OMA-TS-REST_NetAPI-Twinning-V1_0-20150122-D
Page 30  V(48)


	[image: image1.jpg]«“+OMa

Open Mobile Alliance




	

	RESTful Network API for Twinning Devices

	Draft Version 1.0 – 22 Jan. 2015

	Open Mobile Alliance

	OMA-TS-REST_NetAPI-Twinning-V1_0-20150122-D

	
	

	

	
	


<< In the flow text in this template, yellow marks are used for placeholders that need to be replaced by real-world text, and cyan marks are used for explanations that need to be deleted in the final document. 

This is a special version of the Technical Specification (TS) template, intended to be used only for RESTful Network application programming interface (API) specifications. 
Note regarding the font style to be used for Technical Specifications:

-  for main body text use Times New Roman font size 10,,
-  in tables, generally Arial font size 10 should be used, however if neccessary to minimize wrapping other fonts of the Arial family such as Arial Narrow font size 10 or Arial font size 9 can be considered also. This does not apply to section appendix A and B which are formatted accordingly the generic OMA TS template
- for XML/JSON examples use ‘listing’ paragraph style

Note regarding the references used in Technical specifications:

- references to external documents SHOULD NOT be in hyperlink style,
- for internal references to particular sections, cross-references SHOULD be used.  


Delete this comment. >>

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
11
4.
Introduction
12
4.1
Version 1.0
12
5.
Twinning Devices API definition
13
5.1
Concepts
13
5.1.1
Twinning relationship
13
5.1.2
Twinning activation from user’s perspective
14
5.1.3
Secondary device interactions with network
14
5.1.4
Inter-MNO Twinning
15
5.2
Resources Summary
15
5.2.1
To allow a client to manage Twinning Relationship
16
5.2.2
To allow a client to manage subscriptions to notifications related to Twinning events
17
5.3
Data Types
18
5.3.1
XML Namespaces
18
5.3.2
Structures
18
5.3.2.1
Type: [Type Name (without Light-weight Resources)]
19
5.3.2.2
Type: [Type Name (with Light-weight Resources)]
20
5.3.3
Enumerations
20
5.3.3.1
Enumeration: [Enumeration Name]
20
5.3.4
Values of the Link “rel” attribute
21
5.4
Sequence Diagrams
21
5.4.1
[Title of flow scenario]
21
6.
Detailed specification of the resources
24
6.1
Resource: [Description of the resource]
24
6.1.1
Request URL variables
25
6.1.1.1
Light-weight Resource relative paths
25
6.1.2
Response Codes and Error Handling
25
6.1.3
GET
26
6.1.3.1
Example 1: [Example title]  (Informative)
26
6.1.3.1.1
Request
27
6.1.3.1.2
Response
27
6.1.3.2
Example 2: [Example title]  (Informative)
27
6.1.3.2.1
Request
27
6.1.3.2.2
Response
28
6.1.4
PUT
28
6.1.4.1
Example 1: [Example title]  (Informative)
28
6.1.4.1.1
Request
28
6.1.4.1.2
Response
28
6.1.4.2
Example 2: [Example title]  (Informative)
28
6.1.4.2.1
Request
28
6.1.4.2.2
Response
28
6.1.5
POST
29
6.1.5.1
Example 1: [Example title]  (Informative)
29
6.1.5.1.1
Request
29
6.1.5.1.2
Response
29
6.1.5.2
Example 2: [Example title]  (Informative)
29
6.1.5.2.1
Request
29
6.1.5.2.2
Response
29
6.1.6
DELETE
29
6.1.6.1
Example 1: [Example title]  (Informative)
30
6.1.6.1.1
Request
30
6.1.6.1.2
Response
30
6.1.6.2
Example 2: [Example title]  (Informative)
30
6.1.6.2.1
Request
30
6.1.6.2.2
Response
30
7.
Fault definitions
31
7.1
Service Exceptions
31
7.1.1
SVC[code number]: [Text for exception header]
31
7.2
Policy Exceptions
31
7.2.1
POL[code number]: [Text for exception header]
32
7.2.1
POL1003: Refund exceeds original charge amount
32
Appendix A.
Change History (Informative)
33
A.1
Approved Version History
33
A.2
Draft/Candidate Version 1.0 History
33
Appendix B.
Static Conformance Requirements (Normative)
34
B.1
SCR for REST.FUNCAREA Server
34
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
34
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
35
Appendix D.
JSON examples  (Informative)
36
D.1
[Example Title] (section [section number cross reference])
36
Appendix E.
[Baseline specification] operations mapping (Informative)
37
Appendix F.
Light-weight Resources (Informative)
38
Appendix G.
Authorization aspects (Normative)
39
G.1
Use with OMA Authorization Framework for Network APIs
39
G.1.1
Scope values
39
G.1.1.1
Definitions
39
G.1.1.2
Downscoping
40
G.1.1.3
Mapping with resources and methods
40
G.1.2
Use of ‘acr:Authorization’
42


