrieve the flags (string labels) associated with the object
	Create or update the flags (string labels) associated with the object
	no
	no

	Individual flag
	/objects/{objectId}/flags/{flagName}

	Flag
	Retrieve/check existence of an individual flag (string label)
	Add individual flag (string label)
	no
	Remove individual flag (string label)

Purpose: To allow a client to retrieve stored content of an object payload or payload part
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Payload of the stored object
	For content available via the NMS resource tree:
/objects/{objectId}/payload

For externally referenced content, an arbitrary URL is specified in PayloadPartInfo.
	Any MIME content (the one of the object e.g. multipart/mixed or image/jpeg)

	Retrieve the payload (stream of bytes) of the object
	no
	no
	no

	Payload part of the stored object
	For content available via the NMS resource tree:
/objects/{objectId}/payloadParts/{payloadPartId}
For externally referenced content, an arbitrary URL is specified in PayloadPartInfo.
	Any MIME content (the one of the payload part)
	Retrieve individual object payload part
	no
	no
	no

Purpose: To allow a client to manage individual folders
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Resource containing all folders
	/folders

	Folder

NmsResourceReference
(optional alternative for POST response)
	no
	no
	Create a folder
	no

	A folder

	/folders/{folderId}

	Folder

	Retrieve the folder properties (such as its location and list of contained objects/sub-folders)
	no
	no
	Delete a folder from the storage, including contained folders and objects (with their payload)

	Individual folder data
	/folders/{folderId}/[ResourceRelPath]

	The data structure corresponds to an element within the Folder structure indicated by the resource URL.

(used for PUT/GET)
	Retrieve individual folder information parameters (e.g “name” parameter)
	Update individual folder information parameters (e.g. rename the folder by changing its “name” parameter)
Note: Renaming a folder (e.g. a root folder) may be prohibited by server policy.

	no
	no

Purpose: To allow a client to perform operations on a set of objects, where the set is defined by selection criteria
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}/objects/operations
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Information about a selected set of objects in the storage

	/search

	SelectionCriteria
(used for POST request)

ObjectList
(used for POST response)

	no

	no

	Retrieve information about a set of selected objects
	no

	Resource URLs of a selected set of objects in the storage
	/pathToId

Note: read as path-To-Id
	NmsResourceReference
(used for GET response)

PathList
(used for POST request)

ObjectReferenceList
(used for POST response)

	Retrieve resource URL for an object, based on its pathname which is provided via query string
	no
	Retrieve resource URLs for a list of objects, based on their pathnames
	no

	Bulk creation of objects
	/bulkCreation

	ObjectList
(used for POST request)
ObjectCreationResponseList(used for POST response)
	no
	no
	Create objects
	no

Purpose: To allow a client to retrieve information and/or perform operations on a set of folders, where the set is defined by selection criteria
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}/folders/operations
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Information about a selected set of folders in the storage

	/search

	SelectionCriteria
(used for POST request)

FolderList
(used for POST response)
	no

	no

	Retrieve information about a set of selected folders
	no

	Resource for triggering object(s)/folder(s) copying
	/copyToFolder
	TargetSourceRef
(used for POST request)

ReferenceList
(used for POST response)
	no
	no
	Copy referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder
	no

	Resource for triggering object(s)/folder(s) moving
	/moveToFolder
	TargetSourceRef
(used for POST request)

ReferenceList
(used for POST response)
	no
	no
	Move referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder
	no

	Resource URLs of a selected set of folders in the storage
	/pathToId

Note: read as path-To-Id
	NmsResourceReference
(used for GET response)

PathList
(used for POST request)

FolderReferenceList
(used for POST response)

	Retrieve resource URL for a folder, based on its pathname which is provided via query string
	no
	Retrieve resource URLs for a list of folders, based on their pathnames
	no

Purpose: To allow a client to manage subscriptions for storage changes
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions in the storage
	/subscriptions

	NmsSubscriptionList
(used for GET)

NmsNotificationSubscription
(used for POST)

	Retrieve all active NMS notification subscriptions
	no
	Create new subscription for notification for NMS changes
	no

	Individual subscription
	/subscriptions/{subscriptionId}

	NmsNotificationSubscription
(used for GET and POST response)

NmsNotificationSubscriptionUpdate
(used for POST request)
	Retrieve an individual subscription
	no
	Update some details of an individual subscription
	Cancel subscription and stop corresponding notifications

Purpose: To allow the server to notify a client about storage changes
	Resource
	URL
<specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about storage changes
	<specified by the client when subscription is created or during provisioning process>

	NmsEventNotificationList
	no
	no
	Notifies client about storage changes
	no

5.3 Data Types
5.3.1 XML Namespaces

The XML namespace for the Network Message Storage data types is:

urn:oma:xml:rest:netapi:nms:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_NMS].
5.3.2 Structures
The subsections of this section define the data structures used in the NMS API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.3.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	Choice
	Resource URL of the parent folder that contains the object.
In object creation requests this element specifies the folder that will contain the new object.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.
The server MUST include this element in responses.

	parentFolderPath
	xsd:string
	Choice
	The location in the hierarchical storage of the folder that contains this object.

In object creation requests this element specifies the folder that will contain the new object. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST NOT include this element in responses.

	attributeList
	AttributeList
	Yes
	List of attributes associated with the object.

	flagList
	FlagList
	Yes
	List of flags associated with the object.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage.
This element SHALL NOT be included in POST requests by the client but MAY be included in responses by the server to the client to any HTTP method that returns an Object entity body.
See section 5.0.1 for further information on how an object’s path is constructed.

	payloadPart
	PayloadPartInfo [0…unbounded]
	Yes
	Information about individual payload parts.

Number and content of payload parts:

· If the object is empty, this element MUST be omitted.
· If the server determines that the payload can be represented using the inline method (see section 5.0.8) then this element MUST be omitted.
· If the object’s payload has MIME type multipart/mixed, the first-level parts of the payload MUST be represented as individual payload parts.

· If the object’s payload is of another type which can be divided into a sequence of parts, those parts SHOULD be represented as individual payload parts.

· Otherwise, the object MUST be represented as having precisely one payload part representing the entire object payload.

In case the object contains a presentation part, this SHALL be referenced by the first item in the list of payloadPart elements.

Only the first-level parts of the payload are represented as payload parts; for example, a nested multipart/mixed part is represented as a single payload part, not a sequence of subparts.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

A server supporting Strict Synchronization MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	correlationId
	xsd:string
	Yes
	Unique correlation ID associated with the object, if any. This is unrelated to the {objectId}. See Section 5.2.5.

This element MAY be provided by the client in requests to the server. If it was supplied by the client when the object was created, it MUST be returned unchanged by the server in responses and notification requests to the client.

	correlationTag
	xsd:string
	Yes
	Correlation tag associated with the object, if any. See Section 5.2.5.

This element MAY be provided by the client in requests to the server. If it was supplied by the client when the object was created, it MUST be returned unchanged by the server in responses and notification requests to the client.

A root element named object of type Object is allowed in request and/or response bodies.
XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.

FFS: In some scenarios, the NMS will be able to calculate the uniqueId itself, rather than requiring the client to supply it. Consider allowing it to do so.
5.3.2.2 Type: ObjectList

List of objects

	Element
	Type
	Optional
	Description

	object
	Object[0..unbounded]
	Yes
	List of objects. Number of objects MAY be limited by the server.

	cursor
	xsd:string
	Yes
	If the list of objects is complete, this element is omitted.

If there are more available objects not included in the response list, this element is included. The cursor value encapsulates information on these objects. See section 5.0.9 for how to use the cursor value in a subsequent request.
This element SHALL NOT be included in requests by the client but MAY be included in responses by the server.

	creationCursor
	xsd:string
	Yes
	An opaque string that enables the client to request retrieval of objects that were created in the store but not yet known to the client. See section 5.0.4.2 for how to use the creationCursor value in a subsequent createdObjects search request.

This element MUST be returned in response to a createdObjects search.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests

A root element named objectList of type ObjectList is allowed in request and/or response bodies.

5.3.2.3 Type: NmsResourceReference
Reference to stored object

	Element
	Type
	Optional
	Description

	objectId
	xsd:string
	No
	The object identifier.

	resourceURL
	xsd:anyURI
	Yes
	The object resource URL.

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage.

A root element named nmsResourceReference of type NmsResourceReference is allowed in request and/or response bodies.

Editor’s Note: FFS whether ObjectReference is needed or should it be renamed
5.3.2.4 Type: ObjectReferenceList

List of object references

	Element
	Type
	Optional
	Description

	objectReference
	NmsResourceReference[0..unbounded]
	Yes
	A list of object references.

A root element named objectReferenceList of type ObjectReferenceList is allowed in response bodies.

5.3.2.5 Type: Flag

Individual flag

	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Flag name (case sensitive). See Appendix H.

A root element named flag of type Flag is allowed in request and/or response bodies.
5.3.2.6 Type: FlagList

List of flags

	Element
	Type
	Optional
	Description

	flag
	Flag[0..unbounded]
	Yes
	List of flags. Appendix H defines the strings for flag names.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.
 The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named flagList of type FlagList is allowed in request and/or response bodies.

5.3.2.7 Type: Attribute

Individual attribute

	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Attribute name.
Attribute names are case-insensitive: for example, the attribute names “Message-ID”, “Message-Id”, and “message-id” all refer to the same attribute.
This specification suggests several common attribute names used in RCS profiles, in Appendix I and Appendix J.

When a client chooses a name to use for an attribute, it should apply the following considerations:

· If the attribute is covered by one of the RCS items in Appendix I or Appendix J, the client should use the name from that appendix.

· If the attribute is derived from or is equivalent to a message header, including those defined in [RFC5322], [OMA-CPM_TS_MessageStorage], and [IANA_Message_Headers], the client should use the name of the message header.

Otherwise the client is free to choose any appropriate name.

	value
	xsd:string
	Yes
	Unless otherwise stated, attribute values are case-sensitive.
Attribute values MUST be unencoded Unicode strings; for example, any transfer encoding such as [RFC2047] must be removed.

For example, the [RFC5322]-format header “To: =?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= keld@dkuug.dk”
must be presented to NMS as: “<attribute><name>To</name><value>Keld Jørn Simonsen <keld@dkuug.dk></value></attribute>”.
The attributes search method (see section 5.2.3.1) can only search for attributes with designated values in the current (v1.0) NMS API release. Hence, attribute value needs to be present where this search method is expected.

FFS: MIME allows multiple instances of a header (e.g., “To”). How should this be represented? It could be either by multiple Attribute structures having the same Attribute.name, or by a single Attribute structure with a multiple value, i.e., xsd:string[0..unbounded].
FFS: Consider defining attribute names for key object types likely to be stored in NMS which do not have standard RFC5322 representations, e.g., SMS, IMDN, etc. These could go in relevant profiles but defining them in NMS where feasible may lead to better interoperability.
5.3.2.8 Type: AttributeList

List of attributes

	Element
	Type
	Optional
	Description

	attribute
	Attribute[0..unbounded]
	Yes
	List of attributes.

5.3.2.9 Type: ReferenceList
References to stored folders and/or objects
	Element

	Type
	Optional
	Description

	folders
	FolderReferenceList
	Yes
	The referenced folders.

	objects
	ObjectReferenceList
	Yes
	The referenced objects.

A root element named referenceList of type ReferenceList is allowed in response bodies.
5.3.2.10 Type: TargetSourceRef
References to a target folder and source object(s)/folder(s)
	Element
	Type
	Optional
	Description

	targetRef
	NmsResourceReference
	No
	Reference to the target folder.

	sourceRef
	ReferenceList
	No
	References to the source object(s)/folder(s).

A root element named targetSourceRef of type TargetSourceRef is allowed in request bodies.
5.3.2.11 Type: Folder

Individual folder

	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	parentFolder
	xsd:anyURI
	Choice
	Not applicable
	Resource URL of the parent folder that contains this folder.
In folder creation requests this element specifies the folder that will contain the new folder.

In folder creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST include this element in responses.

	parentFolderPath
	xsd:string
	Choice
	Not applicable
	The location in the hierarchical storage (if applicable) of the folder that contains this folder.

In folder creation requests this element specifies the folder that will contain the new folder. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.

In folder creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST NOT include this element in responses.

	attributeList
	AttributeList
	Yes
	Not applicable
	List of attributes associated with the folder.
An attribute named “Root” with the value “Yes” identifies the folder as a root folder. For multi-root deployment environment, there may be several folders containing the attribute root=”Yes”. In some deployment scenarios other well-known attribute values may be used and other restrictions may apply (e.g. mandating only single root folder).
The attribute name “Name” MUST not be included in POST requests.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	path
	xsd:string
	Yes
	Not applicable
	The location of the folder in the hierarchical storage.

This element SHALL NOT be included in POST requests by the client but MAY be included in responses by the server to the client to any HTTP method that returns a Folder entity body.
See section 5.0.2 for further information on how a folder’s path is constructed.

	name
	xsd:string
	Yes
	folderName
	The name of the new folder in folder creation operation. The name MUST NOT include the reserved character “/” (U+002F). The character “/” is used as hierarchy delimiter.
The assigned folder name SHALL also be reflected in the read-only folder attribute called “Name” (see Appendix J).
This element MAY be present in POST (folder creation operation) requests.

If name is not provided by the client, the server SHALL assign a unique folder name in the context of the parent folder.

If folder creation operation is successful, name SHALL be used as part of the path (see path element for further details).

For the root folder name, see section 5.0.5.

	lastModSeq
	xsd:unsignedLong
	Yes
	Not applicable
	Last mod-sequence value associated with the folder.

The server MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	subFolders
	FolderReferenceList
	Yes
	Not applicable
	List of sub-folders under this folder.

The client SHALL NOT include this element in POST or PUT requests.

	objects
	ObjectReferenceList
	Yes
	Not applicable
	List of objects under this folder.

The client SHALL NOT include this element in POST or PUT requests.

A root element named folder of type Folder is allowed in request and/or response bodies.

XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.

5.3.2.12 Type: FolderList

List of folders

	Element
	Type
	Optional
	Description

	folder
	Folder[0..unbounded]
	Yes
	List of folders. Number of folders MAY be limited by the server.

	cursor
	xsd:string
	Yes
	If the list of folders is complete, this element is omitted.
If there are more available folders not included in the list, this element is included. The cursor value encapsulates information on these folders. See section 5.0.9 for how to use the cursor in a subsequent request.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named folderList of type FolderList is allowed in response bodies.

5.3.2.13 Type: NmsResourceReference
Reference to stored folder

	Element
	Type
	Optional
	Description

	folderId
	xsd:string
	No
	The folder identifier.

	resourceURL
	xsd:anyURI
	Yes
	The folder resource URL.

	path
	xsd:string
	Yes
	The location of the folder in the hierarchical storage.

A root element named nmsResourceReference of type NmsResourceReference is allowed in response bodies.

5.3.2.14 Type: FolderReferenceList

List of folder references

	Element
	Type
	Optional
	Description

	folderReference
	NmsResourceReference[0..unbounded]
	Yes
	A list of folder references.

A root element named folderReferenceList of type FolderReferenceList is allowed in response bodies.

5.3.2.15 Type: SelectionCriteria
Selection criteria for a set of objects or folders
	Element
	Type
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with exactly the same SelectionCriteria except for the fromCursor element; see Section 5.0.9.

	maxEntries
	xsd:int
	No
	Specifies maximum number of entries to be returned in the response. The server MAY return fewer entries than this.

	searchCriteria
	SearchCriteria
	Yes
	The search criteria for the retrieval of elements.

