OMA-TS-PEEM_PEL-V1_0-20070923-D
Page 2 V(58)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	PEEM Policy Expression Language Technical Specification

	Draft Version 1.0 – 23 Sep 2007

	Open Mobile Alliance

	OMA-TS-PEEM_PEL-V1_0-20070923-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
11
5.
Policy Expression Language
12
5.1
Set X of PEL constructs: Support features of policy expression language
12
5.2
Policy Expression Language selection criteria: Constructs and Semantics
12
5.2.1
Ruleset
12
5.2.2
PEL data types for rule sets
17
5.3
Constructs for a PEL for Business Processes
18
5.3.1
Overview
18
5.3.2
Constructs
21
5.3.3
Language Extensibility and support of OMA specific conditions
32
5.4
PEL ruleset framework option
32
5.4.1
Overview
33
5.4.2
Ruleset framework elements
34
5.4.3
Language Extensibility and support of OMA specific conditions
35
5.4.4
Backward compatibility with other OMA enablers
35
5.5
Internal Policy reference Standard PEM-1 Template
36
5.6
External Policy reference Standard PEM-1 Template
37
Appendix A.
Change History (Informative)
40
A.1
Approved Version History
40
A.2
Draft/Candidate Version 1.0 History
40
Appendix B.
Static Conformance Requirements (Normative)
41
B.1
SCR for XYZ Client
41
B.2
SCR for XYZ Server
41
Appendix C.
Future PEL considerations
42
Appendix D.
XML schema for rule set based PEL
43
Appendix E.
Analysis of data types in several programming languages
48
E.1
C and C++ language
48
E.2
Java language
50
E.3
Common data types supported in programming languages
51
E.4
Conclusion: data types needed for PEL
53

Figures

Error! No table of figures entries found.
Tables

Error! No table of figures entries found.
1. Scope

This document provides the Policy Expression Language (PEL) specification, one of several specifications of the Policy Evaluation,Enforcement and Management (PEEM) enabler. The PEL specification defines the language in which policies can be expressed. The PEL specification includes the definition of language constructs, and may define multiple language options, for the convenience of resolving particular issues. The PEL specification is loosely coupled to other PEEM specifications and therefore can evolve relatively independent of them (see Introduction section for details). While PEL supports the expression of any policy, specific policies expressed in PEL are out-of-scope for the PEL specification.

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[BPEL]
	“Business Process Execution Language”, OASIS,
URL: Web Services Business Process Execution Language Version 2.0

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[PEEM RD]
	“Policy Evaluation, Enforcement and Management Requirements”, Open Mobile Alliance, OMA-RD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=RD&file=OMA-RD-Policy_Evaluation_Enforcement_Management-V1_0-20050112-C.pdf

	[PEEM AD]
	“Policy Evaluation, Enforcement and Management Architecture”, Open Mobile Alliance, OMA-AD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/ftp/Public_documents/ARCH/Permanent_documents/OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0_0-20060625-D.zip

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC 2396]
	"Uniform Resource Identifiers (URI): Generic Syntax", Berners-Lee, T., Fielding, R. and L. Masinter, August 1998, URL: http://www.rfc-editor.org/rfc/rfc2396.txt

	[RFC 4745]
	“Common Policy: A Document Format for Expressing Privacy Preferences, H.Schulzrinne et al, IETF RFC 4745, February 2007, URL: http://www.rfc-editor.org/rfc/rfc4745.txt

	[XPATH1.0]
	W3C Recommendation, “XML Path Language (XPath) Version 1.0”, J. Clark, S. DeRose, November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116

2.2 Informative References

	[IMSIMPLE]
	“Instant Messaging using SIMPLE”, Open Mobile Alliance, 6 June 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-SIMPLE_IM-V1_0-20070606-D

	[PoCXDM]
	”OMA PoC Document Management, Open Mobile Alliance, 29 May 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-Presence_SIMPLE_XDM-V2_0-20070529-D.zip

	[PRESXDM]
	“Presence XDM Specification”, Open Mobile Alliance, 17 January 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-Presence_SIMPLE_XDM-V2_0-20070510-D.zip

	[SPXDM]
	“Shared Policy XDM Specification”, Open Mobile Alliance, Draft Version 2.0, 10 May 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-XDM_Shared_Policy-V2_0-20070510-D.zip

	[SGXDM]
	“Shared Group XDM Specification”, Open Mobile Alliance, Draft Version 2.0, 10 May 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-XDM_Shared_Group-V2_0-20070522-D.zip

	[XDMSPEC]
	“XML Document Management (XDM) Specification”, Open Mobile Alliance, Draft Version 2.0, 10 May 2007, URL: http://www.openmobilealliance.org/ftp/Public_documents/PAG/Permanent_documents/OMA-TS-XDM_Core-V2_0-20070510-D

	[WP-PRESRULES]
	“Presence Authorization Rules”, J.Rosenberg, IETF draft, February 27, 2007, URL: http://www.ietf.org/internet-drafts/draft-ietf-simple-presence-rules-09.txt

	[WP-LOCRULES]
	“Geolocation Policy: A Document Format for Expressing Privacy Preferences for Location Information”, H.Schulzrinne et al, IETF draft, May 22, 2007, URL: http://tools.ietf.org/id/draft-ietf-geopriv-policy-12.txt

	BPEL
	“Business Process Execution Language”

	IMA
	Inbound Message Activity

3. Terminology and Conventions

3.1 Conventions

<< If doc includes normative material keep the next two paragraphs. DELETE THIS COMMENT >>

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<< OR if doc is informative just keep the next line. DELETE THIS COMMENT>>

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

	Policy
	An ordered combination of policy rules that defines how to administer, manage, and control access to resources [Derived from [RFC 3060], [RFC 3198] and [RFC 3460]].

	Policy Action
	Action (e.g. invocation of a function, script, code, workflow) that is associated to a policy condition in a policy rule and that is executed when its associated policy condition results in "true" from the policy evaluation step.

	Policy Condition
	A condition is any expression that yields a Boolean value.

	Policy Enforcement
	The process of executing actions, which may be performed as a consequence of the output of the policy evaluation process or during the policy evaluation process.

	Policy Evaluation
	The process of evaluating the policy conditions and executing the associated policy actions up to the point that the end of the policy is reached.

	Policy Management
	The act of describing, creating, updating, deleting, provisioning and viewing policies.

	Policy Processing
	Policy evaluation or policy evaluation and enforcement

	Policy Rule
	A combination of a condition and actions to be performed if the condition is true

	Request
	An articulation of the need to access a resource (e.g. asynchronous events).

	Requestor
	Any entity that issues a request to a resource.

	Resource
	Any component, enabler, function or application that can receive and process requests.