Figures

13Figure 1 Resource structure defined by this specification


21Figure 2 [Caption of this flow]


22Figure 2 [Caption of this flow]




Tables

40Table 1 [Baseline specification] operations mapping




1. Scope

<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. If the baseline is Parlay X, substitute [BASELINE_REF] with [3GPP 29.199-nn]. Use either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings, based on [the baseline spec]. For ParlayREST, use the text: “the similar API defined in [BASELINE_REF]” 
<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings. 
2. References

2.1 Normative References

	[BASELINE_REF]
	Baseline specification, if applicable, otherwise delete this reference. If the baseline is Parlay X part nn, the reference text is as follows: 3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part [nn]: [Functional Area] (Release 8)”, URL:http://www.3gpp.org/  

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	Include if the use of ACR is supported, otherwise delete this reference. “The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00 

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel] 
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_FUNCAREA]
	“XML schema for the RESTful Network API for [Functional Area]”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_funcarea-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt  

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt 

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC] 
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1 [only needed if application/x-www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/ 

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/ 

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>


2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_Messaging]
	“RESTful Network API for Messaging”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Messaging-V1_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NMS]
	“RESTful Network API for Network Message Storage”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NMS-V1_0, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not applicable. 

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete it..

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms. 

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.


3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>


4. Introduction

The Technical Specification of the RESTful Network API for Twinning Devices contains HTTP protocol bindings for Twinning functionality, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON). 
4.1 Version 1.0

Version 1.0 of this specification supports the following operations. These operations also support the inter-MNO Twinning interactions between two MNOs (i.e. use cases involving Primary and Secondary devices served by different Mobile Network Operators).

· Activate a Twinning relationship between a Primary and a Secondary device

· Retrieve the list of devices which a given device is in Twinning relationship with

· Request a Twinning “Activation Code” 

· Toggle Twinning status  On/Off

· Deactivate a Twinning relationship 

· Retrieve information for a given Twinning relationship

· Retrieve status of a Twinning relationship

· Manage subscriptions to notifications related to Twinning relationship events 
· Notify changes in the Twinning relationship status (On/Off or deactivation)

· Update Twinning relationship information (used for inter-MNO interactions only)

· Validate a Twinning “activation authorization code”

FFS: investigate the need for validating a Twinning “activation authorization code”.
In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR 
5. Twinning Devices API definition
This section is organized to support a comprehensive understanding of the Twinning Devices API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a description of the concepts used by this API (section 5.1). This is followed by a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.2). What follows are the data structures (section 5.3). A sample of typical use cases is included in section 5.4, described as high level flow diagrams.
Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D. 
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. 
Appendix B provides the Static Conformance Requirements (SCR). 
Appendix C provides application/x-www-form-urlencoded examples, where applicable.

 Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable. 
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Concepts

5.1.1 Twinning relationship
A Twinning relationship consists of two devices where one takes on the Primary role and the other takes on the role of the Secondary device. As a result of the Twinning relationship activation, the Secondary device would assume the identity of the Primary device. Twinning activation would result in Secondary device being able to receive voice calls and messages destined for the Primary device, originate calls/messages and be perceived by the destination as the Primary device.
A Secondary device may form a Twinning relationship with only one Primary device. However, a Primary device may form Twinning relationship with several Secondary devices. 

If a Primary device has several Twinning relationships then, its role towards all of its Twinning relationships SHALL be Primary.

Edito’s Note:Add restrictions which may exist in terms of services offered by the Secondary. Also how would the capabilities of the Secondary and the capabilities of the MNO network capabilities impacts the Twinning services available on the secondary. 
5.1.2 Twinning activation from user’s perspective

Twinning activation involves the user taking actions on the Secondary and the Primary devices. Below, the key steps are described:

· User initiates the Twinning activation on the Secondary device by launching the Twinning activation application. Within the application, the user chooses the role (Secondary) of the device and also the Primary device’s MNO from a presented list (i.e. the Primary device’s MNO may be different than the Secondary device’s MNO) and confirms activation.

· Choosing a different MNO than the one serving the Secondary device, would result in the inter-MNO Twinning interactions which is supported by the RESTful resources defined in this specification (see section 5.2).