Default is no search criterion, i.e. retrieval of all available elements.

	searchScope
	NmsResourceReference
	Yes
	Reference to folder at which point the search would start.
If searchScope is provided, the scope of the search is limited to the subtree starting at this folder.

If searchScope is not provided, the search is applied to the box identified by the {boxId}

	sortCriterion
	SortCriterion
	Yes
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

A root element named selectionCriteria of type SelectionCriteria is allowed in request bodies.
5.3.2.16 Type: SearchCriteria

Search criteria
	Element
	Type
	Optional
	Description

	criterion
	SearchCriterion[1..unbounded]
	No
	The search criteria. In the case of multiple search criteria, the result will include elements that comply with all criteria supplied.

	logicalOperator
	LogicalOperatorEnum
	Yes
	In case there is more than one SearchCriterion,the defined logical operation is applied between them.
If the logicalOperator has the value NOT and there is more than one SearchCriterion, then the resulting operation is equivalent to first applying AND to all criteria and then applying NOT:

NOT (criteria1 AND criteria2 AND …criteriaN)

If the logicalOperator is absent (not specified), then the AND operation is applied.

5.3.2.17 Type: SearchCriterion
Search criterion
	Element
	Type
	Optional
	Description

	field
	SearchField
	No
	The field name for the search criterion.

	value
	xsd:string
	No
	The value to be matched against by the search.criterion.

Format of the value string MUST follow the format as defined by the SearchFieldEnum (within the SearchField).

The search is for exact (and case sensitive) match, unless otherwise specified in the SearchFieldEnum description.

5.3.2.18 Type: SearchField
Search field
	Element
	Type
	Optional
	Description

	type
	SearchFieldEnum
	No
	The search field type.

	name
	xsd:string
	Yes
	The field name MUST be present for field types that require a name (e.g. for the Attribute field type this element contains the attribute name).

5.3.2.19 Type: SortCriterion
Sort criterion
	Element
	Type
	Optional
	Description

	field
	SortField
	No
	The field name for the sort criterion.

	retrievalOrder
	RetrievalOrderEnum
	Yes
	Specifies order in which elements should be retrieved. Default: Descending.

5.3.2.20 Type: SortField
Sort field
	Element
	Type
	Optional
	Description

	type
	SortFieldEnum
	No
	The sort field type.

	name
	xsd:string
	Yes
	The field name MUST be present for field types that require a name (e.g. for the Attribute field type this element contains the attribute name).

5.3.2.21 Type: NmsSubscriptionList

List of subscriptions to notifications about storage changes
	Element
	Type
	Optional
	Description

	subscription
	NmsNotificationSubscription[0..unbounded]
	Yes
	List of notification subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named nmsSubscriptionList of type NmsSubscriptionList is allowed in response bodies
5.3.2.22 Type: NmsNotificationSubscription

Individual subscription to notifications about storage changes
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's notification endpoint and OPTIONAL callbackData

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.

This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	filter
	SearchCriteria
	Yes
	A filter which may be used by the client to indicate which objects/folders it is interested in receiving notifications about (e.g. only SMS messages or SMS messages from a particular contact/userId).

By default (i.e. when this parameter is absent), the storage server reports all notifications.

FFS: need to investigate whether in all cases the entire SearchCriteria applies or there would be limitations for which the text above need to reflect such limitations.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	index
	xsd:unsignedLong
	Yes
	The index of the next notification to be issued.

The index SHALL NOT be included in requests by the client, but MUST be included in responses by the server.

	restartToken
	xsd:string
	Yes
	Subscription restart token indicating the point at which this subscription is to start (for requests) or currently starts (for responses). See Section 5.0.4.3.
The restartToken MAY be included in requests by the client, but MUST be included in responses by the server.

If this element is present, all matching changes subsequent to the point indicated by the restart token will be notified by the server in addition to any subsequent notifications.

If this element is absent, any changes from the time this subscription is created will be notified by the server.

A root element named nmsNotificationSubscription of type NmsNotificationSubscription is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the client’s generation of the value of this field.
When the server notifies a sequence of changes that have already occurred prior to the subscription, i.e., in response to a subscription with a restartToken, that sequence of changes notified MUST have the same net effect as the actual sequence of changes that occurred, even though it may be different from the actual sequence. For example, if within the relevant period
· an object’s \Seen flag starts out absent, is added and then removed again, the server may notify only that the object’s \Seen flag was removed;
· if an object is marked \Flagged and then the object is deleted, the server may notify only that the object was deleted;

· an object which already has the \Flagged flag is not changed at all, the server may notify that its \Flagged flag was added.

5.3.2.23 Type: NmsNotificationSubscriptionUpdate
Change to individual subscription to notifications about storage changes

	Element
	Type
	Optional
	Description

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.

This element MAY be given by the client in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	restartToken
	xsd: string
	Yes
	Subscription restart token indicating the point at which this subscription is to start. See Section 5.0.4.3.
If this element is present, all matching changes subsequent to the point indicated by the restart token will be notified by the server in addition to any subsequent notifications.

If this element is absent, any changes from the time this subscription is created will be notified by the server.

A root element named nmsNotificationSubscriptionUpdate of type NmsNotificationSubscriptionUpdate is allowed in request bodies.
A client can update its subscription with a new restartToken, in order to restart the notification stream from where it left off. In this scenario, it is assumed that at the time of client reconnection with the server, the previously-created subscriptionId has not timed out yet (i.e. subscription’s “duration” hasn’t expired) and the client intends to reuse it to continue receiving the new events in addition to what it potentially missed during the time which it was disconnected.
Updating a subscription does not affect the index value of subsequent notifications. The client can determine this index value by examining the index element of the updated NmsNotificationSubscription object returned by the POST.
5.3.2.24 Type: NmsEventNotificationList
List of notifications about storage changes
	Element
	Type

	Optional
	Description

	nmsEventNotification
	NmsEventNotification
[0..unbounded]
	Yes
	May contain an array of storage change notifications.

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about NMS events. See [REST_NetAPI_Common].

	index
	xsd:unsignedLong
	No
	Index of this notification list in the subscription. Starts at 1 for the first notification list and increments by 1 for each subsequent notification list.

	restartToken
	xsd:string
	No
	Subscription restart token representing the point after the change(s) being notified (see Section 5.0.4.3).

	link
	common:Link[1..unbounded]
	Yes
	Link to other resources that are in relationship with the resource.
The server SHOULD include a link to the related subscription.

A root element named nmsEventNotificationList of type NmsEventNotificationList is allowed in notification request bodies..

5.3.2.25 Type: DeletedObject
An object that has been deleted
	Element
	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resource URL of the deleted object.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the deleted object.

A server supporting Strict Synchronization MUST provide this element in responses to the client.

	correlationId
	xsd:string
	Yes
	Unique correlation ID associated with the object, if any. This is unrelated to the {objectId}. See Section 5.2.5.

	correlationTag
	xsd:string
	Yes
	Correlation tag associated with the object. This is unrelated to the {objectId}. See Section 5.2.5.

5.3.2.26 Type: DeletedFolder
A folder that has been deleted
	Element
	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resource URL of the deleted folder.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the deleted folder.

A server supporting Strict Synchronization MUST provide this element in responses to the client.

FFS: Consider whether this can be combined with DeletedObject into a single data structure.
5.3.2.27 Type: ChangedObject
An object that has been changed
	Element

	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	No
	Resource URL of the parent folder that contains the object.

	flagList
	FlagList
	No
	List of flags associated with the object.

	resourceURL
	xsd:anyURI
	No
	The resource URL of the changed object.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

A server supporting Strict Synchronization MUST provide this element in responses to the client.

	correlationId
	xsd:string
	Yes
	Unique correlation ID associated with the object, if any. This is unrelated to the {objectId}. See Section 5.2.5.

	correlationTag
	xsd:string
	Yes
	Correlation tag associated with the object. This is unrelated to the {objectId}. See Section 5.2.5.

5.3.2.28 Type: ChangedFolder

A folder that has been changed
	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	No
	Resource URL of the parent folder that contains this folder.

	resourceURL
	xsd:anyURI
	No
	The resource URL of the changed folder.

	name
	xsd:string
	No
	The name of the folder.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the folder.

A server supporting Strict Synchronization MUST provide this element in responses to the client.

FFS: R01 Adds an FFS to see if it makes sense to reuse the existing Object & Folder data structures instead of the newly introduced ChangedObject and ChangedFolder data structures
FFS: R02 Check with CR53 and see if ChangedObject/ChangeFolder data structures can be merged with DeletedObject/ DeletedFolder introduced in CR53R01
5.3.2.29 Type: NmsEventNotification
Notification about storage changes
	Element
	Type
	Optional
	Description

	deletedObject
	DeletedObject
	Choice
	Reference to the user-deleted object.

	deletedFolder
	DeletedFolder
	Choice
	Reference to the user-deleted folder.

	expiredObject
	DeletedObject
	Choice
	Reference to the expired object.

	expiredFolder
	DeletedFolder
	Choice
	Reference to the expired folder.

	changedObject
	ChangedObject
	Choice
	Reference to the new or changed object.

	changedFolder
	ChangedFolder
	Choice
	Reference to the new or changed folder.

XSD modelling uses a “choice” to select either deletedObject, deletedFolder, expiredObject, expiredFolder, changedObject or changedFolder.
The server reports the creation of an object with a changedObject notification. Similarly the server reports the creation of a folder with a changedFolder notification.

5.3.2.30 Type: PayloadPartInfo

Information about stored content (either whole payload or a body-part of a multipart payload)
	Element

	Type
	Optional
	Description

	contentType
	xsd:string
	No
	Indicates the MIME content type of the stored content.

For example: image/gif, video/3gpp

	contentId
	xsd:string
	Yes
	The Content-ID of this part as defined in [RFC2045], without the angle brackets. Used to identify this payload part, e.g. in cid: URLs [RFC2392].

For example, “foo4%25foo1@bar.net”.

	contentLocation
	xsd:anyURI
	Yes
	The Content-Location of this part, as defined in [RFC2557], unfolded and with any transfer encoding such as [RFC2047] removed. Used to specify a URI for this payload part.

For example, “fiction1/fiction2” or “http://example.com/logo.png”.

	size
	xsd:unsignedLong
	Yes
	Indicates the actual size of the stored content in bytes.

	link
	common:Link
	No
	Link to the stored content:

E.g.:
For content available via the NMS resource tree: <link rel=”payloadPart” href=”http://host/nms/v1/box/objects/123/payload”>

For externally referenced content: <link rel=”payloadPart” href=”http://cdn/d1/123/p456”>

Editor’s note: Consider using urn:oma:xml:rest:netapi:messaging:1:AttachmentInfo [REST_NetAPI_Messaging] instead, or extending common:Link with type [HTML] and length [RFC4287] attributes and using that directly.
5.3.2.31 Type: PathList
Paths (i.e. location) of a list of objects or folders
	Element

	Type
	Optional
	Description

	path
	xsd:string [1..unbounded]
	No
	The location of the object or folder in the hierarchical storage.

A root element named pathList of type PathList is allowed in request bodies
5.3.2.32 Type: ObjectCreationResponse

Status of the creation of a single object

	Element

	Type
	Optional
	Description

	createdObject
	NmsResourceReference
	Choice
	Reference to the created object.

This element MUST be present when the object creation was successful.

	failedObjectCreation
	common:RequestError
	Choice
	The error that occurred when attempting to create the object.

This element MUST be present when the object creation failed. It identifies the reason for the failure.

The failure may be due to creation of the object itself, or of the implicit creation of the parent folder.

XSD modelling uses a “choice” to select either createdObject or failedObjectCreation.

5.3.2.33 Type: ObjectCreationResponseList

List of object creation statuses, e.g., issued in response to a bulk creation operation

	Element

	Type
	Optional
	Description

	objectCreationResponse
	ObjectCreationResponse[1..unbounded]
	No
	List of object creation responses. See section 6.9.5.

	resourceURL
	xsd:anyURI
	No
	Self-referring URL.

A root element named objectCreationResponseList of type ObjectCreationResponseList is allowed in response bodies.
5.3.3 Enumerations

The subsections of this section define the enumerations used in the NMS API.
5.3.3.1 Enumeration: SearchFieldEnum
Type of search to perform
	Enumeration
	Description

	 Conversation
Editor’s note: consider a clarification note to avoid confusion with CPM conversation.
	 Searching for conversation with particular user, identified by user ID(s).
· SearchField.name element is not applicable.

· SearchCriterion.value element MUST contain one or more user IDs separated by comma. If multiple IDs are provided, they are all assumed to belong to the same (single) user, hence a logical OR is implied between them.
Empty value denotes “all conversations”

	Date
	Searching for object stored by date.

· SearchField.name element is not applicable.

· SearchCriterion.value element contains a query string of the following format:

minDate={minDate} - all object stored from a starting (internal date) {minDate} inclusive
minDate={minDate}&maxDate={maxDate} - all objects stored between minDate inclusive and maxDate exclusive.

maxDate={maxDate} - all objects stored up to maxDate exclusive.
Where the string format of {minDate} and {maxDate} is xsd:dateTimeStamp as defined in [XMLSchema2].

	Attribute
	Searching for objects or folders that contain a specified attribute that matches the given attribute value.

· SearchField.name element contains the attribute’s name.

A special reserved attribute name of “AllTextAttributes” denotes case-insensitive substring search across all searchable text attributes (e.g., subject, transcript, name, TextContent etc.). See section 6.7.5.3 or 6.12.5.3 for an example.

And a special reserved attribute name of “Root” denotes search for root folders amongst all folders resources.
· SearchCriterion.value element contains the attribute’s value for search.
Examples:

· to search for messaging objects from sender address bob@example.com use SearchField.name = “From”, SearchCriterion.value = “bob@example.com”

· to search for messaging objects to recipient address alice@example.com: SearchField.name = “To”, SearchCriterion.value = “alice@example.com” (this search excludes copied recipients, i.e. if alice@example.com is in the “CC” or “BCC”)

· to search for messaging objects from sender address bob@example.com to recipient address alice@example.com – combine the previous examples in a compound search, using SearchCriteria.logicalOperator = “Intersect”

	Flag
	Searching for objects that do or do not have the specified flag.

· SearchField.name element contains the flag name.

· SearchCriterion.value element contains the string representation of an xsd:boolean, where a true value matches all objects which have the designated flag set. A false value matches all objects which do not have the designated flag set.

The default value for SearchCriterion.value is true.

	WholeWord
	Denotes whole word search across all text attributes and textual payload parts (also known as full text search, as opposed to substring search).

· SearchField.name element is not applicable.

· SearchCriterion.value element contains the text to be searched for (as a whole word only).

	VanishedObjects
	Searching for objectIds of objects that were recently permanently deleted:

· SearchField.name element is not applicable.
· SearchCriterion.value element is set to “” (in any case this value is ignored by the search)

	CreatedObjects
	Searching for existing objects that were created in the store since a previous createdObjects search:

· SearchField.name element is not applicable.
· SearchCriterion.value element contains a string:

· An empty string denotes (“”) all existing objects in the store

· Otherwise the string is creationCursor value provided by the server in a previous response to a createdObjects search. See section 5.0.4.2.