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	PEEM
	Policy Evaluation, Enforcement and Management

	PEM-1
	PEEM Callable interface

	PEM-2
	PEEM Management interface

	PEL
	(PEEM) Policy Expression Language

	URI
	Uniform Resource Identifier

4. Introduction

The PEL specification explains and defines language options, constructs, variables, constants and operators needed to express conditions and actions, and a detailed syntax to express them. The PEL specification is built to support OMA enablers’ policy needs, as well as needs of other resources. Recoginizing the fact that different requirements apply, the PEL specification will support at least two separate options of expressing conditions and actions: a ruleset-based option, and a workflow-based option. In the ruleset-based option, each rule is evaluated as separate entity, and the combination of the results of the processing of all the rules in the ruleset determines the policy outcome (notice that a precedence mechanism may be needed). In the workflow-based option, the entire policy is processed as a whole, following a flowchart approach, where at each node in the graph, a rule is being processed.

The PEL specification can evolve independent of PEM-1 and PEM-2

Finally, resources that make use of PEEM may or may not be aware of the PEL policies or the PEL options deployed, but they do not have to be aware of them.

5. Policy Expression Language
5.1 Set X of PEL constructs: Support features of policy expression language
A policy expression language must satisfy the following requirements:

· Is composed of CONDITION and ACTION as part of a rule.

· Support policy, rule and ruleset

· Support variables (types and scope)

· Support constants

· Support parameterized constants

· Support operators
· Support function call

5.2 Policy Expression Language selection criteria: Constructs and Semantics

This section describes constructs/semantics that need to be supported by a Policy Expression Language (PEL).
5.2.1 Ruleset

A ruleset (also referred to loosely as a policy) is a collection of rules that operate as a whole to satisfy a specific policy evaluation (or evaluation and enforcement). The ruleset is the subset of the policy rules that are applicable in a particular instance (i.e. will become candidates for the evaluation and enforcement process for a particular request). An algorithm that describes how the rules in a ruleset are to be combined is associated with the ruleset construct. The need for such a construct in the language is the result of the necessity to logically identify and separate a set of rules targeted for a specific purpose, from different set of rules targeted at different purposes.

Editor’s note: a new contribution is needed to describe rule combination algorithm associated with the ruleset construct (after 5.2.1.1.2)
A ruleset is characterized by the following:

1. a name

a. the name serves as a means to manage a ruleset, separately from other rulesets. The name is assigned when a ruleset is created, and is used when the ruleset is viewed, modified, or deleted. A ruleset name may also be passed by a requester, to specify a policy that will be used in the evaluation.

2. an optional set of variables. Variables will be described as a language construct in a separate section.

a. the variables shall have global validity across all the rules in the ruleset. They include:

i. variables that may be assigned values as a result of input variables passed through an evaluation request (input variables)

ii. variables that may be assigned values as a result of the evaluation (output variables)

iii. variables that are used to store intermediate results, that may be used in the rules evaluation process across the entire ruleset, and then get discarded at the end of the policy evaluation(intermediate, or internal, variables)

3. a set of rules

a. a ruleset may include one or more rules

b. the rules within a ruleset may be optionally prioritized

4. other optional features

a. the construct may benefit of other features, such as a description and an optional domain that the ruleset is associated with. The domain concept may be useful during provisioning, if a service provider wants to group together ins a “domain” multiple rulesets that are addressing a similar topic, but used in different circumstances.

In conclusion, the ruleset construct is a container for a set of rules, and variables on which the set of rules operate.

Variables are typed, and will be described in a separate section.

5.2.1.1 Rule

A rule consists of a rule condition, and a set of one or more rule actions. A rule evaluation consists of checking if the rule condition is true, and if it is, executing the rule actions in sequence.

A rule is characterized by the following:

1. a rule name, which may be used both during policy management time (e.g. to allow the provisioning tools to point out errors (if any) in a ruleset). The rule name has no role during the evaluation process, other than to help in identifying potential errors through logging).

2. a condition

3. one or more actions

4. an optional usage description. The usage is ignored during the evaluation process.

A rule is part of a ruleset, a higher level construct.

5.2.1.1.1 Condition
A condition is a Boolean expression (formed using variables, constants, mathematical operators and logical operators, and function calls) that evaluates to a Boolean value of TRUE or FALSE. Variables, constants, mathematical operators and logical operators and function calls are language constructs that will be described in separate sections.

A condition is part of the rule construct. Every rule contains a condition.

5.2.1.1.2 Action
An action is an operation that shall be executed if the condition of a rule evaluates to TRUE. Typical actions include:

· assigning a value to a variable

· calling a function

· doing nothing (null action)

An action is part of the rule construct. Every rule contains an action (a null action at the minimum), but may contain multiple actions

5.2.1.1.3 Variables

The policy expression language supports the basic data types int, float, bool, string, and the complex data types array and struct (see section 5.2.2 for details).

The scope of the variables is valid for the entire policy (e.g. in the case of a PEL ruleset-based option, variables are declared as part of the ruleset header, and they are in-scope for the entire ruleset; at the end of processing all rules in the ruleset, the validity of the variables expires, hence their value is not preserved across subsequent invocations). There is no real need or advantage to limit the scope of a variable to a specific rule (or more restrictively to a specific condition or action) since the effect can be realized by using a variable only in that specific rule).

Editor’s note: IMO, we will not handle preserving value of variables across policy invocations … will need to remove this feature in other parts of PEL TS
Variables declared in a policy fall into 3 categories:

1. Input variables. Input variables are those whose values are required to be sent by a requestor with every policy processing request. When PEEM is used in the callable usage pattern, these variables would be passed via the PEM-1 interface. When PEEM is used in the proxy usage pattern, these variables would be identifiable in the “input context” detected by PEEM in a request directed to a target resource and intercepted by PEEM. In either case, input variables are assigned the values passed in, before any rule of an applicable policy is being processed.

Editor’s note: IMO, we need to have/define a mechanism to support mapping PEM-1 input parameters to Policy input variables.
2. Output variables. Output variables may be assigned values as part of rule actions, during the processing of a policy. When PEEM is used in the callable usage pattern, these variables are passed back to a requester via a response via the PEM-1 interface. When PEEM is used in the proxy usage pattern, the policy logic may determine, using output variables, whether the request for a target resource is being forwarded or denied. The requester expects output variables to be returned and should know how to process them.

Editor’s note: IMO, we need a mechanism to support mapping of Policy output parameters to PEM-1 output parameters.
3. Intermediate variables. Intermediate variables are those which may be used as part of the evaluation and execution process, but are not mapped to PEM-1 input parameters or PEM-1 output parameters.

All variables can be assigned values multiple times as part of the policy processing. Hence, the categorization of the variables as input, output or intermediate is only from the perspective of their relationship with input and/or output parameters carried via the PEM-1 interface.
5.2.1.1.4 Constants
The policy expression language supports various data types, namely basic data types such as int, float, bool, string, and complex data types such as array and struct. Variables may need to be assigned constant values. Constants corresponding to the variable data types include:

1. Integer constants. Integer constants consist of a sequence of decimal digits from 0 through 9, preceded by a positive or negative sign, depending on whether a positive or negative value of a constant is represented (the sign is optional in case of a positive integer constant). Some examples of integer constants representations are:

254

+600

600

2. Float constants. Float constants follow the scientific convention, i.e., a sequence of digits with a period in between (or at the ends), followed by an optional exponent (i.e., an e or E, followed by an integer constant). Different float constant representations are supported, such as:

2.

