OMA-TS-<FunctionalName>Service-Environment-Vx_y2_0-200ymmdd20050214-D
Page 2 V(32)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	OMA Service Environment

	Draft Version 2.0 –14 Feb 2005

	Open Mobile Alliance

	OMA-Service-Environment-V2 0-20050214-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
9
4.1
General
9
4.2
Targeted audience and document intention
9
4.3
Motivation
10
4.3.1
Existing service development and integration
10
4.3.2
End-user perception
10
4.3.3
OMA enablers and enabler reuse
10
4.4
OMA silo architectures
11
5.
The OSE Architecture
12
5.1
Architecture requirements and principles
12
5.1.1
Intrinsic functionality
12
5.1.2
Delegation and reuse of enablers
12
5.1.3
Protection of enablers and resources
12
5.1.4
Extensibility
12
5.2
OSE conceptual model
13
5.2.1
General
13
5.2.2
Enabler
14
5.2.3
Enabler implementation
14
5.2.4
Interfaces
15
5.2.5
Enabler interface bindings
15
5.2.6
Resources
15
5.2.7
Applications
15
5.2.8
Service Provider Execution Environment
15
5.2.9
Policy Enforcer
16
5.3
Interfaces of the OSE
17
5.4
Applying the OSE architecture
18
5.4.1
Controlled exposure of enablers and resources
18
5.4.2
Using the exposed resources
19
5.4.3
Implications of policy management on enabler interfaces
20
5.4.4
Deployment options
21
6.
Implications on enabler specification writers (normative)
23
7.
Migration from OMA silo enabler architectures towards the OSE using Policy Enforcement
24
7.1
Enabler implementations and deployments
24
7.2
Migration through the use of PEEM
25
Appendix A.
Change History (Informative)
27
A.1
Approved Version History
27
A.2
Draft/Candidate Version <current version> History
27
Appendix B.
Deriving an OMA Service Environment architecture
28
Appendix C.
Reference Points versus Interfaces
31

Figures

14Figure 1 – Generic view of the OSE architecture.

17Figure 2 – Classification of interfaces in OSE

19Figure 3 - OSE Flows

20Figure 4 - Third Party engagement steps

22Figure 5 - Target Policy Enforcer deployments (with flows)

25Figure 6 - Examples of Policy Enforcer deployments (with flows)

31Figure 7 - Schematic view of an interface

31Figure 8 - Reference Point schematically

32Figure 9 - Equivalency of interface point of view and reference point of view

Tables

18Table 1: Interface Categories of the OSE Architecture

1. Scope

This document describes the OMA Service Environment (OSE), which is a flexible and extensible architecture that offers support to a diverse group of application developers and Service Providers.

The primary intention of the OSE is to promote common architectural principles, across the whole of OMA, for how OMA Enablers are specified and how they interact with one another whilst ensuring architecture integrity, scalability and interoperability, all of which strive to reduce Architecture silo design and hence reduce integration and deployment complexities.

This document includes the following information:

· A high-level description of the OMA Service Environment including its concepts and entities;

· A migration path between existing and future enabler activities within the OMA;

· A description of how OMA enablers interact with one another, for example, to support the creation and delivery of widely accessible coherent end-user services.

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

2.2 Informative References

	[ARCH-INVEN
	Inventory of Existing Architectures to OMA", Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[ARCH-REQ]
	“OMA Architecture Requirements, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[ARCH-PRIN]
	“OMA Architecture Principles”, Version 1.1.1, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[GSM 01.04]
	“Abbreviations and acronyms”. European Telecommunications Standards Institute. Technical Report GSM 01.04. URL: http://www.3gpp.org

	[ITU-T I.112]
	“Vocabulary of terms for ISDNs”. International Telecommunication Union. ITU-T Recommendation I.113. http://www.itu.org/

	[OMA-DICT]
	“Dictionary for OMA Specifications”, Version 1.0, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[RFC 2828]
	“Internet Security Glossary”, RFC 2828.

URL:http://www.ietf.org/rfc/rfc2828.txt

	[TMF]
	"Product Lifecycle Management with NGOSS Catalyst (PLM)",

URL:http://www.tmforum.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendices are informative, unless they are explicitly indicated to be normative.

All figures in this document are informative.

3.2 Definitions

For the purposes of this document, the terms and definitions given in [OMA-DICT] apply and the following also apply:

	Application
	An implementation of a related set of functions that perform useful work, often enabling one or more services. It may consist of software and/or hardware elements.

	Authentication
	The process of verifying an identity claimed by or for a system entity. [RFC 2828]

	Authorization,

Authorize
	(1.) An "authorization" is a right or a permission that is granted to a system entity to access a system resource. (2.) An "authorization process" is a procedure for granting such rights. (3.) To "authorize" means to grant such a right or permission. [RFC 2828]

	Delegate
	A delegate is a designated system or resource that performs specified tasks or functions on behalf of (one or more) other systems. To delegate is to designate a system or resource that performs specified tasks or functions on behalf of (one or more) other systems.

	Interface
	The common boundary between two associated systems. [GSM 01.04, ITU-T I.112]

	Intrinsic function
	Intrinsic functions are those functions that are essential in fulfilling the intended task of the specified enabler

	Logical Architecture
	Incorporates the detailed architecture diagram (with interfaces), elements and interface specifications. This architecture is used to derive detailed architecture which which an implementation can be made.

	OMA Service Environment
	A conceptual and logical architecture that provides a common structure and rule set for specifying enablers.

	Non-intrinsic function
	Non-intrinsic functions are those functions that are not essential in fulfilling the intended task of the specified enabler

	Parameter P
	Parameter P is an additional set of parameters resulting from the application of policies to the I0 interface.

	Policy
	A policy is uniquely represented by a logical combination of conditions and actions.

	Policy Enforcement
	The act of applying or implementing the actions of a policy or policies.

	Request
	An articulation of the need to access a resource or to invoke a function. A request may include zero, one or more facts.

	Requestor
	Any entity that issues a request to a resource.

	Resource
	Any component, enabler, function or application that can receive and process requests.

	Service Enabler
	A technology intended for use in the development, deployment or operation of a Service; defined in a specification, or group of specifications, published as a package by OMA.

3.3 Abbreviations

For the purposes of this document, the abbreviations given in [OMA-DICT] apply and the following also apply:

	API
	Application Programming Interface

	ETOM
	extended Telecommunications Operations Map

	JCP
	Java Community Process

	OASIS
	Organization for the Advancement of Structured Information Standards

	OMA
	Open Mobile Alliance

	OSE
	OMA Service Environment

	PEEM
	Policy Execution, Enforcement and Management

	PoC
	Push to talk over Cellular

	SID
	Shared Information/Data model

	SNMP
	Simple Network Management Protocol

	TMF
	TeleManagement Forum

4. Introduction

4.1 General

The OMA specifies enablers, which provide standardized components to create an environment in which services may be developed and deployed. The OMA enablers, the decomposition into these components and the interactions between them comprise the OSE.