5.3.3.2 Enumeration: LogicalOperatorEnum

Logical operator to apply to multiple search criteria
	Enumeration
	Description

	Intersect
	Logical AND.

	Union
	Logical OR.

	Not
	Logical NOT.

5.3.3.3 Enumeration: SortFieldEnum

Type of sort to perform
	Enumeration
	Description

	Date
	Sorting elements by (internal) date.

	Attribute
	Sorting elements by a specified attribute.

5.3.3.4 Enumeration: RetrievalOrderEnum

Order of sort to perform
	Enumeration
	Description

	Ascending
	Retrieve in ascending order.

	Descending
	Retrieve in descending order.

5.3.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (this list is non-exhaustive, and can be extended):
· payloadPart

· NmsNotificationSubscription

These values indicate the kind of resource that the link points to. The value “payloadPart” indicates that the Link refers to a payload part of the object.
5.3.5 Correlation (Informative)
5.3.5.1 Introduction
Some clients receive objects via another transport mechanism (e.g., CPM messaging [REST_NetAPI_Messaging]) as well as via the NMS. Such clients generally wish to correlate these objects with notifications received from the NMS, e.g., to avoid unnecessary downloads, to avoid duplications, and to ensure flag changes made by other NMS clients are correctly applied to local objects. Clients may perform this correlation by means of the correlationId or correlationTag elements contained in all relevant notifications.

Where an object has an ID which uniquely identifies the object and which is transported over the relevant mechanism, that unique ID is the best choice for correlation. This is stored in the object’s correlationId element in the NMS.

Not all objects have a unique ID which can be used for correlation; e.g., CPM messages do not necessarily contain a Message-ID header, and the Contribution-ID is not unique for chat messages within a session. Furthermore, some mechanisms (e.g., SMS) can transport object content but not additional headers and hence cannot transport a unique ID. For these reasons, a correlation tag can be provided as a secondary means of correlation.

In some circumstances both correlationId and correlationTag are required. For example, if the transport mechanism of an object is chosen after it is deposited in NMS and the means of correlation to be used depends on the transport mechanism, then the client should supply both the correlationId and the correlationTag when depositing the object so as to ensure that all necessary correlation information is available to the receiving client whichever transport mechanism is chosen.

To enhance interoperability, it is desirable that clients agree on what value is used for the correlationId and correlationTag. The sections below suggests a possible value that could be used for each. Profiles may impose stricter requirements.
5.3.5.2 Correlation ID

If an object contains a Message-ID attribute (as provided by, e.g., [RFC5322] MIME messages or [RFC5438] IMs), the client may supply the value of this attribute as the correlationId field.

Otherwise, if the object contains an attribute which is defined to be a globally-unique ID, the client may supply the value of this attribute as the correlationId field.

Otherwise, the client may omit the correlationId field.
5.3.5.3 Correlation tag
The correlation tag is weaker than a correlation ID: whereas a correlation ID uniquely identifies an object, a correlation tag identifies a particular object only probabilistically. Despite this, it is still useful in scenarios where no unique correlation ID is available.

The appropriate method for generating the correlation tag is beyond the scope of the NMS specification, since it depends upon the kind of objects being stored, the information available via the non-NMS mechanism, and other considerations (e.g. the computational ability available to the clients). For example, a suitable method might involve a hash function of certain attributes and/or body parts of the object.

Clients should be aware of the limitations of the correlation tags they use – for example, if two distinct objects are given the same correlation tag value, then any correlation matching must fall back on heuristics such as order of arrival to resolve the ambiguity. In this case the client cannot guarantee correct correlation, and so it must not depend on achieving this.
5.4 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.4.1 Subscription to NMS notifications
This figure below shows a scenario for an application subscribing/unsubscribing to NMS notifications.
The resources:

· To subscribe to NMS notifications, create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
· To cancel subscription to NMS notifications delete the resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions/{subscriptionId}
[image: image3.png]Application

| 1. POST NmsNotificationSubscription(callbackURL)

Sener

3. DELETE a subscription with subscriptionld

Create a new
subscription

4. Response,

Application

i

1| Delete the
1| subscription

Figure 2: Subscribing/unsubscribing to NMS notifications
Outline of the flows:
1. An application subscribes to NMS notifications using the POST method to submit the NmsNotificationSubscription data structure to the resource containing all subscriptions

2. The application receives the result resource URL containing the subscriptionId.
3. The application stops receiving notifications using DELETE with the resource URL containing the subscriptionId.
4. Deletion confirmation

5.4.2 Synchronization with NMS
5.4.2.1 Strict Synchronization

This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Synchronization with the NMS is yet another form of subscribing to NMS notifications with the inclusion of the “restartToken” parameter the client application is aware of (from the last notification it received prior to going off-line).

The resources:

· To subscribe to NMS notifications while needing to synchronize, include “restartToken” parameter in the request to create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
[image: image4.png]Application Server

| 1. POST NmsNotificationSubscription (restartToken, callbackURL)

>

Create a new subscription
and start natifying
previously missed events

Formulate list of missed
events starting from
restartTaken point

New changes
takes place in NMS

3. POST or NOTIFY NmsEventNatificationList

4. POST or NOTIFY NmsEventNatificationList

<
<

Application Server

Figure 3: Strict synchronization with NMS
Outline of the flows:
1. An application subscribes to NMS notifications using the POST method to submit the NmsNotificationSubscription data structure including “restartToken” element to the resource containing all subscriptions

2. The application receives the result resource URL containing the subscriptionId.
3. The server compares the client’s “restartToken” received in the subscription request with its own state information. Assuming that there are changes, the server formulates a list of events the client has missed (while being off-line) and sends that in a NmsEventNotificationList data structure to the client.

4. After some time new changes takes place in the NMS which results in the application receiving a new list of notifications. Note that the notifications list reported in step #3 and #4 may be filtered by the server if instructed by the client application (see section 5.3.3 for further information on notification filtering mechanism use case).

5.4.2.2 Simplified Synchronization

This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS, by leveraging the simplified selective synchronization. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Simplified synchronization with the NMS comprises of a set of search operations based on the last creationCursor value that the client application is aware of (from the last simplified synchronization performed prior to going off-line).

The client can initiate the simplified synchronization either asynchronously (i.e. in a ‘pull’ fashion, for example periodically, or triggered by some user operation) or after receiving some change notification.

The resources:

To search NMS needing to synchronize, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
[image: image5.png]Application Server

POST SelectionCriteria (searchCriterial 1] fild type = CreatedObjects,
field.name omitted, valus = creationCursor)

Prepare list of objects created since
the point indicated by creationCursor

<
POST SelectionCriteria (searchCrterial 1] fied type = VanishedObjects,

13" field.name omitted, value = ™)

Prepare list of objects recently purged 5

POST SelectionCriteria (searchCriterial1] fild type = Flag,
field name = \Seen, value = false)

5

Prepare list of objects with no /Seen flag 5

6. Response with lst of objects not having /Seen flag

Application Server

Figure 4: Simplified synchronization with NMS
The client SHALL follow the following steps:

1. Search for new objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = createdObjects, field.name omitted, value = creationCursor value known to the application (from a previous createdObjects search response) or an empty string if no such value is known to the application.

2. The server responds with all existing objects created since the point indicated by the creationCursor provided (in the value element of search criterion).

3. Search for purged objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = VanishedObjects, field.name ommitted, value = “” (empty string).
4. The server responds with all objects that have recently been permanently deleted.
5. Search for objects that do not carry the “\Seen” flag.
SelectionCriteria.searchCriteria.criterion[1]: field.type = Flag, field.name = \Seen, value = false.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

6. The server responds with all objects that have the flag unset, and therefore all the others have the flag set.

Optionally (not shown in the diagram), use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.
5.4.3 Subscription to filtered NMS Notifications
This figure below shows a scenario for an application wishing to subscribe to certain NMS notifications. That is the application is not requiring to receive notifications for all the NMS changes.

Filtering NMS notifications is declared at the time of subscription creation where the client application passes in the request, the filter parameter which informs the server of the type of events it is interested to receive.

The resources:

· To subscribe to filtered NMS notifications include “filter” parameter in the request to create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
[image: image6.png]Application Server

| 1. POST NmsNotificationSubscription (fiter, callbackURL)

Create a new
subscription
for fterd events

2. Response with subscriptionld in resourceURL

Apply fiter
before sending
notifications

3. POST or NOTIFY NmsEventNatificationList

Application Server

Figure 5: Subscribing to filtered NMS notifications
Outline of the flows:
1. An application subscribes to NMS notifications using the POST method to submit the NmsNotificationSubscription data structure including “filter” element to the resource containing all subscriptions

2. The application receives the result resource URL containing the subscriptionId.
3. After some time changes takes place in the NMS which results in the application receiving a list of notifications meeting the criteria set (by the application) in the filter element of NmsNotificationSubscription data structure when subscribing to the notifications (in step #1).

5.4.4 Operations on folders
This figure below shows a scenario for retrieving properties of a folder and listing its containing objects and subfolders, creating a folder, deleting a folder, renaming a folder, moving a folder, copying a folder, searching and retrieving information about a set of selected folders matching a given criteria and inquiring about a folder’s resource URL using its location/path.

The resources:

· To retrieve properties of a folder including list of containing objects and subfolders, read the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
· To create a folder, create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders
· To delete a folder including its containing objects and subfolders, delete the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
· To rename a folder, update the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}/[ResourceRelPath]
· To move folder(s) including its containing objects and subfolders to another folder, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/moveToFolder
· To copy folder(s) including its containing objects and subfolders to another folder, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/copyToFolder
· To search and retrieve information about a set of selected folders matching a given criteria, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/search
· To search the user’s network storage for the root folder(s), use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/search
To inquire about a folder’s resource URL using its location/path, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/pathToId
[image: image7.png]Application Server

1 1. GET folder data

Retrieve
folder data

<
3. POST create a new folder

i assign a unique Id

1| create folder

Delete
folder

set new
folder name

g E

9. POST move folder

move a folder & any
containing objects/folders
to a target folder

10. Response ReferenceList

{11, POST copy folder

copy a folder & any
containing objects/folders
to a target folder

12, Response ReferenceList

POST search for folders

113 (SelectionCriteria = Conversatianid)

a set of matching
folders selected

find folder
using path

Ul

16. Response FolderRefersnceList

Application Server

Figure 6: Operations on folders
Outline of the flows:
1. An application requests a folder’s data using the GET method on the resource

2. The server returns folder’s data in the response

3. An application requests to create a folder using the POST method on the resource

4. The server creates the folder, assigns it a unique folderId and confirms folder creation in the response

5. An application requests a folder to be deleted using the DELETE method on the resource

6. The server confirms folder deletion in the response. All the contained objects and subfolders are also deleted

7. An application requests a folder to be renamed using the PUT method on the lightweight resource representing the folder name parameter of a given folder

8. The server returns the folder’s new name in the response

9. An application requests a folder including all the containing objects and subfolders to be moved to a target folder using the POST method on the resource representing moveToFolder

10. The server returns a ReferenceList containing a reference to all the objects and folders moved as a result. As part of this operation the paths of the moved objects and folders have been changed which is reflected in the returned ReferenceList

11. An application requests a folder including all the containing objects and subfolders to be copied to a target folder using the POST method on the resource representing copyToFolder

12. The server returns (synchronously or asynchronously) a ReferenceList containing a reference to all the new objects and folders which have been created as a result. For further information see section 6.15.5.
13. An application searches to retrieve information about a set of folders meeting a given SelectionCriteria (e.g. all the folders having a certain Conversation-Id value) using the POST method.

14. The server returns a FolderList containing all the folders matching the requested criteria. Here, it is assumed that the list is smaller than the Maximum response size. Hence, the server could return the complete FolderList in one single response. Otherwise, the server had to paginate the response list and flag that to the application by the inclusion of a “cursor” in the FolderList. See section 5.3.6 for an example on the usage of the “cursor”.

15. An application inquires to retrieve folder references (i.e. Resource URL) for a set of folders using folders’ path as the key. The request uses a POST method on the resource representing pathToId

16. The server returns a FolderReferenceList in the response containing a reference to all the requested folders

5.4.5 Operations on objects
This figure below shows a scenario for retrieving properties of an object, retrieving just the flags associated with an object, retrieving the entire payload of an object at once or retrieving an individual payload part of an object, updating individual flags associated with an object, creating an object, deleting an object, moving an object, copying an object, searching a folder and the subtree beneath it for a set of objects (e.g. messages) matching a given criteria and inquiring about an object’s resource URL using its location/path.

The resources:

· To retrieve properties (location, associated attributes and flags, parent’s folder and link(s) to its payload) of an object, read the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}
· To retrieve the flags associated with an object, read the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags
· To retrieve the entire payload of an object at once or retrieve an individual payload part of an object, read a dynamically allocated resource which is provided by the server as a property of the given {objectId}. The resource URL of the payload is not known by the client application in advance and may be of any form (e.g. /example/CDNstorage/100/blob456) and outside of the scope of this document.
· To update an individual flag associated with an object, update the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags/{flagName}
· To create an object, create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects
· To delete an object, delete the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}
· To move object(s) to a folder, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/moveToFolder
· To copy object(s) to a folder, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/copyToFolder
· To search a folder including its containing objects and subfolders for a set of objects matching a given criteria, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
· To inquire about an object’s resource URL using its location/path, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/pathToId
[image: image8.png]Extemal Payload
Application Server Storage

| 1. GET abject’s data

object’s data

1| Retrieve

Retrieve
object's flags

| 5. GET retrieve the entire payload or individual payload part of an object

out of scope
authonize payload access

6. Response with Object's payload ! '

[Adanemove
1| an object's flag

|| Create object &
1| assign nique 1d

1| Detete
i objsct

to a target folder

1| move object(s)

to a target folder

[copy object(s)

7 POST ssarch for objects
(SelectionCiteria)

a set of matching
objects selected

find object
using path

5l

Application Server Extemal Payload

Storage

Figure 7: Operations on objects
Outline of the flows:
1. An application requests an object’s data using the GET method on the resource

2. The server returns object’s data in the response

3. An application requests flags associated with an object using the GET method on the resource

4. The server returns flags list in the response

5. An application requests to retrieve the entire payload of an object at once or retrieve an individual payload part of an object using the GET method on the payload link provided as part of Object's data in step #1

6. The external payload storage server (after authorizing access which is out of scope of this document) returns the payload in the response

7. An application requests adding or removing an individual flag to an object using the PUT method on the resource representing the flag name

8. The server confirms with either the flag name for adding or HTTP 204 (No Content) response for deleting the flag name
9. An application requests to create an object using the POST method on the resource

10. The server creates the object, assigns it a unique objectId and confirms object creation in the response

11. An application requests a object to be deleted using the DELETE method on the resource

12. The server confirms object deletion in the response

13. An application requests an object(s) to be moved to a target folder using the POST method on the resource representing moveToFolder

14. The server returns a ReferenceList containing a reference to all the objects moved. As part of this operation the paths of the moved objects have been changed which is reflected in the returned ReferenceList

15. An application requests object(s) to be copied to a target folder using the POST method on the resource representing copyToFolder

16. The server returns a ReferenceList containing a reference to all the new objects which were created as a result.

17. An application searches to retrieve information about a set of objects meeting a given SelectionCriteria (e.g. all the objects having Message-Context = “pager-message”) using the POST method.