2.0

.45

0.45

1.32e+32

.0045E-1

0.04e3

3. Boolean constants. Boolean constants can take one of two values, representing “true” or “false”.

4. String constants. String constants consist of a sequence of octets. String constants can also include certain escape sequences (e.g. to support values for “newline”, “tab”).
5.2.1.1.5 Parameterized Constants

The policy expression language supports various data types, namely basic data types such as int, float, bool, string, and complex data types such as array and struct. Variables may need to be assigned values based on the accessing application, service provider etc. The parameterized constants can as well be used in Policy constructs like selections.

The format of the parameterized constant is:

Name-of-value[]
The Name-of-value[] is the constant like maximum length of a message

The value is taken from the appropriate data file where the value attached to the tag with the same name as the parameterized constant has is selected. The specific policy defines which type of data files to use and the input variables to the Policy may be used to select the specific data file.

An example:

A rule limiting message length for applications. It will use data files for applications. Using the Application Id input variable to select the correct file and the rule will use the value given for the max-length tag.

The constant is taken from data in the policy engine based on the input information in the policy call to PEM-1 as in the example the Application Id.
5.2.1.1.6 Operators
Operators are used to express conditions and actions. Basic operators supported by the PEL include mathematical operators and logical operators. The PEL may be extended to include additional operators, as needed when required by the expression of conditions or actions.

The policy expression language supports the following basic mathematical operators:

1. The “plus” operator. The “plus” operator is used to express the addition operation; it can also be used as unary operator.
2. The “minus” operator. The “minus” operator is used to express the subtraction operation
3. The “divide” operator. The “divide” operator is used to express the division operation.
4. The “multiply” operator. The “multiply” operator is used to express the multiplication operation s.
5. The “modulus” operator. The “modulus” operator is used to express the modulus operation.

Some examples of valid arithmetic expressions are:

Editor’s note: examples in this editor’s note will have to be updated once the syntax for all PEL elements is agreed. At that point the editor’s note is to be removed, and examples following the agreed syntax, should be moved to the TS text, if so desired.

Representative examples:

-PrepaidBalance

(-x + (y*2 + 3)/z) % 34
The policy expression language supports the following basic logical operators:

1. The “less than” . The “less than” operator is used to express a comparison

2. The “less than or equal to” operator. The “less than or equal to” operator is used to express a comparison.

3. The “equal to” operator. The “equal to” operator is used to express a comparison.

4. The “greater than” operator. The “greater than” operator is used to express a comparison.

5. The “greater than or equal to” operator. The “greater than or equal to” operator is used to express a comparison.

6. The “not equal to” operator. The “not equal to” operator is used to express a comparison.

7. The “AND” Boolean operator. The “AND” operator is used to express a disjunction.

8. The “OR” Boolean operator. The “OR” operator is used to express a conjunction.

9. The “NOT” Boolean operator. The “NOT” operator is used to express the Boolean value opposite to the value of the Boolean variable or constant subject to the operation.

Some examples of valid boolean expressions are:

Editor’s note: examples in this editor’s note will have to be updated once the syntax for all PEL elements is agreed. At that point the editor’s note is to be removed, and examples following the agreed syntax, should be moved to the TS text, if so desired.

Representative examples:

SimpleServiceProps[0].ServiceName == “USER_LOCATION”

(b1 OR b2) AND (NOT b3) AND (x > y)

(b1 || b2) && (! b3) && (x/3 > (y + 2))
Note that a Boolean expression may contain arithmetic expressions as sub-expressions. The result of a Boolean expression must evaluate to a boolean value.
5.2.2 PEL data types for rule sets

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Also, an analysis conducted for PEM-1 interface bindings has also concluded that the basic programming languages, plus some derived data types, as needed (e.g. URI) are sufficient and/or that such data types can be derived from existing data types if need be. Limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data types, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

Furthermore, an appendix is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown. The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

	URI
	A type derived from string, with a well-specified structure as per [RFC 2396]

5.3 Constructs for a PEL for Business Processes

The PEL language for Business Processes is WSBPEL 2.0 [BPEL].

This section provides a summary of the WS-BPEL syntax and constructs introduced in [BPEL]. It provides only a brief overview; the details of each language construct are normatively described in [BPEL]. The example itself is based on section 5.2 of [BPEL].

5.3.1 Overview

The basic structure of a policy expressed as a flow language is described below. It should be considered as illustrative superseded by the corresponding normative statement provided in [BPEL]. Syntax details are also specified in [BPEL].
<process name="PolicyName" targetNamespace="anyURI"

 queryLanguage="anyURI"?

 expressionLanguage="anyURI"?

 suppressJoinFailure="yes|no"?

 exitOnStandardFault="yes|no"?

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <extensions>?

 <extension namespace="anyURI" mustUnderstand="yes|no" />+

 </extensions>

 <import namespace="anyURI"?

 location="anyURI"?

 importType="anyURI" />*

 <partnerLinks>?

 <!-- Note: At least one role must be specified. -->

 <partnerLink name="PolicyName"

 partnerLinkType="QName"

 myRole="PolicyName"?

 partnerRole="PolicyName"?

 initializePartnerRole="yes|no"?>+

 </partnerLink>

 </partnerLinks>

 <messageExchanges>?

 <messageExchange name="PolicyName" />+

 </messageExchanges>

 <variables>?

 <variable name="BPELVariableName"

 messageType="QName"?

 type="QName"?

 element="QName"?>+

 from-spec?

 </variable>

 </variables>

 <correlationSets>?

 <correlationSet name="PolicyName" properties="QName-list" />+

 </correlationSets>

 <faultHandlers>?

 <!-- Note: There must be at least one faultHandler -->

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 (faultMessageType="QName" | faultElement="QName")? >*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 </faultHandlers>

 <eventHandlers>?

 <!-- Note: There must be at least one onEvent or onAlarm. -->

 <onEvent partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 (messageType="QName" | element="QName")?

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>*

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 <scope ...>...</scope>

 </onEvent>

 <onAlarm>*

 <!-- Note: There must be at least one expression. -->

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)?

 <repeatEvery expressionLanguage="anyURI"?>

 duration-expr

 </repeatEvery>?

 <scope ...>...</scope>

 </onAlarm>

 </eventHandlers>

 activity

</process>

The top-level attributes are as follows:

· Process in this cases represent a policy or a policy sub-graph (i.e. subset of combinations of conditions and actions within a policy).