The primary intention of the OSE is to address the issues as described in section 4.3 "Motivation" and to satisfy the OMA Architecture requirements [ARCH-REQ] which focuses on:

· High-level functional and system requirements that describe the need for architecture integrity, scalability, interoperability and the elimination of silo designs and hence the reduction of integration and deployment complexities and the importance of security, usability and privacy;

· Overall system element requirements that describe general enabler and interface requirements.

In general, the OSE addresses the issues as described in section 4.3 "Motivation" by simplifying:

· The controlled exposure of resources to internal and Third Party application developers, in order for them to create and run compelling new services;

· The integration and management of resources;

· The evolution of OMA’s current silo-like conglomerate architecture to an integrated unified and well coordinated OMA service enabler environment.

The use of the OSE will lead to:

· Rapid development and deployment of new and innovative applications;

· Reuse of OMA enablers and the reduction of silos;

· Opening up service creation to Third Parties while protecting the Service Providers assets;

· Enabling the use of varied business models for services;

· Broadening of the developer pool;

· Making automated management of business relationships possible;

· Development of an evolution path for an integrated and unified service enabler environment.

The remainder of this document will further elaborate on these topics.

4.2 Targeted audience and document intention

This document is targeted at OMA members, other specification-defining organizations, and companies who want to make use of OMA-defined specifications.

The intention of the OSE is to:

· Provide guidance to specification writers when creating new or evolving existing OMA enablers;

· Assist in understanding the relations and interactions between OMA enablers as well as non-OMA resources, specifically to encourage and simplify reuse.

4.3 Motivation

4.3.1 Existing service development and integration

Service architectures specified today are created by standards bodies and are targeted at a particular service. When individual enablers are defined without the benefit of an overall architecture, each enabler will be forced to define all functions required to fulfil its requirements. This monolithic approach to enablers creates a number of issues for the Service Provider:

· Integration and deployment of services is complicated and expensive;

· High implementation efforts for applications wanting to use several capabilities;
· There is no common integration of the different services from the point of view of the end-user (e.g. no common group management or user profile across multiple services).

The term silo has become popular in this context as it highlights the fact that the implementation of the service has been done by integrating different components vertically and per-service. Implementation and integration work done for one service cannot be reused in others due to the lack of standards.

The silo nature of both standards and products results in a number of problems that raise costs and slow down deployment for new services. From a Service Provider's perspective:

· Integration with underlying network infrastructure must be repeated for each deployment, which results in duplication of integration work;

· Many functions and their associated data are duplicated with the introduction of new services, e.g. each service implementation tends to have its own subscriber database, or its own way of authenticating end-users or accounting for service usage;

· Sharing of, for example, the preferred notification method (email, SMS or voice call) across services requires costly integration activities.

Another problem of the silo architecture is that each service comes typically with its own management facilities, and the way the service is actually deployed in the network is also different. In addition the silo architecture of services also requires detailed knowledge about the network to integrate service implementation with the underlying network infrastructure, or with end-user equipment, e.g. terminals. Some components, such as user profiles need to be developed again for each service and cannot be reused for other services. The result is non-satisfactory time-to-market as well as high costs and inconsistent user interfaces across multiple services.

4.3.2 End-user perception

From an end user perspective, the independent deployment of services leads to inconsistent user experience when using different services offered by a single provider or even when using the same service across different environments (e.g. caused whilst end-user is roaming). From the end-user perspective the inconsistency in user experience arises because of:

· Inconsistent reuse of user information, preferences, privacy settings, etc;

· Lack of service continuity caused by user mobility and service mobility;
· End-users inability to choose how services are accessed and used;

· Limitations in the end-user's perception of their relationship and interaction with other actors (e.g. mobile operators and enterprises), and the roles that each actor fulfils, within the user mobility and service mobility eco-system.
4.3.3 OMA enablers and enabler reuse

The main role of OMA is the specification of OMA enablers, which provide for a number of benefits:

· Enablers provide interoperable components that enable the interaction between different components and applications developed by different providers (e.g. device and network suppliers, information technology companies and Content and Service Providers);

· The specification of enablers reduce deployment efforts and allow the same applications to operate across a wide variety of environments in a consistent manner;

· The specification of enablers also allow for reuse, so that commonly used functions can be provided for by standard components, instead of recreating those same functions in each application.

The latter point emphasises the need to identify potential areas of overlap, especially where OMA provides more than one way of providing the same capability. This is true within a particular area (e.g. location or instant messaging) where there previously existed more than one organization that targeted the same standardisation effort, but also across areas where often the same capabilities are needed, but are provided in different ways.

An integral part in the development of the OSE is to promote the reuse of common functions that may be used by other OMA enablers and non-OMA resources, and to create new OMA enablers that provide those common functions.

In addition, the OSE encourages the identification of gaps between existing standards by analysing different standards (see [ARCH-INVEN]), and if a gap is detected and its associated function is identified as benefiting from standardization, then this gap is a potential candidate for a new OMA enabler.

4.4 OMA silo architectures

OMA produces open specifications to create building blocks to provide services to end-users or to maintain or enhance the environment in which services are provided. As described in section 4.3 "motivation" these specifications have been developed, in most cases, without a concern for how they interact with each other, nor do they seek to provide unified and consistent structure by, for example, identifying potential areas of overlap and avoiding duplication. For a detailed architecture view of OMA silo architectures, which must be avoided in future OMA enabler design and specification, refer to [ARCH-INVEN].

5. The OSE Architecture

5.1 Architecture requirements and principles

The OSE architecture is based on the OMA architecture principles [ARCH-PRIN] and developed to satisfy the OMA Architecture Requirements [ARCH-REQ]. The Architecture requirements document [ARCH-REQ] describes both functional and system requirements that need to be satisfied by the OSE. The Architecture requirements document [ARCH-REQ] also implies the need for a set of interfaces. These interfaces and the associated OMA architecture requirements are described in Appendix B.

Additionally, the OSE focuses on several key concepts that address the issues as described in section 4.3 "Motivation".

The OSE architecture can be realized using the specifications, as defined by, for example, Parlay OASIS, JCP and Liberty Alliance. The key principles of the OSE are described in the following sections.

5.1.1 Intrinsic functionality

Intrinsic functions are those functions that are essential in fulfilling the intended task of the specified enabler. For example, the Position Calculation function is Intrinsic to Secure User Plane Location; Authentication is intrinsic to Single Sign On; Encryption is an intrinsic function of Digital Rights Management.