18. The server returns a ObjectList containing all the objects matching the requested criteria. Here, it is assumed that the list is smaller than the Maximum response size. Hence, the server could return the complete ObjectList in one single response. Otherwise, the server had to paginate the response list and flag that to the application by the inclusion of a “cursor” in the ObjectList. See section 5.3.6 for an example on the usage of the “cursor”.

19. An application inquires to retrieve object references (i.e. Resource URL) for a set of objects using objects’ path as the key. The request uses a POST method on the resource representing pathToId

20. The server returns a ObjectReferenceList in the response containing a reference to all the requested objects

5.4.6 Retrieving a large list of objects
This figure below shows a scenario for retrieving a large list of objects which would require multiple queries in order to retrieve the entire response. Responses containing a large list of objects which exceeds maximum allowable response size would normally result from a search over the entire message store. The retrieval of such a large list is managed by the usage of a “cursor” which is provided by the server in the first batch of the list (i.e. the first response). The client application would then need to use the provided “cursor” in the subsequent retrieval request in order to signal to the server that it is interested to receive the remaining portion of the list. This rendezvous mechanism using the “cursor” (i.e. cursor” element of ObjectList) continues until the server signals the end of the list by omitting the “cursor” from the final response.

The resources:

· To search and retrieve all the messages meeting a given criteria include an appropriate “SelectionCriteria” parameter in the request using the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
Note: The same cursor mechanism is employed for the retrieval of a large list of folders which exceeds the maximum allowable response size. Except that, the resource used is the following instead (this is not depicted in the figure below) http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/ operations/search
[image: image9.png]Application

1 1. POST SelectionCrieria

1

retrieve cursor |
fromCursor=cursor | |

3. POST SelectionCiteria fromCursor)

retrieva cursor !
fromCursor=cursor |

5. POST SelectionCiteria (fromCursor)

6. Response Objectlist

Application

Find a list of
matching objects
& prepare st list

prepare 2nd list
8 a new cursor

l

prepare the
Tast list
cursoris ommitted

Semer

Figure 8: Retrieving a large list of objects
Outline of the flows:
1. An application searches the user’s message store using the POST method with the SelectionCriteria data structure appropriately set (e.g. all messages between 2013-01-01 to 2013-11-10) .
2. The server, finds all the objects (e.g. messages) meeting the selection criteria and since the number of selected objects is larger than the maximum entries allowed to be returned in the response, it paginates the list by responding with the 1st partial list and inclusion of a “cursor”.
3. The application finds the cursor in the response and sets fromCursor=cursor in the subsequent repeated request (i.e. POST SelectionCriteria data where the selection criteria is the same as in the 1st request (i.e. step #1)).
4. The server, again since the remaining number of objects is larger than the maximum entries allowed to be returned in the response, responding with the 2nd partial list and inclusion of a new “cursor”.
5. The application finds the new cursor in the response and sets fromCursor=cursor in the subsequent repeated request (i.e. POST SelectionCriteriadata where the selection criteria is the same as in the 1st request (i.e. step #1)).
6. The server, since the remaining number of objects is less than the maximum entries allowed to be returned in the response, it responding with the last remaining list and omission of a “cursor”. The absence of the “cursor” in the last response signals the application that the list is now completed.
5.4.7 Discovering the user’s storage hierarchical structure
This figure below shows a scenario for discovering the “root’ folder (assuming a single root in the depicted figure) and subsequently the traversal of the storage hierarchical structure. To discover the root folder, a search operation for a folder containing an attribute named “Root” with the attribute value of “Yes” is used (For further information see section 5.0.5). Once the {folderId} of the root folder is known to the client application, it can be used to retrieve the properties of the root folder and a list of references to its containing objects and subfolders. In turn, the listed subfolders resource URLs can be used to traverse the entire tree, one step at a time leading to the discovery of the hierarchical structure of the user’s message store.

The resources:

· To search the user’s network storage for the root folder, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/search
· To retrieve the properties of the root folder including the list of containing objects and subfolders, read the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
Note: To retrieve properties of a folder (child of the root folder) including the list of containing objects and subfolders, read the following resource recursively until the entire tree is exhausted http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
[image: image10.png]foot folder's data and

Application

resource URL of ts containing
objects & subfolders are known

11} POST search forfolders
| " (SslectionCriteria: Attribute root

<

Yes)

)

1

Sener

Root folders are found
(assuming 1 oot folder)

step through roots objects and subfodrs one at a tims ™)

ook up subfolder’s
resource URL
from the response

13, GET object data

B

Y N

GET folder data
peoEl loderdae
<

7. GET subfolder's data

e

>

8. Response with Folder data

1| Retieve object data 5

Retrieve folder data
including list o references
to its objects & subfolders

Retrieve folder data
including list of references
to its objects & subfolders

Recursivly go thiough the entie res and discover user's message storage hisrarchy ™)

Application

Semer

Figure 9: Discovering the user’s storage hierarchical structure
Outline of the flows:
1. An application searches to retrieve information about a set of folders meeting the given SelectionCriteria of attribute named “root” having the value of “Yes” using the POST method.

2. Assuming there is one root folder, the server returns a FolderList containing one Folder data structure (matching the requested criteria of attribute Root =Yes). The Folder data structure returned contains information about the root folder as well a list of references to its containing objects and subfolders. This list of references can be used by the application to step through the entire user’s message store hierarchy and hence discover its tree structure and content

3. The application requests to retrieve information about the object contained in the root folder using the GET method. Note: This step and step #4 are repeated for as many stand alone objects exist in the root folder

4. The server returns Object’s data in the response

5. The application requests to retrieve information about one of the subfolders contained in the root folder using the GET method. Note: This step and step #5 are repeated for as many subfolders exist in the root folder

6. The server returns Folder data in the response

7. The application requests to retrieve information about one of the subfolders contained in the subfolder of the root folder using the GET method. Note: This step and step #8 are repeated for as many subfolders exist in that level of the tree

8. The server returns Folder data in the response

Note: the above steps recursively repeats until the entire user’s message store is discovered.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Resource containing all objects
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects
This resource is used for creating a new object (message, file, etc.).
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.1.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616RFC2616].

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616RFC2616].
6.1.5 POST
This operation is used for creating a new object.

The request contains both the Object data structure and the payload.

Objects MAY be represented as multipart/form-data entity bodies, where the first entry of the form are the root fields and the second entry of the form are the payload parts. Details about the structure of such objects are defined in [REST_NetAPI_Common] and [REST_WP]. The type of the form entry carrying the root fields part of such an object MUST be Object in this API. In case the object has a presentation part, this part SHALL be the first MIME message body part after the root part, i.e. the first part of the multipart/mixed body.

Note: An object returned by the server in response to a client request, or sent by the server to a client in a notification, can alternatively be represented as a list of link elements to the individual payload parts.

6.1.5.1 Example 1: Object creation by parentFolder, response with a location of created resource
(Informative)
The following example shows a request for creation of an Object of MIME type multipart/mixed, to be stored under folder id “fld123”, with assigned flags “\Seen” and “\Flagged”.
6.1.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: multipart/form-data; boundary="===============outer123456==";

Content-Length: nnnn

MIME-Version: 1.0

--===============outer123456==

Content-Type: application/xml

Content-Disposition: form-data; name=”root-fields”

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld123</parentFolder>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>
</nms:object>

--===============outer123456==

Content-Type: mixed; boundary=”--=-sep-=--”

Content-Disposition: multipart/form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==--

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 02:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsResourceReference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <objectId>obj123</objectId>
 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123</resourceURL>
 <path>/main/conversation5/obj123</path>

</nms:nmsResourceReference>

6.1.5.2 Example 2: Object creation by parentFolderPath, response creation failure due to a non-existent parent folder
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: multipart/form-data; boundary="===============outer123456==";

Content-Length: nnnn

MIME-Version: 1.0

--===============outer123456==

Content-Type: application/xml

Content-Disposition: form-data; name=”root-fields”

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/main/myBackups/Football/SavedPictures</parentFolderPath>
 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>
</nms:object>

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==--

6.1.5.2.2 Response

	HTTP/1.1 400 Bad request
Date: Tue, 20 Nov 2014 20:51:51 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>/main/myBackups/Football/SavedPictures</variables>

 </serviceException>

</common:requestError>

6.1.5.3 Example 3: Object creation by parentFolderPath, response creation failure due to prohibited location (i.e. requested parent folder)
(Informative)
The following example shows a request for creation of an object under a prohibited system folder called /Default which is allowed to be used by CPM participating function only. Other client’s attempt to create an object (or folder) under /Default folder is rejected as shown below.

6.1.5.3.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: multipart/form-data; boundary="===============outer123456==";

Content-Length: nnnn

MIME-Version: 1.0

--===============outer123456==

Content-Type: application/xml

Content-Disposition: form-data; name=”root-fields”

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/Default</parentFolderPath>
 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>
</nms:object>

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==--

6.1.5.3.2 Response

	HTTP/1.1 403 Forbidden
Date: Tue, 20 Nov 2014 20:51:51 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POL1031</messageId>

 <text>Attempt to create objects or folders under %1 is prohibited</text>
 <variables>/Default</variables>
 </policyException>

</common:requestError>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616RFC2616].
6.2 Resource: A stored object
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}
This resource is used for managing a stored object such as retrieving information about the object or deleting the object
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.2.3 GET

This operation is used for retrieval of an object’s properties such as its location, its list of attributes and flags.
6.2.3.1 Retrieve information about an object
(Informative)
6.2.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999 HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Oct 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>multimedia-message</value>

 </attribute>

 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>
 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-11-12T08:30:10Z</value>
 </attribute>
 <attribute>

 <name>Subject</name>

 <value>Weekend Trip to Seattle</value>
 </attribute>
 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Answered</name>

 </flag>

 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999</resourceURL>

 <path>/main/conversation5/message123</path>

 <payloadPart>

 <contentType>image/gif</contentType>

 <size>1024</size>

 <link href="/example/storage/100/blob456 " rel="payloadPart"></link>

 </payloadPart>
 <lastModSeq>48</lastModSeq>
</nms:object>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616RFC2616].

6.2.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616RFC2616].

6.2.6 DELETE

This operation is used to delete an object including its payload.

6.2.6.1 Example 1: Delete an object, response with “204 No Content”
(Informative)
6.2.6.1.1 Request
	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 05:55:59 GMT

6.2.6.2 Example 2: Delete an object, response with “200 OK”
(Informative)
In the following example the response contains the deleted object.
6.2.6.2.1 Request

	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId998 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.2.6.2.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Oct 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>multimedia-message</value>

 </attribute>

 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>
 <attribute>

 <name>From</name>

 <value>tel:+19585550102</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-11-12T08:30:10Z</value>
 </attribute>
 <attribute>

 <name>Subject</name>

 <value>Meeting in Rome</value>
 </attribute>
 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Answered</name>

 </flag>

 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId998</resourceURL>

 <path>/main/RomeMeeting/message322</path>

 <payload>

 <contentType>image/gif</contentType>

 <size>1024</size>

 <link href="/example/storage/100/blob656 " rel="payloadPart"></link>

 </payload>
 <lastModSeq>37</lastModSeq>
</nms:object>

6.3 Resource: Flags associated with the stored object
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags
This resource is used to manage flags list associated with an object.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.3.3 GET

Retrieve the flags(string labels) associated with the object.

6.3.3.1 Retrieve flags associated with an object
(Informative)
6.3.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags HTTP/1.1
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Host: example.com

6.3.3.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 05 Oct 2013 03:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:flagList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags</resourceURL>
</nms:flagList>

6.3.4 PUT

Create or update the flags (string labels) associated with the object.

6.3.4.1 Add a flag to flaglist of an object
(Informative)
Add “\Answered” flag to the flaglist of an object which already contains other flags (as shown in previous example containing: \Seen and \Flagged).

6.3.4.1.1 Request
	PUT /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags HTTP/1.1
Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:flagList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 <flag>

 <name>\Answered</name>

 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags</resourceURL>
</nms:flagList>

6.3.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 05 Oct 2013 03:58:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:flagList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 <flag>

 <name>\Answered</name>

 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags</resourceURL>

</nms:flagList>

6.3.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616RFC2616].

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].

6.4 Resource: Individual flag associated with the stored object
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags/{flagName}
This resource is used to manage an individual flag associated with a given object. .

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name

	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier

	flagName
	Flag name (case sensitive). See Appendix H.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.4.3 GET

Retrieve/check existence of an individual flag (string label).
6.4.3.1 Example 1: Read an existing individual flag
(Informative)
The following example shows a request checking to find out if a given object (e.g. a message) has already been flagged as read (\Seen) or not. This is done by checking the existence of the “\Seen” flag. In this example, the flag exists, which results in the response containing the flag.

6.4.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags/%5CSeen HTTP/1.1
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Host: example.com

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 05 Oct 2013 03:55:00 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:flag xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <name>\Seen</name>

</nms:flag>

6.4.3.2 Example 2: Read a non-existing individual flag- using acr:auth
(Informative)
The following example shows a request checking for the existence of the “\Answered” flag associated with an object. In this example, the flag does not exist and the user (i.e. boxId) is identified by the access token present in the Authorization header (hence {boxId} in request URL is “acr:auth”).

6.4.3.2.1 Request
	GET /exampleAPI/nms/v1/myStore/acr%3Aauth/objects/oId999/flags/%5CAnswered HTTP/1.1
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Host: example.com

6.4.3.2.2 Response

	HTTP/1.1 404 Not Found
Date: Thu, 05 Oct 2013 03:55:00 GMT

6.4.4 PUT

Add individual flag (string label).
6.4.4.1 Add “\Answered” flag to flaglist of an object
(Informative)
6.4.4.1.1 Request
	PUT /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags/%5CAnswered HTTP/1.1
Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:flag xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <name>\Answered</name>

</nms:flag>

6.4.4.1.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags/%5CAnswered
Date: Thu, 05 Oct 2013 03:58:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:flag xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <name>\Answered</name>

</nms:flag>

6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.4.6 DELETE

Remove individual flag (string label)
	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999/flags/%5CSeen HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.4.6.1.1 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 05:55:59 GMT

6.5 Resource: Stored content of an object payload
The resource used is a URL chosen by the server and reported in a PayloadPartInfo data structure. If the content is available via the NMS resource tree this is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/payload
For externally referenced content, the resource can be any URL.

This resource is used for retrieving the entire payload of an object at once.
6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.5.3 GET

This operation is used to read the object payload from the storage server.
6.5.3.1 Example: Read payload of the stored object via an external reference
 (Informative)

6.5.3.1.1 Request
	GET /exampleAPI/storage/100/blob456 HTTP/1.1
Accept: image/gif, image/png, image/jpeg, text/html, application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

6.5.3.1.2 Response
	HTTP/1.1 200 OK
Date: Tue, 20 Aug 2013 03:52:01 GMT

Content-Length: nnnn
Content-Type: multipart/mixed; boundary=”--=-sep-=--”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

Are you coming to the football today? See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].
6.5.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].
6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].
6.6 Resource: Payload part of the stored object
The resource used is a URL chosen by the server and reported in a PayloadPartInfo data structure. If the content is available via the NMS resource tree this is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/payloadParts/{payloadPartId}
For externally referenced content, the resource can be any URL.
This resource is used for retrieving an individual payload part of an object.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier

	payloadPartId
	Unique payload part identifier generated by the storage server.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage , see section 7.
6.6.3 GET

This operation is used to read one payload part from the storage server.
6.6.3.1 Example: Read an object payload part via the NMS resource tree
 (Informative)

6.6.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123/payloadParts/part123 HTTP/1.1
Accept: image/gif, image/png, image/jpeg, text/html, application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

6.6.3.1.2 Response
	HTTP/1.1 200 OK
Date: Tue, 20 Aug 2013 03:51:59 GMT

Content-Length: nnnn
Content-Type: image/gif

...GIF89a...binary image data

6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.7 Resource: Information about a selected set of objects in the storage
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
This resource is used for retrieving information about a set of selected objects.
6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.7.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.7.5 POST
This operation is used for retrieving information about a set of selected objects.
6.7.5.1 Example 1: Search for objects with certain criteria
(Informative)
In this example the search results in a list of five objects. However, since the client asked for a maximum entries of 3 in the response, the server paginates the response accordingly and signals this fact with the inclusion of a cursor in the first list (i.e. objectList). Example 2 is a continuation of Example 1. The cursor encapsulates server state information which might be volatile-see section 5.0.9 for further information.