· The Secondary device after interaction with the network and receiving a short-lived Twinning “Activation Code” displays the “Activation Code” which the user is required to use as part of the Twinning activation initiated from the Primary device as described below.

· The user goes to the Primary device, launches the Twinning activation application and chooses the role (Primary) of the device and enters the “Activation Code” (which is displayed on the Secondary participating device).

· The Twinning server provisions the network accordingly and provides the client application with the result of the Twinning activation.

· Upon successful Twinning activation, both Primary device and Secondary device are provided with necessary information (e.g. {twinningId} and access tokens) so that subsequent functions such as Twinning de-activation and Twinning status toggling can be performed by the user as needed.

5.1.3 Secondary device interactions with network

Once the Twinning activation is in place, the Secondary participating device, based on its inherent capabilities, SHALL be able to send/receive messages in addition to place/receive calls on behalf of the Primary participating device. 

In order to send/receive messages, the Secondary participating device SHALL directly interface with the Primary Participant’s network. For this purpose the Primary Participant’s MNO server MAY provide an appropriate OAuth access token to the Secondary Participant. For further information see “authCode” parameter in section 5.2.2.4.

Editor’s Note: Lessen the normative use of language (use the term for example and make it generic)…Use client app as opposed to user does this or that….e.g. the API shall enable a user of the primary/secondary device to do x and so and so happens.
· The Secondary device MAY use the RESTful Network API for Messaging defined in [REST_NetAPI_Messaging] in order to send messages on behalf of the Primary device
· For receiving a copy of the messages received by the Primary device, the Secondary device MAY use the RESTful Network API for Network Message Storage defined in [REST_NetAPI_NMS] in order to sync with the Primary device’s NMS. 

By the same token, the Secondary device, MAY be able to place voice calls and be perceived as if the calls are originated from the Primary device and also receive voice calls which are destined for the Primary device. However, the voice call related functionalities are managed by a direct communication between the Secondary device and its own network provider and as a result there is no need for the Secondary device to receive an access token from the Primary MNO.

Also Twinning relationship management operations (e.g. Twining activation, Twinning deactivation and Twinning Status Toggle), Twining devices MAY receive an appropriate OAuth access token from their respective Twinning server (see [Autho4API_10] for further information).

5.1.4 Inter-MNO Twinning 

In an inter-MNO Twinning scenario, the Primary and Secondary devices are managed by different MNOs. As a result, Twinning operations (e.g. Twining activation, Twinning deactivation and Twinning Status Toggle) which are initiated by one Twinning device (e.g. Primary) in one network SHALL be relayed by the respective API Gateway to the other device’s (e.g. Secondary) API Gateway. Such interactions are supported by the resources defined in section 5.2 of this specification.
5.2 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Twinning. Devices. 

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.png]Base URL: //{serverRoot}/twinning/{apiVersion}/{userld}





Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
5.2.1 To allow a client to manage Twinning Relationship
	Resource

	URL
Base URL: //{serverRoot}/twinning/{apiVersion}/ {storeName}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Twinning Relationships
	/twinRelations
 
	TwinList 
(used for GET)
Twin 
(used for POST) 

	Retrieves the existing Twinning relationships for the end user’s device identified by the {userId}.
Note: Query string parameter used to provide Twinning activation instruction and MNO list.
	no
	Creates a new Twinning relationship

	no

	An individual Twinning relationship
 
	/twinRelations{twinningId}
 
	Twin
 
	Retrieves Twinning data
	Update Twinning data
	no
	Removes a Twinning relationship

	Twinning status
	/twinRelations{twinningId}/status
 
	Status
 
	Retrieves Twinning status
	Toggles Twinning status  (to “On/Off”)
	no
	no


5.2.2 To allow a client to manage subscriptions to notifications related to Twinning events
	Resource
	URL
Base URL: //{serverRoot}/twinning/{apiVersion}/ {storeName}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to Twinning notifications
	/subscriptions
	TwinSubscriptionList 
(used for GET)
TwinSubscription 
(used for POST) 
 
 
	Retrieve all active  Twinning notification subscriptions
	no
	Creates new  subscription for notification for Twinning status changes
	no

	Individual subscription to Twinning notifications
	/subscriptions/{subscriptionId}
	TwinSubscription 
(used for GET response)
 
	Retrieve an individual subscription
	no 
	no
	Cancel  subscription and stop  corresponding notifications


5.3 Data Types
5.3.1 XML Namespaces

The XML namespace for the [Functional Area] data types is:


urn:oma:xml:rest:[funcarea]:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common] (delete if not used). The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_FUNCAREA].
5.3.2 Structures

<<Naming conventions for structures
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The conventions for the leading letter of the first differ depending on the context:

· Type names start with an uppercase letter 

· Element and attribute names in types start with a lowercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord”. If a lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g. “smsService”.