· queryLanguage. This attribute specifies the query language used in the process for selection of nodes in assignment. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
· expressionLanguage. This attribute specifies the expression language used in the <process>. The default value for this attribute is: "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0", which represents the usage of [XPath 1.0] within WS-BPEL 2.0.
The value of the queryLanguage and expressionLanguage attributes on the <process> element are global defaults and can be overridden on specific constructs, such as <condition> of a <while> activity, as defined in [BPEL]. In addition, the queryLanguage attribute is also available for use in defining WS-BPEL <vprop:propertyAlias>es in WSDL. WS-BPEL processors MUST:

· statically determine which languages are referenced by queryLanguage or expressionLanguage attributes either in the WS-BPEL process definition itself or in any WS-BPEL property definitions in associated WSDLs and

· if any referenced language is unsupported by the WS-BPEL processor then the processor MUST reject the submitted WS-BPEL process definition.

In addition,

· suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all activities in the process. The effect of the attribute at the process level can be overridden by an activity using a different value for the attribute. The default for this attribute is "no" at the process level. When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the <process> if no enclosing activity specifies this attribute.

· exitOnStandardFault. If the value of this attribute is set to “yes”, then the process MUST exit immediately as if an <exit> activity has been reached, when a WS-BPEL standard fault other than bpel:joinFailure is encountered. If the value of this attribute is set to “no”, then the process can handle a standard fault using a fault handler. The default value for this attribute is “no”. When this attribute is not specified on a <scope> it inherits its value from its enclosing <scope> or <process>.

If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”, then a fault handler that explicitly targets the WS-BPEL standard faults MUST NOT be used in that scope. A process definition that violates this condition MUST be detected by static analysis and MUST be rejected by a conformant implementation.

· The syntax of Abstract Process has its own distinct target namespace. Additional top-level attributes are defined for Abstract Processes.

· <documentation> construct may be added to virtually all WS-BPEL constructs as the formal way to annotate processes definition with human documentation.

· Correlation is defined in [BPEL]

5.3.2 Constructs

Regarding the explicit flow constructs, each business process (i.e. policy or policy sub-graph) has one main activity (or construct).

A WS-BPEL activity can be any of the following:

· <receive>: wait for a matching message to arrive
The <receive> activity allows the business process to wait for a matching message to arrive. The <receive> activity completes when the message arrives. The portType attribute on the <receive> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <receive> activity.
<receive partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 createInstance="yes|no"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</receive>
· <reply>: send a message in reply to a message that was received through a <receive>.
The <reply> activity allows the business process to send a message in reply to a message that was received by an inbound message activity (IMA), that is, <receive>, <onMessage>, or <onEvent>. The combination of an IMA and a <reply> forms a request-response operation on a WSDL portType for the process. The portType attribute on the <reply> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity (see also partnerLink description in the next section). The optional messageExchange attribute is used to associate a <reply> activity with an IMA.
<reply partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 faultName="QName"?

 messageExchange="PolicyName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

</reply>
· <invoke>: initiate a one-way or request-response operation offered by another resource
The <invoke> activity allows the business process to invoke a one-way or request-response operation on a portType offered by a partner. In the request-response case, the invoke activity completes when the response is received. The portType attribute on the <invoke> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity.
<invoke partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 inputVariable="BPELVariableName"?

 outputVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"?

 pattern="request|response|request-response"? />+

 </correlations>

 <catch faultName="QName"?

 faultVariable="BPELVariableName"?

 faultMessageType="QName"?

 faultElement="QName"?>*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 <compensationHandler>?

 activity

 </compensationHandler>

 <toParts>?

 <toPart part="PolicyName" fromVariable="BPELVariableName" />+

 </toParts>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

</invoke>
· <assign>: update the values of variables with new data
The <assign> activity is used to update the values of variables with new data. An <assign> construct can contain any number of elementary assignments, including <copy> assign elements or data update operations defined as extension under other namespaces.

<assign validate="yes|no"? standard-attributes>

 standard-elements

 (

 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>

 from-spec

 to-spec

 </copy>

 |

 <extensionAssignOperation>

 assign-element-of-other-namespace

 </extensionAssignOperation>

)+

</assign>
· <throw>: generates a fault from inside the policy processing

The <throw> activity is used to generate a fault from inside the business process.

<throw faultName="QName"

 faultVariable="BPELVariableName"?

 standard-attributes>

 standard-elements

</throw>
· <exit>:

The <exit> activity is used to immediately end a business process instance within which the <exit> activity is contained.

<exit standard-attributes>

 standard-elements

</exit>
· <wait>: allows you to wait for a given time period or until a certain time has passed
The <wait> activity is used to wait for a given time period or until a certain point in time has been reached. Exactly one of the expiration criteria MUST be specified.

<wait standard-attributes>
 standard-elements

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>
 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>
)

</wait>
· <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
The <empty> activity is a "no-op" in a business process. This is useful for synchronization of concurrent activities, for instance.

<empty standard-attributes>

 standard-elements

</empty>
· <sequence>: define a collection of activities to be performed sequentially in lexical order
The <sequence> activity is used to define a collection of activities to be performed sequentially in lexical order.

<sequence standard-attributes>

 standard-elements

 activity+

</sequence>
· <if>: Select exactly one branch of activity from a set of choices
The <if> activity is used to select exactly one activity for execution from a set of choices.

<if standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 <elseif>*

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

 </elseif>

 <else>?

 activity

 </else>

</if>
· <while> Contained activity is repeated while a predicate holds
The <while> activity is used to define that the child activity is to be repeated as long as the specified <condition> is true.

<while standard-attributes>

 standard-elements

 <condition expressionLanguage="anyURI"?>bool-expr</condition>

 activity

</while>
· <repeatUntil>: Contained activity is repeated until a predicate holds
The <repeatUntil> activity is used to define that the child activity is to be repeated until the specified <condition> becomes true. The <condition> is tested after the child activity completes. The <repeatUntil> activity is used to execute the child activity at least once.

<repeatUntil standard-attributes>
 standard-elements

 activity

 <condition expressionLanguage="anyURI"?>bool-expr</condition>
</repeatUntil>
· <forEach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable
The <forEach> activity iterates its child scope activity exactly N+1 times where N equals the <finalCounterValue> minus the <startCounterValue>. If parallel="yes" then this is a parallel <forEach> where the N+1 instances of the enclosed <scope> activity SHOULD occur in parallel. In essence an implicit flow is dynamically created with N+1 copies of the <forEach>'s <scope> activity as children. A <completionCondition> may be used within the <forEach> to allow the <forEach> activity to complete without executing or finishing all the branches specified.

<forEach counterName="BPELVariableName" parallel="yes|no"

 standard-attributes>

 standard-elements

 <startCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </startCounterValue>

 <finalCounterValue expressionLanguage="anyURI"?>

 unsigned-integer-expression

 </finalCounterValue>

 <completionCondition>?

 <branches expressionLanguage="anyURI"?

 successfulBranchesOnly="yes|no"?>?

 unsigned-integer-expression

 </branches>

 </completionCondition>

 <scope ...>...</scope>

</forEach>
· <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity
The <pick> activity is used to wait for one of several possible messages to arrive or for a time-out to occur. When one of these triggers occurs, the associated child activity is performed. When the child activity completes then the <pick> activity completes.