Non-Intrinsic functions are those functions that are not essential in fulfilling the intended task of the specified enabler. For example, Authentication is a non-intrinsic function to Data Synchronisation; Encryption is a non-intrinsic function of Device Management.Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's specification. An enabler's specification should only specify the intrinsic functionality required to fulfil its actual function.

However, the classification of intrinsic and non-intrinsic functions is relative to its usage by another enabler (see previous example for Encryption).

The classification of intrinsic and non-intrinsic is subjective and needs to be done on a per enabler basis.
5.1.2 Delegation and reuse of enablers

Enabler specifications should reuse existing specifications where possible. This approach includes the reuse of existing OMA enabler specifications whenever possible (e.g. reuse of presence and group management enablers by the PoC enabler). Enabler specifications must specify how to interface to (i.e. invoke) their functions.

As a result of enabler specifications reusing other enabler specifications, the vertical silo problem can be reduced. The integration of new applications and enablers into the Service Provider environment can be simplified. Enabler implementations may reuse other enablers located in either the same Service Provider environment or across different Service Provider environments.

An enabler implementation can invoke any standardized function, such as authentication or group management, that it needs to satisfy its intrinsic functions defined in its specifications.
5.1.3 Protection of enablers and resources

In order to protect the underlying Service Provider's resources from unauthorized requests and to manage the use of these requests it is important that the OSE enables the exposure of OMA enablers, other functions, resources and applications to each other in a controlled manner. It is also important that the OSE architecture manages the procedures applied to enablers and applications that reside either in the same environment or across different environments.

5.1.4 Extensibility

In the Service Provider environment, implementations of the OMA enablers expose standard interfaces for application and enabler use. These enabler implementations connect to the actual resources present in the Service Provider domain. Through this abstraction, it is possible to add or modify the underlying resources without affecting the interface exposed by the enabler implementations (and therefore without affecting the applications), something that is especially important when using multiple vendors, supporting different network technologies or relying on different providers.

New enablers can be introduced into a Service Provider domain by developing an enabler implementation that may connect to an underlying resource in the Service Provider's environment.

The enabler’s interfaces are offered by the enabler implementations for use by applications or other enabler implementations. The interfaces follow the OMA specifications and they are technology specific realizations of the specified interfaces (e.g. web services, Java).

The enabler's interface(s) can be registered with the (proposed) discovery enabler to allow applications to dynamically bind to the destination enabler.

One way of controlling access to enablers is to use policies. Policies can be loaded dynamically for policy evaluation and enforcement to protect the enabler.

When required, Policy definitions may help in extensibility by using the delegation mechanism.

Life cycle management interfaces are expected to provide support for upgrade of enablers when new releases are installed and deployed.

5.2 OSE conceptual model

5.2.1 General

This section describes the Conceptual Model of the OSE, which is the set of concepts and architectural elements that comprise a high-level definition of the OSE.

Figure 1 illustrates the Service Provider portion of the OSE architecture. This view focuses on identifying and positioning the different elements present in the OSE.

The OSE Architecture does not specify where architectural elements (e.g. applications, enablers, etc.) reside. For example, the architectural elements may reside in a Mobile Operator’s network, or on mobile terminals.

Thus, throughout this document, the OSE conceptual model also applies to a user terminal.

NOTE to the Reader: Further details about the OSE and the terminal will be provided in future releases of the OSE.

The OSE does not mandate any enabler in the Service Provider domain. This allows flexibility in how OMA enablers are implemented and deployed.

[image: image2.wmf]SP portion of OSE Picture

Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Policy Enforcer

Applications

…

…

Enabler

implementation

Service Provider

Domain

To Resources in

Operators, terminals, Service Providers

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Figure 1 – Generic view of the OSE architecture.

Each concept and architectural entity is described in the subsequent sections.

5.2.2 Enabler

The enabler (or its long form Service Enabler) concept is pervasive in OMA because enablers are the primary products of OMA (e.g. Enabler Releases and Enabler Packages). An enabler should specify one or more public interfaces.

Examples of OMA enablers include Location or Device Management.

The term enabler is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Service Enabler - A technology intended for use in the development, deployment or operation of a Service; defined in a specification, or group of specifications, published as a package by OMA.
5.2.3 Enabler implementation

Although specifications created by OMA are technology-agnostic regarding their implementation (as described by [ARCH-PRIN]), the reality is that enablers will be implemented in real deployments of service environments. Consequently, this document defines Enabler Implementations as an element in the OSE and it literally represents an implementation of an enabler, e.g. either in a Service Provider domain or in a terminal. An enabler implementation can be viewed as a template that represents an implementation of any enabler (e.g. MMS) as defined by OMA. When an enabler specifies multiple entities (e.g. client and server, multiple clients or multiple servers) and their interactions, each of these entities can be implemented as separate enabler implementations (e.g. client enabler implementation and server enabler implementation).

The OSE makes no restrictions on how enabler specifications are implemented.

Enabler implementations provide standardized functions. The enabler implementation may amalgamate, abstract and/or repackage a resource, and present its functions through an interface after binding to a particular syntax.

Enabler implementations expose life cycle management interfaces (e.g. start, stop, trace, etc) that allow the Service Provider to use infrastructure capabilities to manage the enabler's components.
OMA defines many enablers such as location and device management. In addition, other functions (e.g. authentication, access control, discovery and directories) may be provided either through enabler implementations, infrastructure features or applications (e.g. Third Party management and transaction management) available in the environment.

Enabler implementations may be invoked by applications or other enabler implementations.

The enabler implementations process the messages as defined by the enabler specification. The binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

5.2.4 Interfaces

The term Interface is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Interface: The common boundary between two associated systems (source: [GSM 01.04, ITU-T I.112]).
This document defines several generic interfaces for the OSE. See “Section 5.3” for more information about these interfaces.

Enabler specifications typically define interfaces to:

· Invoke the intrinsic functions of the enabler specification in an interoperable manner;

· Support interoperability between entities of an enabler;

· Allow the ability to provide life-cycle management of enablers.

However, as a fundamental principle of OMA (see [ARCH-PRIN], enabler specifications do not specify technology-specific Application Program Interfaces (API). The OSE does not specify any APIs.

NOTE: The OSE does not specify any Reference Points (see [OMA-DICT] for a definition of Reference Point).

5.2.5 Enabler interface bindings

Interfaces must be specified in a language neutral manner. However, specifications may also define language specific bindings for the interfaces. Enabler interface bindings provide the specific formats (i.e. syntax and protocols used to access enablers using particular programming languages (e.g. Java or C) or network protocols (e.g. web services).

5.2.6 Resources

A Resource in this document is an abstract concept that represents a capability, e.g. a network element, in a Service Provider’s domain. In the OSE, an enabler implementation may directly invoke or access a resource.