In all RESTful API TSs, sections 5.2.x where it is an optional element in a data structure:

	resourceURL 
	xsd:anyURI 
	Yes 
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.


Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing data types.>>

<< Intro in case the document does not use the concept of Light-weight Resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in the [Functional Area] API. 
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
<< Intro in case the document does use the concept of Light-weight Resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in the [Functional Area] API. 
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called Heavy-weight Resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for Light-weight Resource URLs that are used to access individual elements in the data structure (so-called Light-weight Resources). A string from this column needs to be appended to the corresponding Heavy-weight Resource URL in order to create Light-weight Resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath]. 

5.3.2.1 Type: [Type Name (without Light-weight Resources)]
<< This defines the format of the subsections in case the type does not use the concept of Light-weight Resources. 
In case the type includes attribute definition(s), then the name of the first column in the table below should reflect “Element/Attribute”. In addition, in the “Description” column for an attribute  it should be stated that it is defined in XML as an attribute. DELETE this comment >>

[Brief description of the type]
	Element
	Type
	Optional
	Description

	[Element Name]

	[Type]
	[Yes/No/
Choice]
	[Description of the Element]

	<< Add/Remove rows to this table as needed - DELETE This Row>>


<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies.

Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

5.3.2.2 Type: [Type Name (with Light-weight Resources)]
<< This defines the format of the subsections in case the type does use the concept of Light-weight Resources. 
In case the type includes attribute definition(s), then the name of the first column in the table below should reflect “Element/Attribute”. In addition, in the “Description” column for an attribute  it should be stated that it is defined in XML as an attribute. DELETE this comment >>

[Brief description of the type]
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	[Element Name]
	[Type]
	[Yes/No/
Choice]
	[relative path of Light-weight Resource or “Not applicable”]
	[Description of the Element]

	<< Add/Remove rows to this table as needed - DELETE This Row>>


<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies. If the element is used only in response bodies then the statement should reflect “allowed in response bodies”
Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.3.3 Enumerations

<<Naming conventions for enumerations
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The conventions for the leading letter of the first differ depending on the context:

· Enumeration type names start with an uppercase letter 

· Enumeration value names in types start with an uppercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For names consisting of concatenated words, all subsequent words start with a capital. For example, “ConcatenatedWord”. If an uppercase name includes an abbreviation, all characters of the abbreviation are capitalized, e.g. “SMSService”, “VoiceXML”.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing data types.>>

The subsections of this section define the enumerations used in the [Functional Area] API. 
5.3.3.1 Enumeration: [Enumeration Name]
	Enumeration
	Description

	[Enumeration Value Name]
	[Description of the enumeration value]

	<< Add/Remove rows to this table as needed - DELETE This Row>>


5.3.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· twinningSubscription
· twinning
· 

These values indicate the kind of resource that the link points to.
5.4 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
If the flows include notifications to the client that could be delivered either by POST or through the use of Notification Channel then include this paragraph, otherwise delete it.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.4.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].
 If the flow includes a subscription for notifications step, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. If there are more scenarios for subscriptions for notifications, in order to avoid repetition this paragraph can be placed one level above (under 5.3) instead.The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources: 

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption 
Use solid lines for requests

Use dotted lines for responses 

Use numbers if you want to reference in the text 

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server
An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image3.emf]example-flow.zip




example-flow.zip

>>

<< Example 1: Signalling flow which includes neither a subscription for notifications nor notifications to the application. Delete this comment.>>

[image: image4.emf]3. Remove a callparticipant(including

resourceURLwithparticipantId) fromthesession

Application Server

1. POST CallSessionInformation

Response withcreatedcallsession

resourceincl. callSessionId

2. POST CallParticipantInformationto

resourceURLofnewcallsession

Response withinformationabout addedcall

Participantincl. resourceURLwithparticipantId

Create a newcall

session

Add participantto

session

4. GET participantlistforcallSessionId

Response withinformationabout each

participantincl. theirstatus

Fetch participants 

5. Terminatethecallsession

Response orerrormessage

Terminatecall

session

Request removal

ofparticipant

Response whetherremovalwas successful

Delete participant

fromsession


Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
<< Example 2: Signalling flow which includes a subscription for notifications and notifications to the application. The notifications to the application can be delivered either by POST or through the use of Notification Channel, which is indicated by “POST or NOTIFY”. Delete this comment. >>

[image: image5.emf]2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription 

Response with created resource

Response

3. DELETE Call Notification Subscription 

Response

Later, the 

application 

cancels the 

subscription

At some time 

later, a call event 

occurs to trigger 

the notification

2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription 

Response with created resource

Response

3. DELETE Call Notification Subscription 

Response

Later, the 

application 

cancels the 

subscription

At some time 

later, a call event 

occurs to trigger 

the notification


Figure 3 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram].  If the step relates to a notification to the application either with POST or NOTIFY, after the high-level description of the action with POST include/adapt the following sentence; otherwise, if POST is supported only, delet it. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
3. [High-level description of 1 or more steps in the flow diagram] 
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Twinning Relationships

The resource used is: 
//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations


This resource is used for creating a new twinning relationship. 