The portType attribute on the <onMessage> activity is optional. If the portType attribute is included for readability, the value of the portType attribute MUST match the portType value implied by the combination of the specified partnerLink and the role implicitly specified by the activity. The optional messageExchange attribute is used to associate a <reply> activity with a <onMessage> event.
<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="PolicyName"

 portType="QName"?

 operation="PolicyName"

 variable="BPELVariableName"?

 messageExchange="PolicyName"?>+

 <correlations>?

 <correlation set="PolicyName" initiate="yes|join|no"? />+

 </correlations>

 <fromParts>?

 <fromPart part="PolicyName" toVariable="BPELVariableName" />+

 </fromParts>

 activity

 </onMessage>

 <onAlarm>*

 (

 <for expressionLanguage="anyURI"?>duration-expr</for>

 |

 <until expressionLanguage="anyURI"?>deadline-expr</until>

)

 activity

 </onAlarm>

</pick>
· <flow>: specify one or more activities to be performed concurrently

The <flow> activity is used to specify one or more activities to be performed concurrently. <links> can be used within a <flow> to define explicit control dependencies between nested child activities.

<flow standard-attributes>

 standard-elements

 <links>?

 <link name="PolicyName" />+

 </links>

 activity+

</flow>
· <scope>: defines a nested activity with its own associated variables, fault handlers, and compensation handler
The <scope> activity is used to define a nested activity with its own associated <partnerLinks>, <messageExchanges>, <variables>, <correlationSets>, <faultHandlers>, <compensationHandler>, <terminationHandler>, and <eventHandlers>.

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?

 standard-attributes>

 standard-elements

 <partnerLinks>?

 ... see above under <process> for syntax ...

 </partnerLinks>

 <messageExchanges>?

 ... see above under <process> for syntax ...

 </messageExchanges>

 <variables>?

 ... see above under <process> for syntax ...

 </variables>

 <correlationSets>?

 ... see above under <process> for syntax ...

 </correlationSets>

 <faultHandlers>?

 ... see above under <process> for syntax ...

 </faultHandlers>

 <compensationHandler>?

 ...

 </compensationHandler>

 <terminationHandler>?

 ...

 </terminationHandler>

 <eventHandlers>?

 ... see above under <process> for syntax ...

 </eventHandlers>

 activity

</scope>
· <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)

The <compensate> activity is used to start compensation on all inner scopes that have already completed successfully, in default order. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.
<compensate standard-attributes>

 standard-elements

</compensate>
· <compensateScope>: used to invoke functions to reverse previous operations (on one completed child).
The <compensateScope> activity is used to start compensation on a specified inner scope that has already completed successfully. This activity MUST only be used from within a fault handler, another compensation handler, or a termination handler.

<compensateScope target="PolicyName" standard-attributes>

 standard-elements

</compensateScope>
· <rethrow>: Forward a fault from inside a fault handler

The <rethrow> activity is used to rethrow the fault that was originally caught by the immediately enclosing fault handler. The <rethrow> activity MUST only be used within a fault handler (i.e. <catch> and <catchAll> elements). This syntactic constraint MUST be statically enforced.

<rethrow standard-attributes>

 standard-elements

</rethrow>
· <validate>: Validate format for input or output data
The <validate> activity is used to validate the values of variables against their associated XML and WSDL data definition. The construct has a variables attribute, which points to the variables being validated.

<validate variables="BPELVariableNames" standard-attributes>

 standard-elements

</validate>
· <extensionActivity>
The <extensionActivity> element is used to extend WS-BPEL by introducing a new activity type. The contents of an <extensionActivity> element MUST be a single element that MUST make available WS-BPEL's standard-attributes and standard-elements.

<extensionActivity>

 <anyElementQName standard-attributes>

 standard-elements

 </anyElementQName>

</extensionActivity>
The "standard-attributes" referenced above are:

name="PolicyName"? suppressJoinFailure="yes|no"?

where the default values are as follows:

· name: No default value (that is, the default is unnamed)

· suppressJoinFailure: When this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or from the process if no enclosing activity specifies this attribute.

The "standard-elements" referenced above are:

<targets>?

 <joinCondition expressionLanguage="anyURI"?>?

 bool-expr

 </joinCondition>

 <target linkName="PolicyName" />+

</targets>

<sources>?

 <source linkName="PolicyName">+

 <transitionCondition expressionLanguage="anyURI"?>?

 bool-expr

 </transitionCondition>

 </source>

</sources>
5.3.3 Language Extensibility and support of OMA specific conditions

WS-BPEL supports extensibility by allowing namespace-qualified attributes to appear on any WS-BPEL element and by allowing elements from other namespaces to appear within WS-BPEL defined elements. This is allowed in the XML Schema specifications for WS-BPEL.

Extensions are either mandatory or optional (see section Error! Reference source not found.). In the case of mandatory extensions not supported by a WS-BPEL implementation, the process definition MUST be rejected. Optional extensions not supported by a WS-BPEL implementation MUST be ignored.

In addition, WS-BPEL provides two explicit extension constructs: <extensionAssignOperation> and <extensionActivity>. See [BPEL] section 8.4. for Assignment and section 10.9. for adding new Activity Types – ExtensionActivity.

Extensions MUST NOT contradict the semantics of any element or attribute defined by the WS-BPEL specification.

Extensions are allowed in WS-BPEL constructs used in WSDL definitions, such as <partnerLinkType>, <role>, <vprop:property> and <vprop:propertyAlias>. The same syntax pattern and semantic rules for extensions of WS-BPEL constructs are applied to these extensions as well. For the WSDL definitions transitively referenced by a WS-BPEL process, extension declaration directives of this WS-BPEL process are applied to all extensions used in WS-BPEL constructs in these WSDL definitions (see [BPEL] section 14. for Extension Declarations).

The optional <documentation> construct is applicable to any WS-BPEL extensible construct. Typically, the contents of <documentation> are for human targeted annotation. Example types for those content are: plain text, HTML and XHTML. Tool-implementation specific information (e.g. the graphical layout details) should be added through elements and attributes of other namespaces, using the general WS-BPEL extensibility mechanisms.

This may be used as an extensible formalism to express OMA specific rules, e.g.(non exhaustive):

· Security rules (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging rules

· Logging rules

· Privacy rules

· Preference rules

· Permission rules

· Content screening rules

· Content categorization rules

These can be expressed in PEL as partnerlinks WSDL. They can be predefined by OMA specifications or defined by the service provider.
5.4 PEL ruleset framework option

The PEL ruleset language option is based on the ruleset framework described in IETF RFC 4745 [RFC 4745]. The use of this framework had been suggested in PEEM AD [PEEM AD], while at the time that framework was being worked as an IETF draft. The policy framework described in IETF RFC 4745 [RFC 4745] is already used and extended by some OMA enablers (see section 5.3.4), and its re-use by PEL will facilitate adoption in OMA.