5.2.7 Applications

The term Application is formally defined in [OMA-DICT] but is copied here for the convience of the reader:

Application: An implementation of a related set of functions that perform useful work, often enabling one or more services. It may consist of software and/or hardware elements.

Applications are identified as an element in the OSE because they are a primary means for initiating and consuming an enabler. For example an application may directly invoke an enabler implementation to deliver a service.

Applications may be located anywhere in a service environment including a mobile terminal.

5.2.8 Service Provider Execution Environment

A full service lifecycle model for services has been defined by the TeleManagement Forum [TMF], and mapped to the eTOM (extended Telecommunications Operations Map). This mapping is defined in an abstract way, which can be adapted to any deployment environment. In accordance Architectural Principle #2 (see [ARCH-PRIN]), OMA should re-use this model.

NOTE: The following is a simplified model that forms a framework for the detailed description of the life-cycle model, which is achieved by mapping the high-level model onto the eTOM [TMF].

The high-level model of the service life cycle contains the following operations/phases:

· Develop;

· Sell;

· Provide;

· Bill;

· Service;

· Report;

· Modify/Exit.

Within the scope of OSE, the Service Provider Execution Environment provides support for software life-cycle management functions. Such functions may be used during the service life-cycle phases defined by [TMF].

The Service Provider Execution Environment is an element in the OSE. This execution environment or platform logically encompasses various functions such as process monitoring, software life cycle management, system support (e.g. thread management, load balancing and caching), operation, management and administration that allow the Service Provider to control enablers. The functions within the Service Provider Execution Environment may not be directly exposed to applications, however these functions may be directly invoked by enabler implementations. In addition, resources can rely on these functions and may assume that the functionality of the Service Provider Execution Environment is available. Software life cycle management includes a set of functions of the Service Provider Execution Environment and can be implemented as a separate enabler, or it may be distributed over several enablers.

Then, in the Service Provider environment, certain software life-cycle management functions are needed to provide basic support to the enabler implementations.

The software life-cycle management functions include but are not limited to:

· Creation;

· Software deployment;

· Software Management:

· Process Activation & deactivation (e.g. actuation);

· Dependency management;

· Upgrade;

· Removal;

· Fault management (e.g. logging and SNMP traps);

· Performance management (e.g. measuring).

For further information on TMF and mapping to the eTOM and the SID (Shared Information/Data model) of the TMF, see [TMF].

5.2.9 Policy Enforcer

If required, the OSE provides a policy-based management mechanism to protect the underlying Service Provider's resources from unauthorized requests and to manage the use of these requests through appropriate charging, logging and enforcement of user privacy or preferences.

The OSE architecture also manages the procedures applied between enablers and applications that reside either in the same environment or across different environments.

5.3 Interfaces of the OSE

Figure 2 illustrates the interface categories of the OSE architecture.

[image: image3.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Enabler

implementation

I0

I0+

P

I1

Service Provider

Domain

Policy Enforcer

To Resources in

Operators, terminals, Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

I0+

P

Figure 2 – Classification of interfaces in OSE

Table 1 contains a list of the OSE interface categories including their definition and additional comments.

The interfaces defined in this section are abstract interface categories. For example, the I0 interface represents the categories of interfaces that enabler specifications (e.g. the OMA Location enabler) define.

Table 1: Interface Categories of the OSE Architecture

	Interface category
	Definition
	Comments

	I0
	I0 is the category of interface to an enabler's intrinsic functions.

I0 interfaces are exposed to applications and enablers when no policies are applied.

I0 interfaces are specified by OMA (see note 1).
	I0 may encompass interfaces to what in some areas are called “service building blocks” like location and messaging, as well as to traditional “business support functions” like subscriber management.

(See note 2)

	 I0+P
	I0+P is the category of interfaces that results from the application of policies to the enabler’s I0 interface. (See the definition of Parameter P for more information.).

This is the category of interface that is exposed to applications and enablers when policies are applied.
	The Policy Enforcer may add Service Provider required parameters (P) to the enabler’s interface (I0), based on Service Provider-defined policies (e.g. credentials or account information as imposed by security policy etc).

(See note 3)

	I1
	I1 is the category of interfaces between enablers and the Service Provider Execution Environment (e.g. software life cycle management process and monitoring etc.).

The I1 interfaces may be specified by OMA (see note 1).
	

	I2
	I2 is the category of interfaces used by enablers to describe how to invoke an underlying resource's function.

Such interfaces are not defined by OMA.
	I2 may encompass interfaces to underlying networks (i.e. mobile operator’s network) as well as to backend resources (i.e. BSS, O&M)

(See note 2).

NOTE 1: A new interface can be specified by OMA or OMA can make reference to an existing interface.

NOTE 2: Further elaboration on I0 and I2 interfaces may be provided in future versions of the OSE.
NOTE 3: See section 5.4 “Applying the OSE Architecture” for a detailed explanation of implications of Policy management on enabler interfaces.

5.4 Applying the OSE architecture

NOTE to the Reader: Section 5.4 contains information about OMAs proposed Policy Enforcement, Evaluation and Management (PEEM) enabler. The information in these sections describes work in progress.

5.4.1 Controlled exposure of enablers and resources

If required by the Service Provider, a Policy Enforcer enabler implementation provides a consistent and possible centralized management mechanism to facilitate controlled access to enablers and resources exposed by the Service Provider. The Policy Enforcer provides a mechanism for Service Providers to enforce policies for, e.g. security, access control, privacy, or charging, on any request into a Service Provider resource (see Figure 3).

[image: image4.wmf]Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Policy

Enforcer

To Resources in

Operators, terminals, Service Providers

Policy Enforcer enforces

policies on request

(relying on available

enablers)

Applications

Third Party

–

Un

-

trusted Domain

Enabler

implementation

Enabler implementation

issues a request to another

enabler resource

Policy Enforcer enforces

policies on requests

between enabler

implementations

Appropriate request

reach target enabler

Application issues a

request to an enabler

Appropriate request

reach target enabler

Enabler implementation

issues a request to another

enabler resource

Service Provider

Domain

Applications

Request invokes the

target resource of the

Enabler implementation

1a

1c

1d

2a

2c/3c

3a

2d/3d

4a

4d

4b

1b

2b/3b

Application issues a

request to an enabler

Policy Enforcer

enforces policies on

request

(relying on available

enablers)

4c

Figure 3 - OSE Flows

The Policy Enforcer is required to support enforcement by supporting policies that are able to invoke, for example, authentication and authorization, when an enabler implementation is able to delegate (or reuse), for example, authentication and authorization.

The Policy Enforcer may use enablers to evaluate and enforce the policies that have been specified by the Service Provider and/or the target enabler. The Policy Enforcer may also be used to compose enablers into higher-level functions.