6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	
	

	




6.1.1.1 

	
	
	

	
	
	

	

	
	
	



6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.1.3 GET



This operation is used for retrieving the existing Twinning relationship(s) a user (i.e. {userId}) is involved in.

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	instruction
	xsd:string
	Yes
	Controls whether Twinning instruction is required to be returned in the body of the GET response. 
· If Instruction query parameter is absent, GET response body SHALL NOT include the “instruction” element. 
· If instruction=ForPrimary, GET response body SHALL include the “instruction” element. The instruction returned by the server is tailored for usage in the context of a Primary device (i.e. the request is invoked by a Primary device).  The instruction MAY exclude the MNO list.
· If instruction=ForSecondary, GET response body SHALL include the “instruction” element. The instruction returned by the server is tailored for usage in the context of a Secondary device (i.e. the request is invoked by a Secondary device). The instruction SHALL include the MNO list.

	
	
	
	

	



· 
· 
· 
6.1.3.1 Example 1: Retrieve a Primary device’s existing Twinning relationships 
(Informative)
6.1.3.2 In this example the query is invoked by the user’s Primary device (i.e. {userId}) which is Twinned with two Secondary devices (a wearable watch and a connected car). Currently, the wearable watch’s twinning relationship is toggled off.





· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
6.1.3.2.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999
Accept: application/xml




6.1.3.2.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

   <twinning>

      <role>Primary</role>

      <name>MyCar</name>

      <address>tel:+14255550100</address>

      <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/1800</resourceURL>

      <otherDevice>

         <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255551919/twinningRelations/1900</resourceURL>

         <address>tel:+14255551919</address>

         <mno>

            <name>AT&amp;T</name>

           <ncc>310410</ncc>

        </mno>

     </otherDevice>

      <twinningStatus>On</twinningStatus>

  </twinning>

  <twinning>

     <role>Primary</role>

     <name>MyWatch</name>

     <address>tel:+14255550100</address>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/111</resourceURL>

     <otherDevice>

        <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14257661771/twinningRelations/222</resourceURL>

        <address>tel:+14257661771</address>

        <mno>

           <name>AT&amp;T</name>

           <ncc>310410</ncc>

        </mno>

     </otherDevice>

     <twinningStatus>Off</twinningStatus>

   </twinning>

</twinning:twinningList>



6.1.3.3 Example 2: Retrieve a Secondary device’s existing Twinning relationship using “auth” keyword
(Informative)
In this example, the query is invoked by the user’s Secondary device (i.e. {userId}) which may be Twinned with only one Primary device at a time. In this example the user/device is identified using the OAuth access token contained in the Authorization header.
6.1.3.3.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/xml



6.1.3.3.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

   <twinning>

      <role>Secondary</role>

      <name>MyCar</name>

      <address>tel:+14255551919</address>

      <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255551919/twinningRelations/1800</resourceURL>

      <otherDevice>

         <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/1900</resourceURL>

         <address>tel:+14255550100</address>

         <mno>

            <name>AT&amp;T</name>

           <ncc>310410</ncc>

        </mno>

     </otherDevice>

      <twinningStatus>On</twinningStatus>

  </twinning>
</twinning:twinningList>


6.1.3.4 Example 3: Retrieve Twinning instruction from a Secondary device
(Informative)
6.1.3.4.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForSecondary  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/xml



6.1.3.4.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

   <instruction>

      <mno>

         <name>AT&amp;T</name>

         <ncc>310410</ncc>

      </mno>

      <mno>

         <name>Sprint</name>

         <ncc>310120</ncc>

      </mno>

      <mno>

         <name>T-Mobile</name>

          <ncc>310260</ncc>

      </mno>

      <mno>

         <name>Verizon Wireless</name>

         <ncc>310012</ncc>

      </mno>

      <activationInstruction>If the Primary device with which this device is intended to be twinned is served by a different mobile service provider please select the Primary device's mobile service provider from the list above</activationInstruction>