The PEL ruleset language option in this release SHALL adhere to the provisions in RFC 4745 [RFC 4745] with the following exceptions:

1) The optimization provided by RFC 4745 [RFC 4745] to only allow “permit” style rules will not be enforced (i.e. extensions for “deny” style rules will be permitted, if needed). When added, the semantics for rules including both “permit” and “deny” style rules need to be fully understood to avoid conflicts.

2) The optimization provided by RFC 4745 [RFC 4745] to specify a particular algorithm of combining “permissions” (actions and transformations) will not be enforced (i.e. future extensions may be provided to allow different algorithms to evaluate rulesets, or, this will be left to differentiate implementations).

3) Support for <transformation> element will be deferred until a clear need arises, or until extensions to semantics and syntax of <action> are provided to complement the <action> element with the semantics currenly assigned to <transformation>.
Editor note: need to verify whether these exceptions would violate the RFC

This section provides a summary of RFC 4745 [RFC 4745] framework. The details of each framework construct are normatively described in [RFC 4745]. This current version may not meet all the PEEM needs for a PEL, but it provides an extensible framework which allows it to progress in time towards the full needs of a generic PEL. The extensibility model is on a need-basis, as determined by specific applications domain, allowing this language option to progress in sync step with the needs of OMA enabler and other resources, as expressed by their specific requirements. A comparison between PEEM PEL needs and RFC 4745 [RFC 4745] is provided in Appendix C. Extensions determined necessary in other OMA enablers or other resources may be provided either as part of such future enablers extensions to PEL ruleset option, or in a future PEEM PEL phase (currently not planned). If such extensions are needed before they materialize into OMA extensions to PEL, it is expected that vendors may provide proprietary extensions to PEL ruleset language to fulfill the need.

5.4.1 Overview

RFC 4745 [RFC 4745] is combining two authorization systems (for presence and location) into a more generic framework, with mechanisms for extensibility. This general framework is intended to be accompanied and enhanced by other domain-specific policy documents, including presence [WP-PRESRULES] and [WP-LOCRULES] (these are “work-in-progress” examples of how to extend RFC 4745, and from PEL TS perspective are only informative at this point in time).

The current applicability of RFC 4745 [RFC 4745] is not limited to policies controlling access to presence and location information data, but can be extended to other applications domains.

The mode of operation supported by RFC 4745 [RFC 4745] can be described as very similar with the PEEM component [PEEM AD] behaviour. A Policy Authorization Server (PS) receives a query regarding data items for a particular requestor, via the using protocol (i.e. the policy invocation protocol, equivalent to PEM-1 interface in PEEM). The using protocol provides parameters (e.g. identity of the requestor, etc). The input information, together with additional data accessible by the PS is used for searching through a ruleset, defined using the RFC 4745 [RFC 4745] framework. All matching rules are combined according to a specified permission combining algorithm. The combined rules are applied leading to results that are being returned via the using protocol to the requestor.

There are three different modes of operation supported, passive request-response, active request-response and event notification. The passive request-response mode in RFC 4745 [RFC 4745] matches the PEEM callable pattern.

The framework in its current version provides construct based on a simplifying pre-condition to its design, that each rule must be representable as a row in a relational database, to allow for efficient policy implementation by utilizing standard database optimization techniques. This pre-condition explains decisions made in the design of the framework constructs.

Another design consideration is that the current version only provides permissions rather than denying them (i.e. removing a rule can never increase permissions). That design consideration was also in order to optimize implementation, by removing the concern about how to deal with ordering of the rules, and potential conflict between “deny” rules and “permit” rules (if both were to be allowed). Hece, only “permit” related actions are currently supported, and rules ordering is no longer important. At the same time, processing all the rules is instead required.

The framework assumes permissions are additive, in the sense that if several rules match, then the overall permissions granted to the requestor are the union of the permissions of all the rules that match.

The framework in RFC 4745 [RFC 47445] explicitly lists the following items as being out-of-scope for the current version:

· Access of external rulesets, databases, directories, or other network elements

· Support of regular expressions (i.e. conditions are matched on equality or “greater-than” style comparisons, not on regular expressions like those encountered in wild-card matches)

A ruleset (i.e. a policy) consist of zero or more rules. A rule consists of three parts: conditions, actions and transformations.

The conditions is a set of expressions, each of which evaluating to either TRUE or FALSE. Actions express the permitted output results, before applying transformations (e.g. DENY or PERMIT). The transformations apply when the action indicates permission, and they specify how information results are to be modified before being provided to the requestor.

Rules are encoded in XML, and RFC 4745 [RFC 4745] includes a schema defining the Common Policy Markup Language. The XML schema defines the exchange format between a requestor and the Policy Authorization Server, but it is clearly stated that there is no implication that such a schema will be used internally by either the requestor or the Policy Authorization Server. The rukes are designed so that a Policy Authorization Server can translate them into a relational database table, with each rule represented by one row in the database. The database representation is also not mandatory; it is merely a well-understood example of internal representation, out of m Extensions canot change the schema provided in RFC 4745 [RFC 4745]], and this schema is not expected to change in future versions, which explains why no versioning procedures exist.

5.4.2 Ruleset framework elements

The ruleset framework in RFC 4745 [RFC 4745] relies on ruleset, rule, conditions, actions and transformations as basic, extensible elements.

The ruleset is composed of several rules, and each rule includes conditions, actions and transformations. An instance of a request for policy (ruleset) evaluation provides several attributes, that need to be matched against variables used in conditions and actions in the rules of the ruleset.

The <condition> element is used to express conditions (a rule may include multiple <condition> elements). The framework only specifies a limited number of generic conditions, re-usable across different application domains (i.e. conditions for identity, sphere and validity attributes). Additional conditions will be specified elsewhere, with their own namespace. The <condition> element may have child elements, defined in this framework, or extended somewhere else. If a child element of the <condition> construct is in a namespace that is not known or not supported, then this child element evaluates to FALSE.

Conditions are matched on equality, or “greater-than” style comparison, according to the datatype associated with the element in the RFC 4745 [RFC 4745] schema. There are three <condition> child elements specified in this framework (identity, sphere and validity), and each may have additional child elements.

The <identity> element used in expressing conditions is considered TRUE if any of its child elements evaluate to TRUE. Child element supported are <one> (for matching a single authenticated identity) and <many> (for performing authorization decisions based on the domain portion of an authenticated identity. The <many> element supports the child element <except> which fulfills the need of excluding elements from the solution set.

The <sphere> element can be used to indicate an environment or context (e.g. “work”, “home”, “meeting”, “travel”, etc). A <sphere> condition matches only in the case of equality with the requestor’s environment or context passed in the request, or otherwise available to the ruleset.