The Policy Enforcer can be invoked by any other authorized (as determined by the policies associated to the Policy Management) element of the OSE to evaluate and enforce policies.

The Policy Enforcer applies the same rigid procedures for enablers and applications that reside either in the same environment or across different environments. This is achieved by having the Policy Enforcer process all requests to and from the enabler implementations and enforce the appropriate policies.

The Service Provider who provides a resource may set policies. These Policies may also be combined with other Policies derived from preferences or rules set up by end-users or from the terms and conditions (Service Level Agreements) agreed for third parties to use a resource. Service Providers may also enforce additional policies on behalf of other parties.

The Service Provider will only associate policies (and the resulting evaluation and enforcement) to an enabler implementation that is able to delegate functionality.

Components providing policy enforcement are not required to be deployed in the OSE when deployments do not need policies to be applied to exposed enabler implementations. When an enabler is able to delegate functions such as authentication, the Service Provider can supply policies enforced by the Policy Enforcer to perform these functions.

5.4.2 Using the exposed resources

Figure 4 illustrates the steps of determining which interfaces are associated to a target enabler. Steps 1a/1b describe two alternative steps at application development time. Step 1c is an alternative discovery process that can take place at execution. After the establishment of a relationship, a third party can discover the resources exposed by the Service Provider. This may be achieved through the use of a discovery service or enabler. It is also possible that the interfaces of a resource are communicated with other exchanges between the Service Provider and the application developer when developing the application.

After the applications bind to the enabler interfaces the Policy Enforcer processes the exchanges to control third party access to the enablers. The Policy Enforcer at a logical level controls any exchange. However, there may be cases when the policy to be applied may be a zero policy whereby the Policy Enforcer does not process the request. In this case, since the Policy Enforcer does not process the requests, the Service Provider may choose not to deploy the Policy Enforcer.

[image: image5.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Discovery

enabler

implementation

Service Provider

Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface

description provided through

another communication

Application

calls enabler

1b

2

4

1c

Possible discovery of

Interface by application

at execution

Application

Developer

1

Policy

Enforcer

Enforces policies

1a

To Resources in

Operators, terminals, Service Providers

5

3

Figure 4 - Third Party engagement steps

5.4.3 Implications of policy management on enabler interfaces

5.4.3.1 Interfaces towards Third Parties

The Policy Enforcer provides controlled access to enablers and resources exposed by the Service Provider. The enabler implementations process messages as defined by the enabler specification. The binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

5.4.3.2 Interface I0 and I0+P
Appropriate design of the enabler specifications should allow the separation between the Service Provider-defined parameters (P) and the parameters core to the enabler interface (I0).

Depending on the technology choices made to implement the enablers, interface I0+P may not contain Service Provider-defined parameters. It is possible for the Policy Enforcer to apply policies on flows using interface (I0) and not to apply policies on flows using interface I0+P.

This distinction between interface I0 and I0+P allows the enabler developer to implement the enabler interface (I0) specification, which requests only the parameters associated to the enabler core functionality.
However, in general, interface I0 and I0+P could be considered as being different interfaces. Therefore, if an enabler has been designed to be reused by other enablers or applications, the enabler interface (I0) should only support the procedures and parameters needed to invoke the enabler's core functions, for example, location parameters in the location enabler.
When the Service Provider imposes policies, for example, when requiring authentication, authorization or charging, the request towards the enabler must deliver the necessary information. However, considering that the enabler interface (I0) is only capable of supporting the enabler's core procedures and parameters (e.g. location parameters) it is necessary for the Policy Enforcer to utilise interface I0+P and process the authentication, authorization or charging parameters to ensure that the Service Provider's imposed policies are satisfied.

An enabler developer implements the enabler interface (I0) that requests only the parameters in interface (I0). Service Providers are then able to request additional parameters (e.g. charging tokens, identity credentials), as needed by their policies, in order to correctly access the resource. These additional parameters constitute I0+P. This however does not affect the application developer and application portability.
5.4.4 Deployment options

Policy Enforcer is a logical element of the OSE. The Policy Enforcer may be realised by the OMA PEEM enabler.

Deployment options for the Policy Enforcer functionality include:

· A standalone enabler implementation that uses other standalone enabler implementations to evaluate and enforce policies. Such an enabler implementation would be deployed as a separate component from other enabler implementations (see Figure 5, Case 3).

· In the deployment as depicted in Figure 5, Case 2b.Policy Enforcer functionality forms an integral part of the enabler implementation and is therefore not directly available to perform policy evaluation and enforcement for any other enabler implementations. In this case, the Policy Enforcer implementation performs its functionality and then passes execution control to the bundled enabler implementation. The Policy Enforcer implementation is not designed to pass execution control back to the implementation that invoked it, or forward to any implementation other than the one it is bundled with.
The Policy Enforcer entity may transparently intercept requests towards enablers or resources when they enter the Service Provider environment.

Enabler implementations may explicitly invoke the Policy Enforcer. Such an implementation may be the targeted for a request. However, on reception of the request the PEEM implementation may forward the request to another enabler implementation.

[image: image6.wmf]Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non

-

intrinsic function

Figure 5 - Target Policy Enforcer deployments (with flows)

6. Implications on enabler specification writers (normative)

The OMA architecture principles [ARCH-PRIN] and the OMA Architecture Requirements [ARCH-REQ] states that enabler specifications should reuse existing specifications where possible. This approach includes reuse of existing OMA enabler specifications whenever possible (e.g. reuse of presence and group management enablers by the PoC enabler).

· If applicable, an enabler MUST specify or reference one or more interfaces for its intrinsic functionality that will be used to interface to (i.e. invoke) its functions.

· If an enabler depends on already defined OMA functions, it MUST identify which other enablers' intrinsic functionality it will invoke to perform these already-defined OMA functions.

· An enabler MUST specify or reference only the functions, protocols and invocations that are essential (i.e. core) to its purpose
Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's specification. An enabler's specification should only specify the intrinsic functionality required to fulfil its actual function.

For example, some enablers require having an identifier for the requesting entity. The requirement to perform the enabler's function is that there be a way to distinguish one requestor from another. It is not a requirement for the requestor's identity be verified using any particular mechanism (e.g. password, certificate, biometrics). The need to authenticate the requestor is a policy statement under the control of a Service Provider. It is not required to perform the function of the enabler. Therefore, the authentication process is outside the scope of the enabler specification, allowing it either to be implemented as an added value by the enabler implementation or left to the policy enforcer enabler.

7. Migration from OMA silo enabler architectures towards the OSE using Policy Enforcement

7.1 Enabler implementations and deployments

NOTE to the Reader: Section 7 contains information about OMAs proposed Policy Enforcement, Evaluation and Management (PEEM) enabler. The information in these sections describes work in progress.