6.7.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <maxEntries>3</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>Message-Context</name>

 </field>

 <value>pager-message</value>

 </criterion>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>Direction</name>

 </field>

 <value>In</value>

 </criterion>

 <criterion>

 <field>

 <type>Attribute</type>
 <name>From</name>
 </field>

 <value>tel:+19585550100</value>

 </criterion>

 <criterion>

 <field>

 <type>Date</type>

 </field>

 <value>minDate=2013-11-11T09:30:10Z</value>

 </criterion>

 <logicalOperator>Intersect</logicalOperator>

 </searchCriteria>

 <sortCriterion>

 <field>

 <type>Date</type>

 </field>

 <retrievalOrder>Ascending</retrievalOrder>

 </sortCriterion>

</nms:selectionCriteria>

6.7.5.1.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId123</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>pager-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-11-12T08:30:10Z</value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>
 </flag>

 <flag>

 <name>\Answered</name>
 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId998/flags</resourceURL>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId998</resourceURL>

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId998</path>

 <payloadPart>

 <contentType>text/plain</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId998/payload " rel="payloadPart"/>

 </payloadPart>

 <lastModSeq>100</lastModSeq>

 </object>
 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId123</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>pager-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-11-12T09:12:00Z</value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>
 </flag>

 <flag>

 <name>\Answered</name>
 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId990/flags</resourceURL>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId990</resourceURL>

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId990</path>

 <payloadPart>

 <contentType>text/plain</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId990/payload" rel="payloadPart"/>

 </payloadPart>

 <lastModSeq>101</lastModSeq>

 </object>
 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId123</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>pager-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-12-12T12:30:50Z</value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>
 </flag>

 <flag>

 <name>\Answered</name>
 </flag>
 <flag>

 <name>\Flagged</name>
 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1000/flags</resourceURL>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1000</resourceURL>

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId1000</path>

 <payloadPart>

 <contentType>text/plain</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1000/payload" rel="payloadPart"/>

 </payloadPart>

 <lastModSeq>125</lastModSeq>

 </object>
 <cursor>cursor111</cursor>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:objectList>

6.7.5.2 Example 2: Retrieve the remaining search response list
(Informative)

This example continues on the search which was started in Example 1. Note the usage of cursor element provided in the previous Example 1 and the usage of it as fromCursor in Example 2. Also note that, since the list is complete, the response in this example does not provide the cursor element in the response.
6.7.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <fromCursor>cursor111</ fromCursor >
 <maxEntries>3</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>Message-Context</name>

 </field>

 <value>pager-message</value>

 </criterion>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>Direction</name>

 </field>

 <value>In</value>

 </criterion>

 <criterion>

 <field>

 <type>Attribute</type>
 <name>From</name>
 </field>

 <value>tel:+19585550100</value>

 </criterion>

 <criterion>

 <field>

 <type>Date</type>

 </field>

 <value>minDate=2013-11-11T09:30:10Z</value>

 </criterion>

 <logicalOperator>Intersect</logicalOperator>

 </searchCriteria>

 <sortCriterion>

 <field>

 <type>Date</type>

 </field>

 <retrievalOrder>Ascending</retrievalOrder>

 </sortCriterion>

</nms:selectionCriteria>

6.7.5.2.2 Response
	HTTP/1.1 200 Ok

Date: Fri, 14 Mar 2014 04:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId223</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>pager-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-11-14T06:20:10Z </value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>
 </flag>

 <flag>

 <name>\Answered</name>
 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1005/flags</resourceURL>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1005</resourceURL>

 <path>/main/StaffMeeting/oId1005</path>

 <payloadPart>

 <contentType>text/plain</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/ oId1005/payload" rel="payloadPart"/>

 </payloadPart>

 <lastModSeq>180</lastModSeq>

 </object>
 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId223</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>pager-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19585550100</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-12-14T08:30:50Z</value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Recent</name>
 </flag>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1010/flags</resourceURL>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1010</resourceURL>

 <path>/main/StaffMeeting/oId1010</path>

 <payloadPart>

 <contentType>text/plain</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1010/payload " rel="payload "/>

 </payloadPart>

 <lastModSeq>195</lastModSeq>

 </object>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:objectList>

6.7.5.3 Example 3: Search for a substring in all searchable text attributes and bodies
(Informative)
In this example a search is made for a matching substring “Football” in all existing user’s messages in the storage. The search uses the special reserved attribute name “AllTextAttributes” to denote a search across all searchable text attributes (e.g., subject, transcript, etc.). See section 5.2.3.1 for further information.

6.7.5.3.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <maxEntries>3</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>AllTextAttributes</name>

 </field>

 <value>Football</value>
 </criterion>

 </searchCriteria>

</nms:selectionCriteria>

6.7.5.3.2 Response

	HTTP/1.1 200 OK
Date: Thu, 07 Jun 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <object>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId8686</parentFolder>

 <attributeList>

 <attribute>

 <name>Message-Context</name>

 <value>text-message</value>
 </attribute>

 <attribute>

 <name>From</name>

 <value>tel:+19587236564</value>
 </attribute>
 <attribute>

 <name>Subject</name>

 <value>R U coming to football game today</value>
 </attribute>

 <attribute>

 <name>Date</name>

 <value>2013-12-02T08:30:10Z</value>
 </attribute>
 <attribute>

 <name>Direction</name>

 <value>In</value>

 </attribute>

 </attributeList>

 <flagList>

 <flag>

 <name>\Seen</name>
 </flag>

 <flag>

 <name>\Answered</name>
 </flag>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId123</resourceURL>

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId123</path>

 <payloadPart>

 <contentType>multipart/mixed</contentType>

 <link href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId123/payload" rel="payloadPart"/>

 </payloadPart>

 <lastModSeq>7688</lastModSeq>

 </object>
 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:objectList>

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.8 Resource: Resource URLs of a selected set of objects in the storage
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/pathToId
This resource is used for retrieving the resource URL for an object based on its pathname or a list of objects, based on their pathnames.
6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.8.3 GET

This operation is used for retrieving the resource URL for an object based on its pathname.

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	path
	xsd:string
	No
	The location of the object in the hierarchical storage.

If path is absent, Service Exception SVC1009 SHALL be returned. For further information see section 7.

6.8.3.1 Example 1: Retrieve object’s resource URL based on its path
(Informative)
6.8.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/pathToId?path=%2Fmain%2Fconversation5/obj12345 HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.8.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 24 Jul 2013 12:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsResourceReference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <objectId>obj12345</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj12345</resourceURL>

 <path>/main/conversation5/obj12345</path>

</nms:nmsResourceReference>

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.8.5 POST

This operation is used for retrieving the resource URLs for a list of objects based on their pathnames.

6.8.5.1 Example 1: Retrieve list of objects’ resource URLs based on their paths
(Informative)
6.8.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/pathToId HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:pathList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId111</path>

 <path>/main/conversation5/oId221</path>

 <path>/main/conversation5/oId222</path>

</nms:pathList>

6.8.5.1.2 Response

	HTTP/1.1 200 OK
Date: Tue, 20 Nov 2013 12:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectReferenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <objectReference>

 <objectId>oId111</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId111</resourceURL>

 <path>>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6/oId111</path>

 </objectReference>

 <objectReference>

 <objectId>oId221</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId221</resourceURL>

 <path>/main/conversation5/oId221</path>

 </objectReference>

 <objectReference>

 <objectId>oId222</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId222</resourceURL>

 <path>/main/conversation5/oId222</path>

 </objectReference>

</nms:objectReferenceList>

6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.9 Resource: Bulk creation of objects
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/bulkCreation
This resource is used for creating multiple objects using a single request.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
If the creation of all the objects failed the HTTP response code SHALL be 4xx or 5xx.

Otherwise the HTTP response code SHALL be 2xx, even if the creation of some (but not all) objects failed.

For HTTP response codes, see [REST_NetAPI_Common].

The response body includes a list of success or failure status for each object in the request list respectively.

The maximum size of bulk creation request MAY be limited subject to server’s pre-defined policy, e.g. by number of objects, object size, total request size. For this reason the client SHOULD NOT make unreasonably large bulk creation requests.

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.9.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.9.5 POST
This operation is used for creating multiple objects in a single request.

The request contains both the ObjectList data structure and the payloads of each uploaded object.

The request body is a multipart/form-data entity, where the first entry of the form is the ObjectList and the subsequent entries of the form are the payloads of the objects. This format is an extension of that defined in [REST_NetAPI_Common] and [REST_WP], and follows [RFC2388].

· The root fields are as described in [REST_NetAPI_Common]. The type of this form entry MUST be ObjectList.

· For each object, in the same order as they appear in the ObjectList, the multimedia contents are represented as described in [REST_NetAPI_Common]. The resulting form-data parts each have the same name (“attachments”). The concerns of [RFC2388] section 5.5 do not apply: NMS servers, clients, and intermediaries MUST NOT reorder these fields.

In case the object has a presentation part, this part SHALL be the first MIME message body part of the corresponding multipart/mixed form-data part.

Where an object contains no content item (i.e., no payload), this is represented by including a MIME body with:

Content-Disposition: form-data; name="attachments"

Content-Length: 0

and no Content-Type.

The response body contains an ObjectCreationResponseList, and the order of the elements in the list corresponds to the order of the Object elements in the request (within ObjectList).
6.9.5.1 Example 1: Bulk creation
(Informative)
In this example three objects are created using a single POST request. Response to the request is a 200 OK while the actual result of the success or failure for each object in the request are reported in the response body. In this example it is assumed that folder “Pictures” did not exist prior to the request, but is implicitly created upon creation of the first child object.

6.9.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/bulkCreation HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Host: example.com

Content-Type: multipart/form-data; boundary="===============outer123456==";

Content-Length: nnnn

MIME-Version: 1.0

--===============outer123456==

Content-Type: application/xml

Content-Disposition: form-data; name=”root-fields”

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <nms:object>

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld123</parentFolder>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>

 </nms:object>

 <nms:object>

 <parentFolderPath>/Pictures</parentFolderPath>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 </flagList>

 </nms:object>

 <nms:object>

 <parentFolderPath>/Pictures</parentFolderPath>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>

 </nms:object>

</nms:objectList>

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

Photo from trip to Vancouver

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

Photo from Sorrento Meeting

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==--

6.9.5.1.2 Response

FFS: adjust the response to correspond to the normative requirements
	HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 12:09:09 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:objectCreationResponseList xmlns:nms="urn:oma:xml:rest:netapi:1">

 <objectCreationResponse>

 <createdObject>

 <objectId>obj412</objectId>

 <path></path>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj412</resourceURL>

 <lastModSeq>1</lastModSeq>

 </createdObject>

 <failedObjectCreation>

 <policyException>

 <messageId>POL0001</messageId>

 <text>A policy error occurred. Error code is %1</text>

 <variables>E42</variables>

 </policyException>

 </failedObjectCreation>

 <createdObject>

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456</parentFolder>

 <flagList>

 <flag>

 <name>\Seen</name>

 </flag>

 <flag>

 <name>\Flagged</name>

 </flag>

 </flagList>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj413</resourceURL>

 <lastModSeq>1</lastModSeq>

 </createdObject>

 </objectCreationResponse>

</nms:objectCreationResponseList>

6.10 Resource: Resource containing all folders
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders
This resource is used for creating a new folder.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.10.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].

6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.10.5 POST
This operation is used for creating a new folder.

6.10.5.1 Example 1: Folder creation by parentFolder path, response with a location of created resource
(Informative)
The following example shows a request for creating a new folder called BoardMeeting to be created under the folder with path “/main”.This example assumes that a folder with path “/main” already exists.
6.10.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/main</parentFolderPath>
 <name>BoardMeeting</name>
</nms:folder>

6.10.5.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 02:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsResourceReference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <folderId>fId456</folderId>
 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456</resourceURL>
</nms:nmsResourceReference>

6.10.5.2 Example 2: Folder creation by parentFolder path, response with a copy of created resource
(Informative)
The following example shows a request for creating a new folder called NMSdiscussion to be created under the folder with path “/main”.
This example assumes that a folder with path “/main” already exists.
6.10.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/main</parentFolderPath>

 <name>NMSdiscussion</name>

</nms:folder>

6.10.5.2.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 02:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld559
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld554</parentFolder>

 <attributeList>

 <attribute>

 <name>Date</name>

 <value>2013-11-18T08:30:50Z</value>

 </attribute>
 </attributeList>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld559</resourceURL>

 <path>/main/NMSdiscussion</path>

 <name>NMSdiscussion</name>

 <lastModSeq>555</lastModSeq>

</nms:folder>

6.10.5.3 Example 3: Folder creation by parentFolder path, response creation failure due to an invalid folder path
(Informative)
The following example shows a request for creating a new folder called “WorldCup2014” under the folder with path “/main/ myBackups/Football”. This example assumes that the parent folder “/main/ myBackups/Football“does not exist.
6.10.5.3.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/main/myBackups/Football</parentFolderPath>

 <name>WorldCup2014</name>

</nms:folder>

6.10.5.3.2 Response

	HTTP/1.1 400 Bad request
Date: Tue, 20 Nov 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>
 <variables>/main/myBackups/Football</variables>

 </serviceException>

</common:requestError>

6.10.5.4 Example 4: Folder creation by parentFolder resourceURL, response with a copy of created resource
(Informative)
The following example shows a request for creating a new folder called SorrentoMeeting to be created under the folder with Id of fld559. See previous example where NMSdiscussion was created under “/main”. In this example we create SorrentoMeeting folder under NMSdiscussion folder using its folderId = fld559. This example assumes that folderId=fld559 already exists.

6.10.5.4.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld559</parentFolder>

 <name>SorrentoMeeting</name>

</nms:folder>

6.10.5.4.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 05:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld560
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld559</parentFolder>

 <attributeList>

 <attribute>

 <name>Date</name>

 <value>2014-01-20T11:20:10Z</value>

 </attribute>
 </attributeList>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld560</resourceURL>

 <path>/main/NMSdiscussion/SorrentoMeeting</path>

 <name>SorrentoMeeting</name>

 <lastModSeq>977</lastModSeq>

</nms:folder>

6.10.5.5 Example 5: Folder creation by parentFolder resourceURL, response creation failure due to a non-existent parent folder
(Informative)
6.10.5.5.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld800</parentFolder>

 <name>VegasMeeting</name>

</nms:folder>

6.10.5.5.2 Response

	HTTP/1.1 400 Bad request
Date: Tue, 20 Nov 2014 20:51:51 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld800</variables>

 </serviceException>

</common:requestError>

6.10.5.6 Example 6: Folder creation by parentFolder path, response creation failure due to prohibited location (i.e. requested parent folder)
(Informative)
The following example shows a request for creation of user-defined folder under a prohibited system folder called /Default which is allowed to be used by CPM participating function only.