   </instruction>
</twinning:twinningList>


6.1.3.5 Example 4: Retrieve Twinning instruction from a Primary device
(Informative)
6.1.3.6 In this example, the Primary device is already in two Twinning relationships and intends to form a third Twinning relationship.
6.1.3.6.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForPrimary  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b511111
Accept: application/xml



6.1.3.6.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

   <twinning>

      <role>Primary</role>

      <name>MyCar</name>

      <address>tel:+14255550100</address>

      <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/1800</resourceURL>

      <otherDevice>

         <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255551919/twinningRelations/1900</resourceURL>

         <address>tel:+14255551919</address>

         <mno>

            <name>AT&amp;T</name>

           <ncc>310410</ncc>

        </mno>

     </otherDevice>

      <twinningStatus>On</twinningStatus>

  </twinning>

  <twinning>

     <role>Primary</role>

     <name>MyWatch</name>

     <address>tel:+14255550100</address>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/111</resourceURL>

     <otherDevice>

        <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14257661771/twinningRelations/222</resourceURL>

        <address>tel:+14257661771</address>

        <mno>

           <name>AT&amp;T</name>

           <ncc>310410</ncc>

        </mno>

     </otherDevice>

     <twinningStatus>Off</twinningStatus>

   </twinning>

   <instruction>

      <activationInstruction>please enter an activation code acquired from the Secondary device with which this device is intended to be twinned with</activationInstruction>

     </instruction>

</twinning:twinningList>


6.1.3.7 


6.1.3.7.1 
	



6.1.3.7.2 
	



6.1.4 PUT


Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/]’ field in the response as per section 14.7 of [RFC 2616].


6.1.4.1 


6.1.4.1.1 
	



6.1.4.1.2 
	



6.1.4.2 


6.1.4.2.1 
	



6.1.4.2.2 
	



6.1.5 POST



This operation is used to initiate and create a new Twinning relationship. A Twinning relationship is made up of two twinning resources (one representing the Primary device and the other, the Secondary device) which are linked together as a result of the POST method. 
In order to create a Twinning relationship, both the Secondary and the Primary device independently need to invoke the POST method.

Invocation of the POST method by the Secondary device SHALL result in a new twinning resource representing the Secondary device’s side of the twinning relationship in a “Pending” status.

Subsequent invocation of the POST method by the Primary device SHALL result in a new twinning resource representing the Primary device’s side of the twinning relationship. A successful POST operation from the Primary device SHALL result in both twinning resources linked together in a an “On” status. 

6.1.5.1 Example 1: A Secondary device initiates a new Twinning relationship 
(Informative)
6.1.5.2 In this example, the Secondary device is being Twinned with a Primary device which is served by the same MNO, hence the optional “primaryMno” element is not included in the POST request body. See example 2 below which is the continuation of example 1.
6.1.5.3 The response contains the resourceURL of the twinning resource created. When the twinning resource changes from its initial state of “pending” to “On”, the application on the Secondary device SHALL receive an appropriate notification. Optionally, if the application doesn’r subscriber to twinning events, it may periodically query the status of the twinning resource using the resourceURL received in the response.


6.1.5.3.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B14256789999/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn


Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningActivationReq xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>

</twinning:twinningActivationReq>



6.1.5.3.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B14256789999/twinningRelations/333
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>

  <address>tel:+14256789999</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789999/twinningRelations/333</resourceURL>
  <activationCode>

     <code>711711</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>
  <twinningStatus>Pending</twinningStatus>

</twinning:twinning>



6.1.5.4 Example 2: A Primary device initiates and activates a new Twinning relationship 
(Informative)


6.1.5.4.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn



Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningActivationReq xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Primary</role>

  <name>mySUV</name>

  <activationCode>

     <code>711711</code>

  </activationCode>

</twinning:twinningActivationReq> 



6.1.5.4.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/2000
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Primary</role>

  <name>FamilySUV</name>

  <address>tel:+14255550100</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/2000</resourceURL>

  <otherDevice>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789999/twinningRelations/333</resourceURL>

     <address>tel:+14256789999</address>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </otherDevice>

  <activationCode>

     <code>711711</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>On</twinningStatus>

</twinning:twinning> 



6.1.5.5 Example 3: A Secondary device initiates a new inter-MNO Twinning relationship
(Informative)
In this example, the Secondary device (a Connected Car) is being Twinned with a Primary device which is served by another MNO, as identified by “primaryMno” element in the POST request body. See example 4 below, as well as examples in sections 6.2.3.2, 6.2.4.1 (and also the notification and examples TBD) which is the continuation of example 3.
Editor’s note: add notification examples demonstrating event notification when the Secondary device’s Twinning status changes from “Pending” to “On”.
6.1.5.5.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn


Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningActivationReq xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>
  <primaryMno>

     <name>AT&amp;T</name>

     <ncc>310410</ncc>

  </primaryMno>
</twinning:twinningActivationReq>


6.1.5.5.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>

  <address>tel:+14256789789</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>
  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>
  <twinningStatus>Pending</twinningStatus>

</twinning:twinning>


6.1.5.6 Example 4: A Primary device initiates and activates a new inter-MNO Twinning relationship
(Informative)
6.1.5.6.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn



Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningActivationReq xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Primary</role>

  <name>ConnectedCar</name>

  <activationCode>

     <code>123123</code>

  </activationCode>

</twinning:twinningActivationReq> 


6.1.5.6.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Primary</role>

  <name>ConnectedCar</name>

  <address>tel:+14255550100</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100</resourceURL>

  <otherDevice>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>

     <address>tel:+14256789789</address>

     <mno>

        <name>T-Mobile</name>

        <ncc>310260</ncc>

     </mno>

  </otherDevice>

  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>On</twinningStatus>

</twinning:twinning> 


6.1.6 DELETE


Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET /POST]’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: An individual Twinning relationship
The resource used is: 

//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}
This resource is used to manage (reading, updating and deleting) a twinning resource. Updating or deleting a twinning resource which is in a twinning relationship SHALL be reflected onto the corresponding twinning resources (which is representing the other twinning device) by the server.
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	twinningId
	Identifier of the twinning


6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.2.3 GET
This operation is used for retrieving the information about an individual Twinning relationship.
6.2.3.1 Example 1: Retrieve an individual Twinning relationship 
(Informative)
6.2.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999
Accept: application/xml



6.2.3.1.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>
<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Primary</role>

  <name>ConnectedCar</name>

  <address>tel:+14255550100</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100</resourceURL>

  <otherDevice>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>

     <address>tel:+14256789789</address>

     <mno>

        <name>T-Mobile</name>

        <ncc>310260</ncc>

     </mno>

  </otherDevice>

  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>On</twinningStatus>

</twinning:twinning>


6.2.3.2 Example 2: Retrieve an individual Twinning relationship 
(Informative)
6.2.3.2.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789  HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf
Accept: application/xml



6.2.3.2.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>
<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>

  <address>tel:+14256789789</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>

  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>Pending</twinningStatus>

</twinning:twinning>


6.2.4 PUT

This operation is used to update and turn “On” a “Pending” Twinning relationship (i.e. to activate a Pending twinning relationship). A Twinning relationship is made up of two twinning resources (one representing the Primary device and the other, the Secondary device) which are linked together. In inter-MNO scenarios once, the Primary device side of the twinning relationship is activated, the server SHALL invoke the PUT method onto the Secondary device’s server in order to update the twinning information on the Secondary’s side and change its twinning status to “On”.

In intra-MNO twinning relationship since the same server has internal access to both twinning resources (representing the Primary and the Secondary devices) the server normally rely on internal means.
Activate a “Pending” Twinning relationship
(Informative)
6.2.4.1.1 Request
	PUT  /exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">
  <role>Secondary</role>

  <name>ConnectedCar</name>

  <address>tel:+14256789789</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>

  <otherDevice>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100</resourceURL>

     <address>tel:+14255550100</address>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </otherDevice>

  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>On</twinningStatus>

  <authCode>6d0d-4aa6-a404</authCode>

</twinning:twinning>


6.2.4.1.2 Response

	HTTP/1.1 200 OK


Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

  <role>Secondary</role>

  <name>ConnectedCar</name>

  <address>tel:+14256789789</address>

  <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789</resourceURL>

  <otherDevice>

     <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B14255550100/twinningRelations/100</resourceURL>

     <address>tel:+14255550100</address>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </otherDevice>

  <activationCode>

     <code>123123</code>

     <mno>

        <name>AT&amp;T</name>

        <ncc>310410</ncc>

     </mno>

  </activationCode>

  <twinningStatus>On</twinningStatus>

  <authCode>6d0d-4aa6-a404</authCode>

</twinning:twinning>


6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to delete a Twinning relationship. 

The server responds to a DELETE request with an HTTP 204 No Content response.