An enabler implementation can invoke any standardized function such as authentication, charging or Group Management, which are required to satisfy the enabler specification (i.e. the principle of delegation and reuse). Some of these function invocations may be triggered as a result of a policy decision. The enabler implementation can accomplish those policy triggered function invocations (e.g. authorization) either by:

· Implementing the function (e.g. authentication) itself (Figure 6, Case 1);

· Performing the policy evaluation and enforcement itself by invoking a separate (modular) implementation that performs the function. Figure 6, Case 2a makes use of a constrained policy evaluation and enforcement mechanism where the vendor supplying the enabler implementation determines which operations (i.e. policies) the enabler implementation can invoke (i.e. there is a built-in, non-changeable selection of policies to be evaluated and enforced). Figure 6, Case 2b illustrates a full policy evaluation and enforcement mechanism that allows the Service Provider to determine which operations (i.e. policies) the enabler implementation invokes;

· Delegating the invocation to a policy evaluation and enforcement entity that will invoke a separate (modular) implementation that performs the required operation Figure 6, Case 3.

To summarize the distinctions between these choices:

· For Figure 6, case 1, the implementation of the operations is done in the enabler implementation;

· For Figure 6, case 2a and 2b, the implementation invokes other separate components to perform the operations, which allow all enabler implementations in the deployment to use the same operation and enabler implementations and reduce the silo effect;

· For Figure 6, case 3, the implementation invokes a separate component to perform the policy evaluation and enforcement, which itself may invoke separate components to perform the operations.

Figure 6, Cases 1 and 2a are consistent with the OSE Policy Enforcer described earlier and correspond to the current silo situation.

[image: image7.wmf]Bundled

Policy Enforcer

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 1

PEEM

Enabler

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non

-

intrinsic function

Figure 6 - Examples of Policy Enforcer deployments (with flows)
7.2 Migration through the use of PEEM

In addition to the Policy Enforcer deployments using OMA enablers as described in Figure 5, Cases 3 and 2b in section 7.4 "Deployment Options", the current OMA silo architecture permits vendors to implement their own policy enforcement according to the following deployment options:

· A bundled Policy Enforcer implementation that uses other separate enabler implementations to evaluate and enforce policies. The bundled Policy Enforcer enabler implementation is an integral part of another enabler implementation and is not available to perform policy evaluation and enforcement for any other enabler implementations. The Policy Enforcer implementation does not have the full generality of an PEEM enabler implementation, e.g. the choice of policies to evaluate and enforce might be determined at implementation design time (see Figure 6Case 2a);

· A bundled Policy Enforcer implementation that performs its own policy evaluation and enforcement without using other enabler implementations to evaluate or enforce policies. The Policy Enforcer implementation does not have the full generality of a PEEM enabler implementation, e.g. the choice of policies to evaluate and enforce might be determined at implementation design time (see Figure 6, Case 1).

All four identified cases, as described in Figure 6, map into the OSE logical architecture and associated flows. Cases 1 and 2a map into the OMA silo enabler architectures, where Cases 2b and 3 represent the OSE architecture and enablers.

As a result, PEEM is logically present across each reference point, as described in [ARCH-INVEN]. Specific Service Provider deployments may not require any policies to be enforced, in which case the Service Provider may not to deploy a PEEM enabler implementation.

In some cases, specific Service Provider deployments may require policies to be enforced by PEEM only across some Reference Points, in which case the Service Provider may choose to deploy a PEEM enabler implementation only on those Reference Points.

Without requiring any changes to existing enabler specifications, Service Providers can introduce an implementation of the PEEM to perform policy enforcement operations that do not conflict with existing enabler implementations. For example, an enabler may specify its own methodology for ensuring security, which means that conforming enabler implementations must implement the defined security methodology. However, PEEM could be used for functions not defined by the enabler and not provided by the enabler implementation.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	OMA-Service_Environemt-V1_0
	07 Sep 2004
	OSE version 1_0

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Candidate Version

OMA-xxyyz-V1_2
	16 Sep 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

Appendix B. Deriving an OMA Service Environment architecture

The OSE architecture contains a set of interfaces that are specified by OMA. The Architecture requirements document [ARCH-REQ] implies the need for a set of interfaces. These interfaces could be implemented in various ways, e.g. as one component (software module) for each interface, one single component implementing all interfaces, or a mixture of these two options.

The following interfaces are derived from the Architecture requirements document [ARCH-REQ]. Each interface is cross-referenced to one or several Architecture requirements.

Derived OMA Architecure Interface:

1. Interface for operations and management (Cross referenced with [ARCH-REQ] 6.3.3#1)

2. Interface for the discovery of service enablers (Cross referenced with [ARCH-REQ] 6.3.2#1; 6.3.2.1#3, #5; 6.1.3#11)

3. Interface for the registration of service enablers (Cross referenced with [ARCH-REQ] 6.3.2.1#4, #5)

4. Interface for the discovery of services (Cross referenced with [ARCH-REQ] 6.3.2.1#2)

5. Interface for the registration of services (Cross referenced with [ARCH-REQ] 6.3.2.1#1)

6. Interface for discovery of conditions for the use of service enablers (Cross referenced with [ARCH-REQ] 6.1.3#11)

7. Interface towards a policy management mechanism (Cross referenced with [ARCH-REQ] 6.1.3#12; 6.1.5#5)

8. Interface to provision services, service enablers and user parameters (Cross referenced with [ARCH-REQ] 6.1.5#4)

9. Interface for subscription management (Cross referenced with [ARCH-REQ] 6.1.3#13)

10. Identity management mechanism associating device identification with federated identity (Cross referenced with [ARCH-REQ] 6.1.3#8, 9, 10; 6.1.1#11)

11. Interface to network exposing network characteristics (Cross referenced with [ARCH-REQ] 6.1.3#8)

12. Interface to charging (to gather accounting and charging information) (Cross referenced with [ARCH-REQ] 6.1.2#2)

13. Interface to authentication function (Cross referenced with [ARCH-REQ] 6.1.1#1)

14. Interface to authorization function (Cross referenced with [ARCH-REQ] 6.1.1#14)

15. Interface from authorization function to charging enabler (and the reverse) (Cross referenced with [ARCH-REQ] 6.1.1#14)

16. A method to connect between identity, authorization, and authentication components, e.g. cookies or other session tokens (Cross referenced with [ARCH-REQ] 6.1.1#14)

Policy (constraints) in all interfaces (Cross referenced with [ARCH-REQ] 6.1#16)

Access to "back-end systems" (charging , accounting, payment, provisioning , Operations & Management , etc.) can be realised by interfacing these through a component, and using the standard OMA interfaces between the enabler and the component.