6.10.5.6.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolderPath>/Default</parentFolderPath>

 <name>MySavedPictures</name>

</nms:folder>

6.10.5.6.2 Response

	HTTP/1.1 403 Forbidden
Date: Tue, 20 Nov 2014 21:01:11 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POL1031</messageId>

 <text>Attempt to create objects or folders under %1 is prohibited</text>
 <variables>/Default</variables>
 </policyException>

</common:requestError>

6.10.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.11 Resource: A folder
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
This resource is used for managing a folder such as retrieving information about the contents of a folder or deleting a folder, including contained folders and objects (with their payload).

6.11.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	folderId
	Folder identifier.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.11.3 GET
This operation is used for retrieval of a folder’s properties such as its location and the list of contained subfolders and objects.
6.11.3.1 Example 1: Retrieve information about a folder
(Informative)

6.11.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld608 HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.11.3.1.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld554</parentFolder>

 <attributeList>

 <attribute>

 <name>Conversation-ID</name>

 <value>f81d4fae-7dec-11d0-a765-00a0c91e6bf6</value>

 </attribute>

 <attribute>

 <name>Contribution-ID</name>

 <value>abcdef-1234-5678-90ab-cdef01234567</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-11-19T08:30:50Z</value>

 </attribute>
 </attributeList>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld608</resourceURL>
 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>
 <name>f81d4fae-7dec-11d0-a765-00a0c91e6bf6</name>

 <lastModSeq>600</lastModSeq>

</nms:folder>

6.11.3.2 Example 2: Retrieve information about a non-existent folder
 (Informative)

6.11.3.2.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld444777 HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.11.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 17 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="folder"
 href="http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld444777"/>

 <serviceException>

 <messageId>SVC0004</messageId>

 <text>No valid addresses provided in message part %1</text>

 <variables>Request-URI</variables>

 </serviceException>
</common:requestError>

6.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.11.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.11.6 DELETE

This operation is used to delete a folder. All the contained folders and objects (including their payload) in the targeted folder SHALL be deleted as well.
6.11.6.1 Example 1: Delete a folder, response with “204 No Content”
(Informative)
6.11.6.1.1 Request
	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567 HTTP/1.1
Host: example.com

Accept: application/xml

6.11.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

6.11.6.2 Example 2: Delete an folder, response with “200 OK”
(Informative)
In the following example the response contains the deleted folder.
6.11.6.2.1 Request

	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.11.6.2.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Jan 2014 16:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId231</parentFolder>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>

 <name>Date</name>

 <value>2013-12-12T18:30:10Z</value>
 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567</resourceURL>

 <path>/main/RomeMeeting</path>

</nms:folder>

6.12 Resource: Individual folder data
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}/[ResourceRelPath]
This resource is used for changing a folder’s name. It can also be used to retrieve the folder’s name.

6.12.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	folderId
	Folder identifier.

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable, see 6.12.1.1.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.1.1 Light-weight relative resource paths

The following table describes the type of Light-weight Resources that can be accessed by using this resource, applicable methods, and the link to a data structure that contains values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	Individual folder data
	GET, PUT
	Enables access to folderName data element of a folder.

See column [ResourceRelPath] for element “name” in section 5.2.2.11 for possible values for the light-weight relative resource path.

6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.12.3 GET
This operation is used for retrieval of a folder’s name.

6.12.3.1 Example: Retrieve a folder’s name
(Informative)
6.12.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456/folderName
HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.12.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardMeeting</nms:name>

6.12.4 PUT

This operation is used for changing a folder’s name

6.12.4.1 Example 1: Change folder name
(Informative)

6.12.4.1.1 Request

	PUT /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456/folderName HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardSession1</nms:name>

6.12.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardSession1</nms:name>

6.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.13 Resource: Information about a selected set of folders in the storage
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/search
This resource is used for retrieving information about a set of selected folders.
6.13.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.13.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.13.5 POST
This operation is used for retrieving information about a set of selected folders, where the set is defined by selection criteria.
6.13.5.1 Example 1: Search for root folders
(Informative)

In this example the search results in a list of one root folder. The root folder’s parentFolderPath is empty. Also in this example root folder’s name (i.e. folderName) is empty which determines its path to be an empty string as well.
6.13.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <maxEntries>3</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>

 <name>root</name>

 </field>

 <value>Yes</value>

 </criterion>

 </searchCriteria>

</nms:selectionCriteria>

6.13.5.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 14 Nov 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<nms:folderList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folder>

 <parentFolderPath></parentFolderPath>

 <attributeList>

 <attribute>

 <name>Root</name>

 <value>Yes</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId001root</resourceURL>

 <path></path>

 <lastModSeq>001</lastModSeq>

 <subFolders>

 <folderReference>

 <folderId>fld554</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld554</resourceURL>

 <path>/main</path>

 </folderReference>

 <folderReference>

 <folderId>fld664</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld664</resourceURL>

 <path>/tmp</path>

 </folderReference>
 </subFolders>

 </folder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:folderList>

6.13.5.2 Example 2: Search for folders created within a given timeframe
(Informative)

In this example the search is performed to look for folder created within a given timeframe while the search is instructed to start at a particular node/folder in the storage hierarchy.
6.13.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <maxEntries>10</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Date</type>

 </field>

 <value>minDate=2013-12-01T08:00:00Z&maxDate=2014-01-01T12:00Z</value>

 </criterion>
 </searchCriteria>
 <searchScope>
 <folderId>fld24</folderId>
 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld24</resourceURL>

 <path>/main/projects/APIs</path>

 </searchScope>

 <sortCriterion>

 <field>

 <type>Date</type>

 </field>

 <retrievalOrder>Ascending</retrievalOrder>

 </sortCriterion>

</nms:selectionCriteria>

6.13.5.2.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<nms:folderList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folder>

 <parentFolderPath>/main/projects/APIs </parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-12-10T09:30:10Z</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId27</resourceURL>

 <path>/main/projects/APIs/QoS</path>

 <lastModSeq>91</lastModSeq>

 <subFolders>

 <folderReference>

 <folderId>fld44</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld44</resourceURL>

 <path>/main/projects/APIs/QoS /TS-Related</path>

 </folderReference>

 <folderReference>

 <folderId>fld45</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld45</resourceURL>

 <path>/main/projects/APIs/QoS/meetingInfo</path>

 </folderReference>
 </subFolders>

 </folder>
 <folder>

 <parentFolderPath>/main/projects/APIs </parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-12-18T19:30:10Z</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId30</resourceURL>

 <path>/main/projects/APIs/WebRTCSignaling</path>

 <lastModSeq>129</lastModSeq>

 <subFolders>

 <folderReference>

 <folderId>fld49</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld49</resourceURL>

 <path>/main/projects/APIs/WebRTCSignaling/TS-Related</path>

 </folderReference>

 <folderReference>

 <folderId>fld50</folderId>

 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld50</resourceURL>

 <path>/main/projects/APIs/WebRTCSignaling/meetingInfo</path>

 </folderReference>
 </subFolders>

 </folder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:folderList>

6.13.5.3 Example 3: Search for folders with a given name
(Informative)

In this example the search is performed to look for folders with a given name. The search is conducted over the entire user’s storage hierarchy.
6.13.5.3.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <maxEntries>10</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>
 <name>Name</name>

 </field>

 <value>projects</value>

 </criterion>
 </searchCriteria>
</nms:selectionCriteria>

6.13.5.3.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 09:50:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<nms:folderList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folder>

 <parentFolderPath>/main</parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-12-10T09:00:10Z</value>

 </attribute>
 <attribute>

 <name>Name</name>

 <value>projects</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId7</resourceURL>

 <path>/main/projects</path>
 <name>projects</name>

 <lastModSeq>18</lastModSeq>

 </folder>
 <folder>

 <parentFolderPath>/main/ARC/BangkokMeeting</parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2014-01-18T19:30:10Z</value>

 </attribute>
 <attribute>

 <name>Name</name>

 <value>projects</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId30</resourceURL>

 <path>/main/ARC/BangkokMeeting/projects</path>
 <name>projects</name>

 <lastModSeq>329</lastModSeq>

 </folder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:folderList>

6.13.5.4 Example 4: Search for folders containing a given substring in its name
(Informative)

In this example the search is performed to look for folders with a given substring in its name. The search is conducted over the entire user’s storage hierarchy.
6.13.5.4.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:selectionCriteria xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <maxEntries>10</maxEntries>

 <searchCriteria>

 <criterion>

 <field>

 <type>Attribute</type>
 <name>AllTextAttributes</name>

 </field>

 <value>QoS</value>

 </criterion>
 </searchCriteria>

6.13.5.4.2 Response

	HTTP/1.1 200 OK
Date: Thu, 14 Nov 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<nms:folderList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folder>

 <parentFolderPath>/main/projects/APIs</parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-12-10T09:30:10Z</value>

 </attribute>
 <attribute>

 <name>Name</name>

 <value>QoS</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId27</resourceURL>

 <path>/main/projects/APIs/QoS</path>
 <name>QoS</name>

 <lastModSeq>93</lastModSeq>

 </folder>
 <folder>

 <parentFolderPath>/main/tmp</parentFolderPath>

 <attributeList>

 <attribute>

 <name>root</name>

 <value>No</value>

 </attribute>
 <attribute>

 <name>Date</name>

 <value>2013-10-18T19:30:10Z</value>

 </attribute>
 <attribute>

 <name>Name</name>

 <value>QoS-related</value>

 </attribute>
 </attributeList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId21</resourceURL>

 <path>/main/tmp//QoS-related</path>
 <name>QoS-related</name>

 <lastModSeq>96</lastModSeq>

 </folder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/search</resourceURL>

</nms:folderList>

6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.14 Resource: Resource URLs of a selected set of folders in the storage
The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/pathToId
This resource is used for retrieving the resource URL for a folder based on its pathname or a list of folders, based on their pathnames.
6.14.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.14.3 GET

This operation is used for retrieving the resource URL for a folder based on its pathname.
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	path
	xsd:string
	Yes
	The location of the folder in the hierarchical storage.

If path is absent, GET response body SHALL include the root folder’s resource URL provided there is a single root folder otherwise, Service Exception SVC1009 SHALL be returned. For further information see section 7.

6.14.3.1 Example 1: Retrieve folder’s resource URL based on its path
(Informative)
6.14.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/pathToId?path=%2FRCSMessageStore%2FfootballGame HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.14.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 24 Jul 2013 12:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsResourceReference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <folderId>fId11111</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId11111</resourceURL>

 <path>/RCSMessageStore/footballGame</path>

</nms:nmsResourceReference>

6.14.3.2 Example 2: Retrieve root folder’s resource URL
(Informative)
In this example the absence of a query parameter triggers the server to return the root folder’s resource URL. In this example it is assumed that there is a single root folder in the network storage and the server has configured the root folder name to be an empty string which would result in a response containing an empty string for the root folder’s path.
6.14.3.2.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/operations/pathToId HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.14.3.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 24 Jul 2013 12:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsResourceReference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <folderId>fId001</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId001</resourceURL>

 <path></path>

</nms:nmsResourceReference>

6.14.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.14.5 POST
This operation is used for retrieving the resource URLs for a list of folders based on their pathnames.
6.14.5.1 Example 1: Retrieve list of folders’ resource URLs based on their paths
(Informative)
6.14.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/pathToId HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:pathList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>

 <path>/main/conversation5</path>

 <path>/main/SorrentoMeeting</path>

</nms:pathList>

6.14.5.1.2 Response

	HTTP/1.1 200 OK
Date: Tue, 20 Nov 2013 12:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:folderReferenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folderReference>

 <folderId>fId8</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId8</resourceURL>

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>

 </folderReference>

 <folderReference>

 <folderId>fId9</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId9</resourceURL>

 <path>/main/conversation5/</path>

 </folderReference>

 <folderReference>

 <folderId>fId12</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId12</resourceURL>

 <path>/main/SorrentoMeeting</path>

 </folderReference>

</nms:folderReferenceList>

6.14.5.2 Example 2: Retrieve list of folders’ resource URLs based on their paths, response failure due to an invalid path in the list
(Informative)
6.14.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/pathToId HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:pathList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <path>/main/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>

 <path>/>/main/conversation5</path>

 <path>/main/SorrentoMeeting/year2015</path>

</nms:pathList>

6.14.5.2.2 Response

	HTTP/1.1 400 Bad request
Date: Tue, 20 Nov 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>/main/SorrentoMeeting/year2015</variables>

 </serviceException>

</common:requestError>

6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.15 Resource: Resource for triggering object(s)/folder(s) copying
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/copyToFolder
This resource is used for copying referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder
6.15.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.15.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.15.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.15.5 POST
This operation is used for copying referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder.
The response includes only the references of the folders and objects which are directly created, i.e., which are copies of folders and objects named in the request. It does not include references to the folders and objects which are created by recursion. The client can obtain these by recursively retrieving the contents of the folders listed in the response.

Note that the client could also receive notifications about the folders and objects created during the copy operation, e.g., if it is subscribed for notifications and the scope and filter include these folders and/or objects.

6.15.5.1 Example 1: Copy objects to a target folder
(Informative)

In this example it is assumed that the target folder already exists. After the copy operation two new objects (with newly assigned objectId’s) are created in the target folder.
6.15.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/copyToFolder HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:targetSourceRef xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <targetRef>

 <folderId>fld456</folderId>

 </targetRef>

 <sourceRef>

 <objects>

 <objectReference>

 <objectId>oId001</objectId>

 </objectReference>
 <objectReference>

 <objectId>oId002</objectId>

 </objectReference>
 </objects>

 </sourceRef>

</nms:targetSourceRef>

6.15.5.1.2 Response

	HTTP/1.1 200 OK
Date: Mon, 13 Jan 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8" ?>

<nms:referenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <objects>

 <objectReference>

 <objectId>oId0011</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId0011</resourceURL>

 <path>/main/SummerHolidayPlan/obj0011</path>

 </objectReference>

 <objectReference>

 <objectId>oId0022</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId0022</resourceURL>

 <path>/main/SummerHolidayPlan/obj0022</path>

 </objectReference>

 </objects>

</nms:referenceList>

6.15.5.2 Example 2: Copy a folder with containing objects to a target folder
(Informative)

It is assumed that the target folder (i.e. SummerHolidayPlan with folderId = fId456) already exists. The source folder (with name “f81d4fae-7dec-11d0-a765-00a0c91e6bf6” and folderId = fld111) containing the two objects is copied to the target folder, creating one new folder directly. As a result the content of the source folder are recursively copied over to the target folder, creating two new objects recursively. This example demonstrates copying a system-created folder (in NMS).