The <validity> element is used to express the period of time interval in which the rule is valid. All the conditions in a rule MUST evaluate to TRUE in order for a rule to evaluate to TRUE; hence this element can be used to completely invalidate a rule, regardless of the outcome of the other conditions. This allows to provision rules whose validity is temporary, without a concern for an administrator for immediate maintenance (other than periodic cleanup of the expired rules).

In short, each type of condition determines its own semantics of evaliting to TRUE. A rule evaluates to TRUE when ALL conditions in its <condition> child elements evaluate to TRUE. All rules that have <condition> child elements that match (evaluate to TRUE) form the matching ruleset. The matching ruleset has an associated mechanism for combining the permissions, based on the <action> elements and <transformation> elements in the rule.

The <action> element is used to specify the policy output results, and the <transformation> element is used to apply changes (e.g. filters) to those results before forwarding them to the requestor. Together, the <action> and <transformation> elements are also referred to as “permissions”. The “permissions” are combined across all matching rules (i.e., evaluated to TRUE) in the ruleset. The combining rules depend on the datatype of the “permision”. For example, if the “permision” (action or transformation) datatype is boolean, then the resulting “permission” for the ruleset is TRUE if and only if at least one of the “permissions” in the matching ruleset is TRYE (in other words, it is an OR operation between all “permissions”). If the “permission” is of datatype integer, or float for example, the resulting “permission” is is the maximum value from the set of individual “permission” values associated with each matching rule in the ruleset.

5.4.3 Language Extensibility and support of OMA specific conditions

RFC 4745 [RFC 4745] supports extensibility by allowing namespace-qualified extensions to be added in the form of <conditions>, <actions>, <transformations> and unrestricted number and variety of child elements of these elements. Schemas for the added elements and new namespaces need to be provided as part of providing such extensions. The RFC 4745 [RFC 4745] has an explicit model of adding extensions, and expects that such model will not infringe on the RFC 4745 [RFC 4745] schema, but expand it. The framework also has an explicit stated goal of having extensions provided in support of specific application domains, in order to justify the extensions, and not unnecessarily complicating the framework.

The framework makes no statement about the mandatory or optional nature of extensions.
The extensibility may be used to address any framework generic enhancements (e.g. additional constructs, or additional semantics of existing constructs). See Appendix C for a comparison between PEEM PEL needs and RFC 4745 [RFC 4745] features.

The extensibility may also be used to address any specific application domains needs (additional <condition>, <action>, <transformation> and their child elements) for:
· Security rules (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging rules

· Logging rules

· Privacy rules

· Preference rules

· Permission rules

· Content screening rules
· Content categorization rules
5.4.4 Backward compatibility with other OMA enablers

Policy requirements have been addressed in several other OMA enablers, and may continue to develop before PEEM specifications are approved. In most cases, the basis for the technical specifications addressing policy requirements is also IETF RFC 4745 [RFC 4745]. When using this policy framework, those enablers have introduced extensions in a manner consistent with the model described by IETF RFC 4745 [IETF 4745]. Extensions included new elements and new semantics associated with those elements, as well as over-riding assumptions made in IETF RFC 4745 [RFC 4745]. That work is completely consistent with the approach taken by PEL ruleset language option described in this section, and hence the PEL specification described here will be fully compatible with the extensions added by these OMA enablers.

The list of enablers that are re-using or adding extensions to IETF RFC 4745 [RFC 4745] is given here for information purposes and includes:

· Shared Policy XDM Specification [SPXDM]

· Shared Group XDM Specification [SGXDM]

· XML Document Management Specification [XDMSPEC]

· Presence XDM Specification [PRESXDM]

· PoC Document Management [PoCXDM]

· Instant Messaging using SIMPLE [IMSIMPLE]
The above references are informative for the PEL technical specifications, but can serve as very good examples to other OMA enablers that intend to add extensions for their policy needs in their specific domains (e.g. [XDMSPEC] adds extensions such as new elements, including access to external information).
5.5

	
	

	
	

	
	

	
	

·
·
·

5.6

	
	

	
	

	
	

	
	

	
	

	
	

·
·
·

	
	

	
	

	
	

	
	

	
	

	
	

·
·
·

Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-PEEM-V1_0-20051127-D
	 27 Nov 2005
	All
	Initial Baseline

	OMA-TS-PEEM_PEL-V1_0-20060430-D
	30 apr 2006
	All
	Initial PEL TS baseline per April 18, 2006 decision (see OMA-ARC-2006-0138-MINUTES_18Apr2006-CC)

	OMA-TS-PEEM_PEL-V1_0-20060501-D
	1 May 2006
	5.1, 5.2 and Appendix C
	Agreed text from:
· OMA-ARC-2006-0101R01-support-feature-PEL-in-TS
· OMA-ARC-2006-0065R03-TS-PEL-constructs-for-ruleset-rule-condition-action[1]

	OMA-TS-PEEM_PEL-V1_0-20060916-D
	16 Sept
	Appendix D
	Agreed text from:

· :OMA-ARC-2006-0254-INP_PEEM_TS_PEL_Schema_modification that uspersedes OMA-ARC-2006-0181-Policy-expression-language-Schema-

	
	3 Feb 2007
	See desecription
	Agreed input from:

· OMA-ARC-2006-0353R03-INP_PEEM_PEL_TS_datatypes_for_consideration
· OMA-ARC-2006-0362R01-INP_PEEM_PEL_datatypes

	
	6 May 2007
	See details
	Agreed input from Frankfurt:

· OMA-ARC-PEEM-2007-0006R03-INP_PEL_Constants
· OMA-ARC-PEEM-2007-0007R02-INP_PEL_Basic_Operators
· OMA-ARC-PEEM-2007-0008R02-INP_PEL_Remove_support_of_CHAR_datatype
· OMA-ARC-PEEM-2007-0009R01-INP_PEL_Variables
· OMA-ARC-PEEM-2007-0011R01-INP_PEL_TS_Scope
· OMA-ARC-PEEM-2007-0012R01-INP_PEL_TS_Introduction
· OMA-ARC-PEEM-2007-0017-INP_PEEM_TS_normative_references
· OMA-ARC-PEEM-2007-0018-INP_PEEM_TS_additional_terminology
· OMA-ARC-PEEM-2007-0023R03-INP_Flow_PEL_constructs
· OMA-ARC-PEEM-2007-0025R01-INP_PEL_ParameterizedConstants

	
	12 Aug 2007
	See details
	Agreed input:

· OMA-ARC-PEEM-2007-0013R02-INP_PEL_TS_Internal_Policy_Reference_template
· OMA-ARC-PEEM-2007-0014R02-INP_PEL_TS_External_Policy_Reference_template
· OMA-ARC-PEEM-2007-0034R01-INP_PEL_TS_Add_support_for_URI_data_type
· OMA-ARC-PEEM-2007-0038R01-INP_COMMONPOL_for_ruleset_option

	
	23 Sep 2007
	See details
	Agreed input:

· Removed 5.5 & 5.6 which were incorrectly applied to PEL TS instead of PEM-1 TS.