Editor’s note: A mapping between these interfaces and the interface categories listed in the following chapter may be provided in future OSE releases
Analysed OMA Architecture requirements:

· ([ARCH-REQ] 6.1# 16) When authorized, Principals MUST be able to set policies (e.g. charging policies and privacy policies) on any request (including discovery)

· ([ARCH-REQ] 6.1.1#1) The OMA Service Environment MUST provide mechanisms for authentication of users, applications and third-party Service Providers, and authorization for the use of service enablers across and within Service Provider domains.

· ([ARCH-REQ] 6.1.1#5) The OMA Service Environment MUST enable single sign-on and single log-out to span enablers in a single domain or across multiple Service Provider domains. One-time authentication or a SSO MUST remain valid throughout a continuous session

· ([ARCH-REQ] 6.1.1#11) The OMA Service Environment MUST support a mechanism to federate and de-federate identity information across Service Provider domains.

· ([ARCH-REQ] 6.1.1#14) The OMA Service Environment MUST provide an interface between the authorization function and the charging enabler.

· ([ARCH-REQ] 6.1.2#2) The OMA Service Environment MUST provide an interface where Accounting and Charging information is to be gathered.

· ([ARCH-REQ] 6.1.3#3) The OMA Service Environment MUST enable the communication of service monitoring data (e.g. performance measurements) between actors.

· ([ARCH-REQ] 6.1.3#5) The OMA Service Environment MUST provide the means to manage the activation, registration, authentication, and authorization of users and service components.

· ([ARCH-REQ] 6.1.3#8) The OMA Service Environment MUST provide a mechanism by which device and network information can be communicated to an authorized third-party (with respect to the information holder) in a manageable way. This mechanism MUST allow for the automated discovery of new devices and new characteristics in existing devices.

· ([ARCH-REQ] 6.1.3#9) The OMA Service Environment MUST provide a mechanism to enable Third-Parties to obtain an identification for an end-user who uses a particular device to access authorized third-party applications.

· ([ARCH-REQ] 6.1.3#10) The OMA Service Environment MUST provide a mechanism to allow Third-Parties to discover the device(s) currently used by an end-user, if registered on a network (e.g. where to send a notification to the employee).

· ([ARCH-REQ] 6.1.3#11) The OMA Service Environment MUST provide a mechanism for an authorized third-party to discover the conditions for using a service enabler exposed by a particular Service Provider in a dynamic manner.

· ([ARCH-REQ] 6.1.3#12) The OMA Service Environment MUST support a mechanism for Service Providers and other authorized actors to enforce the conditions for use of a service enabler.

· ([ARCH-REQ] 6.1.3#13) The OMA Service Environment MUST have a single logical point that handles subscriber and subscription information.

· ([ARCH-REQ] 6.1.5#4) The OMA Service Environment MUST provide a common mechanism for Provisioning of services, service enablers and user parameters.

· ([ARCH-REQ] 6.1.5#5) The OMA Service Environment SHOULD provide a mechanism to manage and use policies (e.g. access policies, charging polices, service level agreements, etc.).

· ([ARCH-REQ] 6.3.2#1) The OMA Service Environment MUST have a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler.

· ([ARCH-REQ] 6.3.2.1#1) The OMA Service Environment MUST support Service Registration for Services visible to the end-user.

· ([ARCH-REQ] 6.3.2.1 #2) The OMA Service Environment MUST support Service Discovery for services visible to the end user.

· ([ARCH-REQ] 6.3.2.1#3) The OMA Service Environment MUST support Discovery for an implementation of a Service Enabler.

· ([ARCH-REQ] 6.3.2.1#4) The OMA Service Environment MUST support Registration for any implementations of a Service Enabler.

· ([ARCH-REQ] 6.3.2.1#5) Within the OMA Service Environment it MUST be possible to register, discover, and retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier).

· ([ARCH-REQ] 6.3.3#1) The OMA Service Environment MUST define a common interface for the operations and management (O&M) of both common and service-specific enablers or applications (including service monitoring and end-to-end service delivery).

Appendix C. Reference Points versus Interfaces

It is possible to model interactions between architectural entities by means of:

Interfaces: Interfaces solely focus on how the resource can be interacted with, independently of what interacts with the resource (see Figure 7).

[image: image8.emf]Resource

Interface:

potentially “anybody”

can connect

Figure 7 - Schematic view of an interface

Reference Points: Reference points explicitly enumerate the end points that can interact with the resource. A Reference Point is a conceptual point at the conjunction of two non-overlapping functional groups (source: [ITU-T I.112]). It consists of none or any number of interfaces of any kind. This means a Reference Point can host more than one transport protocol or payload. If a Reference Point is defined between two architectural entities, it does not necessarily require an interface (transport protocol, payload, API, etc.) to be associated at all. This means the two architectural entities can communicate using any protocol over any interface (it is not defined, but the communication relationship exists).

There is always only one or no Reference Points between the same two architectural entities, no matter how many interfaces, protocols or APIs may exist between the two (see Figure 8).

[image: image9.emf]Resource

Reference Point:

explicitly connects each

partner

Resource

Figure 8 - Reference Point schematically

Reference points are commonly used in communities that specify, design, implement or deploy network-level systems (e.g. Telecommunications environments). Communities that specify, design, implement, or deploy software systems rather rely on interface descriptions (e.g. IT environments).

However, the two approaches provide equivalent views of the system either through the interfaces that it exposes or through reference points that typically explode each interface into multiple reference points; one per end point / architectural entity that can interact with the system through that interface. References points (between two end points) that support multiple transport protocols map to one interface with multiple interface realizations.

The relationship of interfaces to reference points is illustrated in Figure 9.

[image: image10.wmf]System 1

System 2

System 3

Resource

RP1

RP2

RP1

Figure 9 - Equivalency of interface point of view and reference point of view

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

_1154453062.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Policy Enforcer

Applications

…

Enabler

implementation

Service Provider

 Domain

To Resources in

Operators, terminals, Service Providers

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

_1154460645.ppt

Bundled

Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 1

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non-intrinsic function

_1154460683.ppt

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non-intrinsic function

_1154453179.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

I0

I0+P

I1

Service Provider

 Domain

Policy Enforcer

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

I0+P

To Resources in

Operators, terminals, Service Providers

_1150113610.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Policy

Enforcer

To Resources in

Operators, terminals, Service Providers

Policy Enforcer enforces policies on request

(relying on available

 enablers)