6.15.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/copyToFolder HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:targetSourceRef xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <targetRef>

 <folderId>fld456</folderId>

 </targetRef>

 <sourceRef>

 <folders>

 <folderReference>

 <folderId>fld111</folderId>

 </folderReference>
 </folders>

 </sourceRef>

</nms:targetSourceRef>

6.15.5.2.2 Response

	HTTP/1.1 200 OK
Date: Mon, 13 Jan 2014 03:10:19 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8" ?>

<nms:referenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folders>

 <folderReference>

 <folderId>fId111101</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId111101</resourceURL>

 <path>/main/SummerHolidayPlan/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>

 </folderReference>
 </folders>

</nms:referenceList>

6.15.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16 Resource: Resource for triggering object(s)/folder(s) moving
The resource used is:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/moveToFolder
This resource is used for moving referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder.
6.16.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.16.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.16.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16.5 POST
This operation is used for moving referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder.

6.16.5.1 Example 1: Move objects to a target folder
(Informative)

In this example it is assumed that the target folder already exists. After the move operation the two existing objects (with the existing objectId’s) are placed in the target folder identified by folderId of fld456.
6.16.5.1.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/moveToFolder HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:targetSourceRef xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <targetRef>

 <folderId>fld456</folderId>

 </targetRef>

 <sourceRef>

 <objects>

 <objectReference>

 <objectId>oId001</objectId>

 </objectReference>
 <objectReference>

 <objectId>oId002</objectId>

 </objectReference>
 </objects>

 </sourceRef>

</nms:targetSourceRef>

6.16.5.1.2 Response

	HTTP/1.1 201 Created
Date: Mon, 13 Jan 2014 01:11:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8" ?>

<nms:referenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <objects>

 <objectReference>

 <objectId>oId0011</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId0011</resourceURL>

 </objectReference>

 <objectReference>

 <objectId>oId0022</objectId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId0022</resourceURL>

 </objectReference>

 </objects>

</nms:referenceList>

6.16.5.2 Example 2: Move a folder with containing objects to a target folder
(Informative)

It is assumed that the target folder (i.e. SummerHolidayPlan with folderId = fId456) already exists. As a result the contents of the source folder are recursively moved to the target folder. This example demonstrates moving a system-created folder (in NMS) with folder name of “f81d4fae-7dec-11d0-a765-00a0c91e6bf6” and folderId of fld111 as the source reference. As a result of the move operation no new folder/object is created (i.e. just the location of the existing folder/object’s changes).

Note: it is asumed that the client accordingly (locally) moves the containing objects of a moved parent folder even though the response to the folder move operation does not report the containing moved objects (in the NMS).
6.16.5.2.1 Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/operations/moveToFolder HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:targetSourceRef xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <targetRef>

 <folderId>fld456</folderId>

 </targetRef>

 <sourceRef>

 <folders>

 <folderReference>

 <folderId>fld111</folderId>

 </folderReference>
 </folders>

 </sourceRef>

</nms:targetSourceRef>

6.16.5.2.2 Response

	HTTP/1.1 201 Ok
Date: Mon, 13 Jan 2014 04:10:19 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8" ?>

<nms:referenceList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <folders>

 <folderReference>

 <folderId>fId111</folderId>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId111</resourceURL>

 <path>/main/SummerHolidayPlan/f81d4fae-7dec-11d0-a765-00a0c91e6bf6</path>

 </folderReference>
 </folders>

</nms:referenceList>

6.16.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.17 Resource: All subscriptions in the storage
The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
This resource is used to manage subscriptions to NMS event notifications .

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.17.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.17.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.17.3 GET

This operation is used for reading the list of active NMS notification subscriptions.
6.17.3.1 Example: Reading all active subscriptions
(Informative)
Application client reads all active subscriptions.
6.17.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.17.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Wed, 15 Jan 2014 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsSubscriptionList xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <nmsNotificationSubscription>

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/nms/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>6300</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>
 <index>1</index>

 <restartToken>abc123</restartToken>
 </nmsNotificationSubscription>

 <resourceURL>http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</nms:nmsSubscriptionList>

6.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.17.5 POST
This operation is used to create a new subscription for NMS notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).

6.17.5.1 Example: Creating a new subscription, response with copy of created resource
(Informative)
Application client creates a subscription.
6.17.5.1.1 Request

	POST /exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsNotificationSubscription xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/nms/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

</nms:nmsNotificationSubscription>

6.17.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Wed, 15 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsNotificationSubscription xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/nms/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>
 <index>1</index>

 <restartToken>abc123</restartToken>
</nms:nmsNotificationSubscription>

6.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.18 Resource: Individual subscription

The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions/{subscriptionId}
This resource is used to manage an individual event subscription. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.18.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group
· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	subscriptionId
	Identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.18.3 GET
This operation is used for reading an individual subscription.
6.18.3.1 Example: Reading an individual subscription
(Informative)
Application client reads a subscription.
6.18.3.1.1 Request

	GET /exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.18.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Wed, 15 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsNotificationSubscription xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/nms/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>
 <index>1</index>

 <restartToken>abc123</restartToken>
</nms:nmsNotificationSubscription>

6.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.18.5 POST
This operation is used for updating an individual subscription.

6.18.5.1 Example: Updating the existing subscription
(Informative)
Application client increases the duration (expiry) of an existing subscription while also indicates that it needs to sync up starting at a restart token (e.g. nnn789 in this example which is an opaque string previously reported by the server in a notification list).
6.18.5.1.1 Request

	POST /exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsNotificationSubscriptionUpdate xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <duration>10800</duration>

 <restartToken>nnn789</restartToken>

</nms:nmsNotificationSubscriptionUpdate>

6.18.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Wed, 15 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsNotificationSubscription xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/nms/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>10800</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>
 <index>46</index>

 <restartToken>nnn789</restartToken>
</nms:nmsNotificationSubscription>

6.18.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.18.6.1 Example: Cancelling a subscription
(Informative)
Application client cancels a subscription.
6.18.6.1.1 Request

	DELETE /exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.18.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Wed, 15 Jan 2014 18:51:59 GMT

6.19 Resource: Client notification about storage changes
This resource is a callback URL provided by the client for notifications about changes in the network storage. The RESTful NMS API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.19.5.

The following table gives detailed information about NMS storage notification.

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}

	n/a
	NmsEventNotificationList
	client
	n/a
	NmsNotificationSubscription
	/subscriptions {subscriptionId}

Table 1: 1-1 NMS event notification
6.19.1 Request URL variables

Client provided.
6.19.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.19.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].

6.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].

6.19.5 POST
This operation is used to notify the client about NMS storage events.
6.19.5.1 Example 1: Notify a client about NMS object changes
(Informative)
In this example, the application client is notified asynchronously of 3 change events (2 object deletion and 1 object creation). It is assumed that the client has already subscribed for notifications.
6.19.5.1.1 Request

	POST /nms/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: applicationClient.example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsEventNotificationList xmlns:nms="urn:oma:xml:rest:netapi:nms:1"

 <nmsEventNotification>

 <deletedObject>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999</resourceURL>

 <lastModSeq>133</lastModSeq>

 <correlationId>cId122</correlationId>

 </deletedObject>

 </nmsEventNotification>

 <nmsEventNotification>

 <changedObject>

 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId80</parentFolder>

 <flagList>

 <flag>

 <name>\Flagged</name>

 </flag>
 </flagList>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId1000</resourceURL>

 <lastModSeq>134</lastModSeq>

 <correlationId>cId67</correlationId>

 </changedObject>

 </nmsEventNotification>

 <nmsEventNotification>

 <expiredObject>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId111</resourceURL>

 <lastModSeq>135</lastModSeq>

 <correlationId>cId9</correlationId>

 </expiredObject>

 </nmsEventNotification>

 <callbackData>12345</callbackData>

 <index>1</index>

 <restartToken>abc67</restartToken>
 <link rel="NmsNotificationSubscription"

 href=" http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</nms:nmsEventNotificationList>

6.19.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.19.5.2 Example 2: Notify a client about NMS folder changes
(Informative)
In this example, the application client is notified asynchronously of a folder deletion and a folder creation events. It is assumed that the client is using the same event subscription as in example 1 (hence the index is bumped up to 2 to indicate that this is the 2nd notification list from the given subscription pointed to by the link).
6.19.5.2.1 Request

	POST /nms/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: applicationClient.example.com

<?xml version="1.0" encoding="UTF-8"?>

<nms:nmsEventNotificationList xmlns:nms="urn:oma:xml:rest:netapi:nms:1"

 <nmsEventNotification>

 <deletedFolder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId20</resourceURL>

 <lastModSeq>136</lastModSeq>

 </deletedFolder>

 </nmsEventNotification>
 <nmsEventNotification>

 <changedFolder>
 <parentFolder>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId10</parentFolder>

 <resourceURL>http://exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId33</resourceURL>
 <name>SorrentoMeeting</name>

 <lastModSeq>137</lastModSeq>

 </changedFolder>

 </nmsEventNotification>
 <callbackData>12345</callbackData>

 <index>2</index>

 <restartToken>hgf853</restartToken>
 <link rel="NmsNotificationSubscription"

 href=" http://example.com/exampleAPI/nms/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</nms:nmsEventNotificationList>

6.19.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.19.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].

7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful Network Message Storage API.
7.1.1 SVC1009: Folder’s path needed
	Name

	Description

	MessageID
	SVC1009

	Text
	Folder’s path is missing. When more than one root folder exists, folder’s path must be provided.

	Variables
	None

	HTTP status code(s)
	400 Bad Request

FFS: Register SVC1009 & POL1030 and other exceptions (as more defined) with OMNA.
7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful Network Message Storage API.
7.2.1 POL1030: Folder cannot be renamed
	Name
	Description

	MessageID
	POL1030

	Text
	Renaming this folder is not allowed.

	Variables
	None

	HTTP status code(s)
	403 Forbidden

7.2.2 POL1031: Object or folder creation under the requested folder not allowed
	Name
	Description

	MessageID
	POL1031

	Text
	Attempt to create objects or folders under %1 is prohibited

	Variables
	%1 –prohibited folders path

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _NMS-V1_0
	[19 mar-2013]
	All
	Initial baseline

	
	[06 Jun 2013]
	Sections: 4.1 and 5.0
	Incorporates: OMA-ARC-REST-NMS-2013-0005R01-CR_introduction and OMA-ARC-REST-NMS-2013-0006R01-CR_section_5

	
	[27 Jun 2013]
	5.1, 5.2.x, 6.x
	OMA-ARC-REST-NMS-2013-0004R03
OMA-ARC-REST-NMS-2013-0007R02

OMA-ARC-REST-NMS-2013-0008R02

	
	[16 July 2013]
	5.1
	Incorporates: OMA-ARC-REST-NMS-2013-0009R01 and
OMA-ARC-REST-NMS-2013-0011

	
	[08 Aug 2013]
	5.1
	Incorporates: OMA-ARC-REST-NMS-2013-0013R01-CR_set-clear-individual-flags

	
	[20 Aug 2013]
	5.1, 5.2.2.x
Editorials in sections 6.x
	Incorporates:

OMA-ARC-REST-NMS-2013-0012-CR_selection
OMA-ARC-REST-NMS-2013-0014R01-CR_set-clear-individual-flags,

OMA-ARC-REST-NMS-2013-0015R02-CR_Filesystem_tree_discovery_and_traversal

OMA-ARC-REST-NMS-2013-0018-CR_Request_URL_variable_table_edits

	
	[03 Sep 2013]
	4.1, 5, 5.1, 5.2.2.x

6.1.x, 6.7.x, 6.8
	Incorporates:

OMA-ARC-REST-NMS-2013-0016R03-CR_Creation
OMA-ARC-REST-NMS-2013-0017R02-CR_search_criteria_enhancement
OMA-ARC-REST-NMS-2013-0019R01-CR_Selection_cleanup

OMA-ARC-REST-NMS-2013-0022R01-CR_Example_titles

OMA-ARC-REST-NMS-2013-0021-CR_Object_format

OMA-ARC-REST-NMS-2013-0025R01-CR_Fixing_section_6_for objects_folders

	
	[30 Sep 2013]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2013-0023R03-CR_newFolderName
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR24R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR27R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR31R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR32
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR34R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR35R02
OMA-ARC-REST-NMS-2013-0036R01-CR_Mod_sequence
OMA-ARC-REST-NMS-2013-0037R01-CR_Notifications_mod_seq
OMA-ARC-REST-NMS-2013-0038R01-CR_Subscriptions_mod_seq
OMA-ARC-REST-NMS-2013-0039R01-CR_Expose_mod_seq
OMA-ARC-REST-NMS-2013-0040R01-CR_Deletion_synchronization
OMA-ARC-REST-NMS-2013-0042R01-CR_CopyMove

	
	[11 Nov 2013]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2013-0020R03-CR_root
OMA-ARC-REST-NMS-2013-0045R01-CR_Concepts_section
OMA-ARC-REST-NMS-2013-0046-CR_Modification_definition
OMA-ARC-REST-NMS-2013-0048R01-CR_Update_section_4
OMA-ARC-REST-NMS-2013-0049R01-CR_search_date_format
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR47R02
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR51R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR54R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR58
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR59
Also many editorials (table 5.1 format, cross-references and font changes) throughout the document

	
	[24 Nov 2013]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2013-0070R01-CR_search_for root_folder
OMA-ARC-REST-NMS-2013-0062R01-CR_FolderList_cursor
OMA-ARC-REST-NMS-2013-0064-CR_flags_element_name
OMA-TS-REST_NetAPI_NMS-V1_0-20131111-D_CR73
OMA-TS-REST_NetAPI_NMS-V1_0-20131111-D_CR72
OMA-ARC-REST-NMS-2013-0065R01-CR_Root_path_character
OMA-ARC-REST-NMS-2013-0056R03-CR_Negative_flag_search
OMA-TS-REST_NetAPI_NMS-V1_0-20131111-D_CR71R01
OMA-ARC-REST-NMS-2013-0053R01-CR_System_deletion
OMA-ARC-REST-NMS-2013-0068R02-CR_Notification_simplification
OMA-ARC-REST-NMS-2013-0069R01-CR_Use_xsd_dateTimeStamp
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR61
OMA-ARC-REST-NMS-2013-0067R01-CR_Notification_reliability
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR55R03

	
	[09 Dec 2013]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2013-0057R06-CR_External_payload
OMA-ARC-REST-NMS-2013-0066R03-CR_Correlation
OMA-ARC-REST-NMS-2013-0075R01-CR_path_FFS_resolution
OMA-ARC-REST-NMS-2013-0076R01-CR_Attribute_names
OMA-ARC-REST-NMS-2013-0077R02-CR_clean_up_and_editorial
OMA-ARC-REST-NMS-2013-0078-CR_FlagList_ResourceURL
OMA-ARC-REST-NMS-2013-0079-CR_Further_editorials
OMA-ARC-REST-NMS-2013-0080R01-CR_Search
OMA-ARC-REST-NMS-2013-0081-CR_AllSearchableText_clarification

	
	[03 Jan 2014]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2013-0074R03-CR_Correlation_with_hash
OMA-ARC-REST-NMS-2013-0084R01-CR_Direction_clarification
OMA-ARC-REST-NMS-2013-0085-CR_Editorials_arising_from_merge
OMA-ARC-REST-NMS-2013-0086R01-CR_Exceptions