6.2.6.1 Example: Delete a Twinning relationship
(Informative)
6.2.6.1.1 Request
	DELETE /exampleAPI/twinning/v1/tel%3A%2B14256789789/twinningRelations/789 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml



6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Tue, 03 Feb 2015 06:55:59 GMT




6.2.6.2 


6.2.6.2.1 
	



6.2.6.2.2 
	



6.2.6.3 


6.2.6.3.1 
	



6.2.6.3.2 
	



7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s). 
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.  
The original Service Exception codes from the baseline product (if any) are included unchanged. 
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful [Functional Area] API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”] 

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]


7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Policy Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s). 
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.  
The original Policy Exception codes from the baseline product (if any) are included unchanged. 
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”] 

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]


                                          << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden


Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA


A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _Twinning-V1_0
	22 Oct. 2014
	All
	Initial baseline

	
	
	
	

	
	
	
	


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the RESTful [FuncArea]  API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	[section(s)]
	


B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]


<< If an Item is MANDATORY (-M) it has no requirement. 

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND” 

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE 
	5.8.6
	


Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.
Appendix D. JSON examples 
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1  [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request: 
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Response: 

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Appendix E. Operations mapping
(Informative)
As this specification does not have a baseline specification, this appendix is empty.

Appendix F. Light-weight Resources
(Informative)

<< This appendix lists Light-weight Resources defined in this specification. Delete this comment>>

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all [FuncArea] data structure elements that can be accessed individually as Light-weight Resources. 
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string. 

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this Row and the following table>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}


<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings]  have to be replaced by their real values.
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty. Delete this comment. >>

<< If there are no Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
None specified in this version of the specification.

<< If there are Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
This appendix specifies how to use the RESTful [Func Area] API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful [FuncArea] API MAY support the authorization framework defined in [Autho4API_10].

A RESTful [FuncArea] API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common]; 

· SHALL conform to this section G.1. 

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful [FuncArea] API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	[Scope value]
	[Scope value description] 
	[No/Yes]

	[Scope value]
	[Scope value description] 
	[No/Yes]

	<< Example - DELETE this and next two Rows>>

	oma_rest_messaging.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_messaging.in_regist
	Provide access to all defined operations on inbound messages using registration
	No


Table 2: Scope values for RESTful [FuncArea] API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_funcarea.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· [list of scope values]
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful [FuncArea] API map to the REST resources and methods of this API. In these tables, the root “oma_rest_funcarea.” of scope values is omitted for readability reasons.
<< Note: this part of the TS uses a landscape layout, started and terminated by a section break.  Delete this comment. >>
	Resource
	URL
Base URL: 

http://{serverRoot}/Functional Area/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	[Description of the resource]
	[URL for the resource]
	[Section refrerence]
	[supported scope value(s)] 
	[supported scope value(s)]
	[supported scope value(s)]
	[supported scope value(s)]

	<< Example below - DELETE this and the following Row>>

	Inbound messages for a given registration
	/inbound/registrations/{registrationId}/messages
	6.1
	all_{apiVersion}
or 

in_regist
	n/a
	n/a
	n/a


Table 3: Required scope values for: [text describing function(s) associated with that particular scope values] 

G.1.2 Use of ‘acr:Authorization’

<< Some APIs do have user identifiers in resource URL that could be a subject for ‘acr:Authirization’, some don’t have. Pick the right text block. Delete this comment. >>

<<If there are no user identifiers candidate for ‘acr:Authorization’, the following wording is used. Delete this comment. >>

As this version of the specification does not define any parameter that could be a candidate for ‘acr:Authorization’, this appendix is empty

<< The text below is a blueprint of Appendix G.1.2 if there are user identifiers candidate for ‘acr:Authorization’. Delete this comment. >>
This section specifies the use of ‘acr:Authorization’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:Authorization’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:Authorization’ in a resource URL in place of a {senderAddress} replace/adapt “senderAddress” with a variable name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma. when the the RESTful [FuncArea] API is used in combination with [Autho4API_10].
In the case the RESTful [FuncArea] API supports [Autho4API_10], the server:

· SHALL accept ‘acr:Authorization’ as a valid value for the resource URL variable {senderAddress} replace/adapt “senderAddress” with a name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma.
· SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:Authorization’.
( 2014 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20140101-I]
( 2014 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20140101-I]

_1357634611/example-flow.zip


example-flow.ppt




3. Remove a call participant  (including 


resourceURL with participantId) from the session





Application





Server


1. POST CallSessionInformation


Response with created call session 


resource incl. callSessionId


2. POST CallParticipantInformation to 


resourceURL of new call session


Response with information about added call 


Participant incl. resourceURL with participantId


Create a new call 


session


Add participant to


session 


4. GET participant list for callSessionId


Response with information about each


participant incl. their status 


Fetch participants 


5. Terminate the call session


Response or error message


Terminate call


session


Request removal 


of participant


Response whether removal was successful


Delete participant 


from session


















