Applications

Third Party – Un-trusted Domain

Enabler

implementation

Enabler implementation

issues a request to another enabler resource

Policy Enforcer enforces

policies on requests

between enabler

implementations

Appropriate request

 reach target enabler

Application issues a

request to an enabler

Appropriate request

reach target enabler

Enabler implementation

issues a request to another

 enabler resource

Service Provider Domain

Applications

Request invokes the

target resource of the

Enabler implementation

1a

1c

1d

2a

2c/3c

3a

2d/3d

4a

4d

4b

1b

2b/3b

Application issues a

request to an enabler

Policy Enforcer

 enforces policies on request

(relying on available

 enablers)

4c

UNKNOWN-0.ppt

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OMA-ARC-2004-0XXX_Presentation_0068_0069_0070_0071_0077:

OMA-ARC-2004-0068-OSE_Proposal

OMA-ARC-2004-0069-OSE_Topology

OMA-ARC-2004-0070-OSEproposal_mapped2_ARCHREQ

OMA-ARC-2004-0071-EPEM_Optionality for OSE

 OMA-ARC-2004-0077-LATE Restructure Proposal for 0068

 OSE

	Submitted To:	ARC

	Date:	28 Mar 2004 	

	Availability:	 x Public OMA Confidential

	Contact:	Stéphane H. Maes, stephane.maes@oracle.com

	Source:	IBM, Oracle, Vodafone

 Supporters: See Contributions

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE requirements

			define structure and mechanism(s) to eliminate silos

			define mechanism to encourage reuse during spec development, product development, and deployment

			define mechanism for service providers to protect their resources

			support bindings to multiple "transports"

			facilitate integration with non-OMA specifications and products

			provide migration path from current specifications

			proposal satisfies ARC requirements as illustrated in OMA-ARC-2004-0070-OSEproposal_mapped2_ARCHREQ

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE Topology

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

including EPEM

EPEM

Encompass any OMA enabler

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE Logical Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

EPEM

EPEM

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE Flows

EPEM enforces policies on request (relying on available enablers)

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

EPEM

Request to enabler through enabler application development interface

Appropriate request reach target enabler

Request affects the target resource

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE Flows

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

EPEM

Enabler

implementation

To Resources in

operators, terminals, SPs

…

Appropriate request reach target enabler

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

Request to enabler through enabler application development interface

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

OSE Flows

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

SP Domain

SP Domain

EPEM

EPEM enforces policies on request (relying on available enablers)

EPEM enforces policies on requests between enabler implementations

To Resources in

operators, terminals, SPs

Appropriate request reach target enabler

Enabler implementation issues a request to another enabler resource

Appropriate request reach target enabler

Request affects the target resource

Request affects the target resource

Request to enabler through enabler application development interface

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

Enabler Interfaces

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M

etc.)

I0+I1

I0

I3

I2

EPEM

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

Interface Descriptions

				Interface

				Description

				Comments

				I0

				Application development interface provided by an enabler implementation

				Each enabler specification defines this interface for implementations for the development of services or applications that use them.

				I1

				I0+I1 is the enhanced interface to an enabler implementation exposed through EPEM.

				EPEM may add SP required parameters (I1) to the enabler interface (I0), based on service provider-defined policies (e.g. credentials or account information as imposed by security policy, …).

				I2

				Driver to the underlying resource that partially or completely implements the enabler's function

				Translates from possibly proprietary or legacy interface, or lower level standard interface to standardized enabler interface.

				I3

				Life cycle management interfaces exposed to the SP platform.

				 As defined in OSPE

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

EPEM is Optional

			Enabler specifications define how certain functions are performed. EPEM is a particular enabler that will specify how to perform policy evaluation and enforcement.

			If an enabler needs to perform policy evaluation and enforcement, the enabler should reference EPEM. If the enabler does not require policy evaluation and enforcement, then EPEM is not needed.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

EPEM is Optional

			An enabler implementation can invoke any standardized functions either by:

			(1) implementing the function itself,

			(2) invoking a separate (modular) implementation that does the function (provided by the same vendor or a different one),

or

			(3) delegating the invocation to a policy evaluation and enforcement entity (EPEM).

			Any of these implementation options result in a conforming implementation of an enabler.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

EPEM is Optional

			The service provider deploying enabler implementations has multiple options.

			For those implementations using method (1) above, the service provider can allow each implementation to independently perform functions like authorization.

			For those implementations using method (2) above, the service provider must deploy the separate (modular) implementations of functions required by the enabler implementations.

			For those implementations using method (3) above, the service provider can deploy an EPEM implementation and any separate delegated implementations to perform functions like authentication, authorization, charging, etc.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

Optional EPEM Logically Present in OSE

			In all three cases, policy evaluation and enforcement is performed – in some cases by the enabler implementation and in some cases by other entities.

			Therefore, one could say that the EPEM function is logically always present in the OSE. Different actors choose which policies are to be applied and how.

			EPEM implementations can be added to deployments to handle policies not done by enabler implementations

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

IMPLICATIONS ON OMA WGs

			Enabler specifications writer must specify how to perform any intrinsic functions, i.e., those that are needed to implement the function of the enabler.

			Any requirements or features that are not intrinsic should not be specified. Many such requirements will be accomplished using the EPEM mechanism for evaluating and enforcing policies. And many features can be logically delegated to specialized enablers.

			The requirements specifications should carefully consider whether a requirement is truly necessary to perform the intended function or whether it is rather a policy that should be changeable by each service provider.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ARC-2004-0XXX

Slide #*
[OMA-Template-SlideDeck-20040305]

Recommendations

			Material in documents 0068 (base OSE) and 0069 (topology picture) and 0071 (EPEM optionality) as restructured in 0077 be inserted into current OSE architecture document

			Implications on OMA WGs as discussed in 0071 should be socialized with OMA WGs and submitted early on to TP.

Interface Description Comments I0 Application development interface provided by an enabler implementation Each enabler specification defines this interface for implementations for the development of services or applications that use them. I1 I0+I1 is th e enhanced interface to an enabler implementation exposed through EPEM. EPEM may add SP required parameters (I1) to the enabler interface (I0), based on service provider - defined policies (e.g. credentials or account information as imposed by security poli cy, …) . I2 Driver to the underlying resource that partially or completely implements the enabler's function Translates from possibly proprietary or legacy interface, or lower level standard interface to standardized enabler interface. I3 Life cycle ma nagement interfaces exposed to the SP platform. As defined in OSPE

_1150113976.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Discovery

enabler

implementation

Service Provider Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface description provided through another communication

Application calls enabler

Possible discovery of

Interface by application at execution

Application

Developer

Policy

 Enforcer

Enforces policies

1b

2

4

1c

1

1a

To Resources in

Operators, terminals, Service Providers

5

3

_1152617726.ppt

RP1

RP2

RP1

System 1

System 2

System 3

Resource

_1141101185.ppt

Resource

Interface:

potentially “anybody”

can connect

_1141101384.ppt

Resource

Reference Point:

explicitly connects each

partner

Resource