	
	[29 Jan 2014]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2014-0001R01-CR_Mod_seq_generalisation
OMA-ARC-REST-NMS-2014-0003-CR_Editorials_and_appendix_C
OMA-ARC-REST-NMS-2014-0004-CR_Appendix_G
OMA-ARC-REST-NMS-2014-0005-CR_Appendix_F
OMA-ARC-REST-NMS-2014-0006R03-CR_Appendix_B_SCR
OMA-ARC-REST-NMS-2014-0007R01-CR_Adding_Sec_6_for_copy_move_to_folder
OMA-ARC-REST-NMS-2014-0008-CR_sec_6_xml_examples_for_subscription
OMA-ARC-REST-NMS-2014-0009-CR_Notifications
OMA-ARC-REST-NMS-2014-0010-CR_sec_6_further_XML_examples
OMA-ARC-REST-NMS-2014-0011R01-CR_Search_based_on_name
OMA-ARC-REST-NMS-2014-0012R02-CR_Attribute_value
OMA-ARC-REST-NMS-2014-0014-CR_FFS_resolution_prohibited_folder
OMA-ARC-REST-NMS-2014-0015-CR_Consistent_use_of_Root_attr_name
OMA-ARC-REST-NMS-2014-0016R01-CR_inline_content_support
OMA-ARC-REST-NMS-2014-0020R01-CR_PayloadPartInfo_enhancement
OMA-ARC-REST-NMS-2014-0025-CR_FFS_subscription_cancel_notif

	
	[10 Feb 2014]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2014-0021-CR_Optional_payload
OMA-ARC-REST-NMS-2014-0022R02-CR_Cursor_clarification
OMA-ARC-REST-NMS-2014-0028R01-CR_full_text_search

	
	[11 Mar 2014]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2014-0024R02-CR_Cursor_reliability
OMA-ARC-REST-NMS-2014-0023R05-CR_Sync
OMA-ARC-REST-NMS-2014-0031R02-CR_bulk_upload
OMA-ARC-REST-NMS-2014-0032R01-CR_FFS_copyMove_to_folder_no_recursive_rsp
OMA-ARC-REST-NMS-2014-0033R01-CR_FFS_Object_and_Folder_Reference
OMA-ARC-REST-NMS-2014-0034-CR_FFS_parentFolder_in_notification

	
	[18 Mar 2014]
	Many sections throughout the document
	Incorporates:

OMA-ARC-REST-NMS-2014-0036-CR_CONR_editorials_and_small_bugs

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.NMS Server

	Item
	Function
	Reference
	Requirement

	REST-NMS-SUPPORT-S-001-M
	Support for the RESTful NMS API
	5, 6
	

	REST- NMS-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST- NMS-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

B.1.1 SCR for REST.NMS.Objects Server

	Item
	Function
	Reference
	Requirement

	REST-NMS-OBJECTS-S-001-M
	Support for object creation (object upload into NMS)
	6.1
	

	REST-NMS-OBJECTS-S-002-M
	Upload (create) a new object into an identified folder of NMS – POST
	6.1.5
	

B.1.2 SCR for REST.NMS.AObject Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AOBJECT-S-001-M
	Support for managing individual stored object
	6.2
	

	REST-NMS-AOBJECT-S-002-M
	Retrieve metadata of an object – GET
	6.2.3
	

	REST-NMS-AOBJECT-S-003-M
	Delete an object – DELETE
	6.2.6
	

B.1.3 SCR for REST.NMS.AObject.Flags Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AOBJECT-FLAGS-S-001-M
	Support for managing flags associated with an object
	6.3
	

	REST-NMS-AOBJECT-FLAGS-S-002-M
	Retrieve flag list of an object – GET
	6.3.3
	

	REST-NMS-AOBJECT-FLAGS-S-003-O
	Add a new flag to the flag list of an object – PUT
	6.3.4
	

	REST-NMS-AOBJECT-FLAGS-S-004-M
	Update the entire flag list of an object – PUT
	6.3.4
	

B.1.4 SCR for REST.NMS.AObject.IndFlag Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AOBJECT-INDFLAG-S-001-M
	Support for managing an individual flag associated with an object
	6.4
	

	REST-NMS-AOBJECT-INDFLAG-S-002-M
	Test for existence of a flag in a given object – GET
	6.4.3
	

	REST-NMS-AOBJECT-INDFLAG-S-003-M
	Add a new flag to the flag list of an object – PUT
	6.4.4
	

	REST-NMS-AOBJECT-INDFLAG-S-004-M
	Remove a flag from flag list of an object – DELETE
	6.4.6
	

B.1.5 SCR for REST.NMS.AObject.Payload Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AOBJECT-PAYLOAD-S-001-M
	Support for retrieving object’s entire payload
	6.5
	

	REST-NMS-AOBJECT-PAYLOAD-S-002-M
	Retrieve the entire payload of a given object – GET
	6.5.3
	

B.1.6 SCR for REST.NMS.AObject.PayloadPart Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AOBJECT-PAYLOADPART-S-001-M
	Support for retrieving an individual payload part
	6.6
	

	REST-NMS-AOBJECT-PAYLOADPART-S-002-M
	Retrieve an individual payload part of a given object – GET
	6.6.3
	

B.1.7 SCR for REST.NMS.Objects.Search Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-OBJECTS-SEARCH-S-001-M
	Support for searching for objects meeting certain criteria
	6.7
	

	REST-NMS-OBJECTS-SEARCH-S-002-M
	Retrieve information about objects meeting certain criteria – POST
	6.7.5
	

B.1.8 SCR for REST.NMS.Objects.PathToId Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-OBJECTS-PATHTOID-S-001-M
	Support for looking up object(s) resource URL(s) using its (their) location/path
	6.8
	

	REST-NMS-OBJECTS-PATHTOID-S-002-M
	Retrieve an object’s Id (resource URL) using its location/path – GET
	6.8.3
	

	REST-NMS-OBJECTS-PATHTOID-S-003-M
	Retrieve a list of object Ids (resource URLs) using their location/path – POST
	6.8.5
	

B.1.9 SCR for REST.NMS.Objects.bulkCreation Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-OBJECTS-bulkCreation-S-001-O
	Support for bulk upload of objects
	6.9
	

B.1.10 SCR for REST.NMS.Folders Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERS-S-001-M
	Support for folder creation
	6.10
	

	REST-NMS-FOLDERS-S-002-M
	Create a new folder under an identified parent folder in NMS – POST
	6.10.5
	

B.1.11 SCR for REST.NMS.AFolder Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-AFOLDERS-S-001-M
	Support for folder creation
	6.11
	

	REST-NMS-AFOLDERS-S-002-M
	Retrieve information about a folder – GET
	6.11.3
	

	REST-NMS-AFOLDERS-S-003-M
	Delete a folder – DELETE
	6.11.6
	

B.1.12 SCR for REST.NMS. FolderName Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERNAME-S-001-M
	Support for managing individual folder data
	6.12
	

	REST-NMS-FOLDERNAME-S-002-M
	Retrieve folder name – GET
	6.12.3
	

	REST-NMS-FOLDERNAME-S-003-M
	Change folder name – PUT
	6.12.4
	

B.1.13 SCR for REST.NMS.Folders.Search Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERS-SEARCH-S-001-M
	Support for searching a list of folders meeting certain criteria
	6.13
	

	REST-NMS-FOLDERS-SEARCH-S-002-O
	Retrieve information about folders meeting certain criteria – POST
	6.13.5
	

	REST-NMS-FOLDERS-SEARCH-S-003-M
	Search for the root folder(s) – POST
	6.13.5
	

· FFS: revisit table B.1.12 to ensure mandatory sreach (e.g. root folder search) in order to allow root discovery and NMS hierarchy traversal is covered appropriately and the rest of the requirement for folder search is marked as Optional.

B.1.14 SCR for REST.NMS.Folders.PathToId Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERS-PATHTOID-S-001-M
	Support for looking up folder(s) resource URL(s) using its (their) location/path
	6.14
	

	REST-NMS-FOLDERS-PATHTOID-S-002-M
	Retrieve an folder’s Id (resource URL) using its location/path – GET
	6.14.3
	

	REST-NMS-FOLDERS-PATHTOID-S-003-M
	Retrieve a list of folders Ids (resource URLs) using their location/path – POST
	6.14.5
	

B.1.15 SCR for REST.NMS.Folders.Copy Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERS-COPY-S-001-M
	Support for copying objects and/or folders to a target folder
	6.15
	

	REST-NMS-FOLDERS-COPY-S-002-M
	Copy objects into a target folder – POST
	6.15.5
	

	REST-NMS-FOLDERS-COPY-S-003-M
	Copy a folder containing other folders and objects into a target folder (recursive copy) – POST
	6.15.5
	

B.1.16 SCR for REST.NMS.Folders.Move Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-FOLDERS-MOVE-S-001-M
	Support for moving objects and/or folders to a target folder
	6.16
	

	REST-NMS-FOLDERS-MOVE-S-002-M
	Move objects into a target folder – POST
	6.16.5
	

	REST-NMS-FOLDERS-MOVE-S-003-M
	Move a folder containing other folders and objects into a target folder (recursive move) – POST
	6.16.5
	

B.1.17 SCR for REST.NMS.Subscriptions Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-SUBSCR-S-001-O
	Support for subscriptions to NMS event notifications as well as synchronization with NMS
	6.17
	

	REST-NMS-SUBSCR-S-002-O
	Read the list of active subscriptions to NMS event notifications – GET
	6.17.3
	

	REST-NMS-SUBSCR-S-003-O
	Create new subscription to NMS event notifications – POST
	6.17.5
	

	REST-NMS-SUBSCR-S-004-O
	Create new subscription to NMS event notifications while it syncs the local storage with NMS – POST
	6.17.5
	

	REST-NMS-SUBSCR-S-005-O
	Create new subscription to NMS event notifications with filter setup to receive only certain event (e.g. SMS’s)– POST
	6.17.5
	

B.1.18 SCR for REST.NMS.IndSubscription Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-INDSUBSCR-S-001-O
	Support for access to an individual subscription to NMS event notifications
	6.18
	

	REST-NMS-INDSUBSCR-S-002-O
	Read an individual subscription to NMS event notifications – GET
	6.17.3
	

	REST-NMS-INDSUBSCR-S-003-O
	Update an individual subscription to NMS event notifications – POST
	6.17.5
	

	REST-NMS-INDSUBSCR-S-004-O
	Cancel subscription and stop corresponding notifications – DELETE
	6.17.6
	

B.1.19 SCR for REST.NMS.Notifications Server
	Item
	Function
	Reference
	Requirement

	REST-NMS-NOTIF-S-001-O
	Support for notifications about NMS events
	6.18
	

	REST-NMS-NOTIF-S-002-O
	Notifications about NMS changes – GET
	6.18.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

The following table lists all NMS data structure elements that can be accessed individually as Light-weight Resources.
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	Folder
(5.2.2.11)
	name
	name
	xsd:string
	folderName

Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Network Message Storage API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful NMS API MAY support the authorization framework defined in [Autho4API_10].

A RESTful NMS API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful NMS API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_nms.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

Table 2: Scope values for RESTful NMS API
G.1.1.2 Downscoping

Not applicable in this version of the specification as there is only one scope value defined.
G.1.1.3 Mapping with resources and methods

The single scope value defined in section G.1.1.1above maps to all REST resources and methods defined in the subsections of section 6.

G.1.2 Use of ‘acr:auth’
This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {boxId} when the RESTful NMS API is used in combination with [Autho4API_10].
In the case the RESTful NMS API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {boxId}
· SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’.
Appendix H. Flag Names Table
(Normative)

The following table lists the most common flag names as defined by [RFC3501], [RFC5788] and [OMA-CPM_TS_MessageStorage].

	Flag Name
	Description

	 References

	\Seen

	Message has been read
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	\Answered
	Message has been answered
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	\Flagged
	Message is "flagged" for urgent and/or special attention
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	\Deleted
	Message is "deleted" for removal by later internal message store process
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	\Draft
	Message has not completed composition (marked as a draft)
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	\Recent
	Message is "recently" arrived in this mailbox
	[RFC3501], [OMA-CPM_TS_MessageStorage]

	$MDNSent
	A disposition notification has been sent for this message
	[RFC5788], [OMA-CPM_TS_MessageStorage]

	$Forwarded
	Message has been forwarded
	[RFC5788], [OMA-CPM_TS_MessageStorage]

	\read-report-sent
	A read receipt has been sent for this message
	[OMA-CPM_TS_MessageStorage]

Table 2 Flag Names
Note that in addition to the strings listed in the above table, deployments MAY also support other strings.
Appendix I. RCS Object Attributes Table
(Informative)

The following common object attributes are suggested by this specification in order to enhance interoperability. See Section 5.2.2.7 “Attribute” for details of how these may be used.

The use of these attributes is REQUIRED when NMS is used as part of the GSMA Rich Communications Suite (RCS).
	Attribute Name
	Description and format
	References

	Date
	Date and time of the object. Typically this is the date and time at which the object was complete and ready for transmission or storage.

String format is as defined xsd:dateTimeStamp in [XMLSchema2]. Note that this differs from the format specified by [RFC5322].
	[RFC5322], [OMA-CPM_TS_MessageStorage]

	Message-Context
	The object’s classification (i.e., what kind of object it is).

Valid attribute values are at least:
“voice-message”, “video-message”, "fax-message", "pager-message" (i.e., SMS), "multimedia-message" (i.e, MMS),"text-message" (i.e., email), "none"

Other values may be defined by profiles or other standards.

FFS: Consider mentioning some of those profiles/standards, e.g., GSMA OMTP VVM, which adds X-empty-call-capture-message, X-number-message and X-voice-infotainment-message.

FFS: Consider defining additional values for types expected to be stored, e.g., IMDN, various CPM message types.
	[RFC3458], [RFC3938]

	Direction
	Direction of message. Valid values are: “In” (i.e., message terminating at this box), “Out” (i.e., message originating from this box).
	

	From
	Address of originator (i.e., sender).
	[RFC5322], [OMA-CPM_TS_MessageStorage]

	To
	Address of primary recipient(s).
	[RFC5322]

	Cc
	Address of other recipient(s).
	[RFC5322]

	Bcc
	Address of recipient(s) whose addresses are not to be revealed to other recipients.
	[RFC5322]

	Subject
	A short string identifying the topic of the object.
	[RFC5322]

	TextContent
	The stored content, if it is representable as an xsd:string (see section 5.0.8).
	xsd:string

	Content-Type
	Indicates the top level MIME content type of the object as a whole, if any.

For example:

multipart/related; start="950120.aaaCC@example.com"; type="application/smil"
	[RFC2045]

	Content-Location
	The top level Content-Location, if any, as defined in [RFC2557], unfolded and with any transfer encoding such as [RFC2047] removed. Used to specify a base URI for this object.

For example, “http://example.com”.
	[RFC2557]

Table 3 Object Attributes
FFS: Consider specifying that some of the above are case-insensitive, e.g., Message-Context, Direction.
Appendix J. RCS Folder Attributes Table
(Informative)

The following common folder attributes are suggested by this specification in order to enhance interoperability. See Section 5.2.2.7 “Attribute” for details of how these may be used.

The use of these attributes is REQUIRED when NMS is used as part of the GSMA Rich Communications Suite (RCS).
	Attribute Name
	Description and format
	 References

	Root

	The value “Yes” denotes the folder is designated as a root folder.

Deployments may allow other well-known attribute values.
	

	Date
	Date and Time at which the folder was created.

String format is as defined by xsd:dateTimeStamp in [XMLSchema2].
	

	Name
	Folder name (xsd:string).

The attribute value for Name should be the same as that of name element in Folder data structure (See section 5.2.2.11)
	

Table 4 Folder Attributes
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]