· Applied changes 2, 3 & 4 from agreed OMA-ARC-PEEM-2007-0038R01-INP_COMMONPOL_for_ruleset_option (omitted in the 12 August 2007 revision)

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix C. Future PEL considerations
Editor’s note: Related to set described in section 5.1
· Transaction operation
· Support complex data structure: array, union, structure, …

· Priority of rules

· Support two methods of ACTION:

· Asynchronous (run and return);

· Synchronous (run and wait until the result is given)

· Multiple selections (case…. 0….1…2…)

· Support nesting usage of policy

Appendix D. XML schema for rule set based PEL
This section provides the XML schema definition for the policy expression markup in the case that it is based on rule sets. The header of ruleset includes a variable declaration section which is optional, that identifies all the variables used in the ruleset.

One rule is composed of condition part and action part.
 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema targetNamespace="urn:ietf:params:xml:ns:common-policy"

 xmlns:cp="urn:ietf:params:xml:ns:common-policy"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- /ruleset -->

 <xs:element name="ruleset">

 <xs:complexType>

 <xs:complexContent>

<xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="variable" type="cp: variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>
 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="rule" type="cp:ruleType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>
 <!-- /ruleset/variables -->

 <xs:complexType name="variableType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other"

 minOccurs="0" processContents="lax"/>

 </xs:sequence>

 <xs:attribute name="name"
 type="xs:string" use="required"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <!-- /ruleset/rule -->

 <xs:complexType name="ruleType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="conditions"

 type="cp: extensibleType" minOccurs="0"/>

 <xs:element name="actions"

 type="cp:extensibleType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:ID" use="required"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <!-- //rule/condition or //rule/action -->
 <xs:complexType name="extensibleType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 </xs:schema>

In all, here:

 <?xml version="1.0" encoding="UTF-8"?>

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:schema targetNamespace="urn:ietf:params:xml:ns:common-policy" xmlns:cp="urn:ietf:params:xml:ns:common-policy" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- /ruleset -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:element name="ruleset">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:element name="variable" type="cp:variableType" minOccurs="0" maxOccurs="unbounded" />

 <xs:element name="rule" type="cp:ruleType" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!-- /ruleset/variables -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="variableType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:any namespace="##other" minOccurs="0" processContents="lax" />

 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <!-- /ruleset/rule -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="ruleType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:element name="conditions" type="cp:extensibleType" minOccurs="0" />

 <xs:element name="actions" type="cp:extensibleType" minOccurs="0" />

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required" />

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <!-- //rule/condition or //rule/action -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="extensibleType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

Appendix E. Analysis of data types in several programming languages
This is a high-level analysis of data types supported in C, C++, Java – as typical programming languages that use variables.

E.1 C and C++ language

There are some differences between C and C++ data types, but basically C++ inherited all C data types, and added some more, so they are described here together.

C and C++ share the following basic (or fundamental) data types:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value. Not terribly important, other than for consistency of the definition of functions.

	int
	integer

	float
	Floating-point number

	double
	Double precision floating-point number

	char
	character

Several of these types can be modified using signed, unsigned, short, and long. When one of these type modifiers is used by itself, a data type of int is assumed. A complete list of possible data types follows:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

In addition, C/C++ language has a “unique” data type called enum (enumeration) which only can have integral values (associated with each enumeration is a set of named constants). Enumerations behave like integers.

In addition to basic data types, modifiers and the “unique” type enum, C/C++ support derived types:

	Data Type (derived)
	Description

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	functions
	A type that returns object of a given type.

	pointers
	A complex type that contains a sequence of objects of different types.

	structures
	A complex type that contains a sequence of variables, possibly of different types..

	unions
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

Then there’s also the notion of the integral type wchar_t, defined in the standard header <stddef.h>. This data type is added in C++. Also worth noting is that bool (Boolean) is not a data type in C (it is achieved by using constants with values 0 for FALSE, and 1 for TRUE), but is added as a basic data type in C++.

It is worth noting that string is not a data type in C/C++, but is in fact an array of characters. For convenience, we take the license to state that there is support for strings in C/C++, although it is not quite as a data type.

And there is a type called reference in C++ that does not have any equivalent in C.

To summarize, here is the table that includes all the supported data types (either through a data type definition as part of the language, or through some mechanism that allows to support in practice such a data type).

	C/C++ “Supported” Data Types
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

	enum(eration)
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function(s)
	A type that returns object of a given type.

	pointer(s)
	

	struct(ures)
	A complex type that contains a sequence of objects of different types.

	union(s)
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	wchar_t
	2 byte Wide character, capable of representing Unicode

	bool
	A type that can only take the values TRUE or FALSE

	reference
	An alternative name for an object (uses character &, as in int& thisObject = newObj; now both thisObject and newObj refer to the same integer).

C/C++ languages also supports type qualifiers. Type qualifiers include

const (e.g. char constant), and volatile (this is only used for compiler optimizations). Const can be an integer, character, floating point, string, or enumeration.

Finally, C/C++ support a “facility” to called typedef for creating new data type names.

E.2 Java language

Java has the concept of primitive types (similar to the C/C++ basic or fundamental data types). Java primitive types are:

	Java Supported Data Types
	Description

	boolean
	

	char
	character

	byte
	

	short
	

	int
	

	long
	

	float
	Floating-point number

	double
	

	void
	Associated with no data type

Any other data types are created in Java using the “class” mechanism, which supports the creation of a new type of object. For example, arrays are a “first-class” type in Java. String is a class, struct (or record) is a class, union can be a class (but not recommended to use). Enumerated types were initially simulated in Java, but are now supported in the latest revision of Java. Java claims not to have pointers (being a dangerous construct), but in fact every object identifier in Java, except for primitives, is a pointer. The exception is, you cannot perform arithmetic operations on them (as you may in C/C++). Therefore, one could say that Java supports “handles” instead of “pointers”. There is no “reference” data type in Java, but all Java types except scalar primitive types are reference types. Functions do not exist in Java, but instead “static methods” (class methods) are used.

Java has no support for unsigned type modifier, but it addresses this on a case-by-case basis (e.g. dependent on the operators involved, using conversion routines, etc).

Java’s char(acter) is a 16 bit character to support “Unicode” (the equivalent of wchar_t in C/C++). There is equivalent in Java for the 8-bit C/C++ char, this could however be done using the Java byte type. There is no support in Java for long double. The "long double" type has always been problematic its size ranges from 80 bits to 128 bits. Can be addressed only through conversion routines.

Aside as a shorthand, the concept of typedefs does not exist in Java, but can be encapsulated in a class scope to provide a generic type; they function as assignments in template meta-programming.

To summarize, most if not all of the C/C++ “supported” data types can also be supported in Java. There are of course other facilities in C++ and Java, since the “class” mechanism allows additional extensions that are not possible in C.

E.3 Common data types supported in programming languages

The analysis concludes that the following data types can be supported in most programming languages, and therefore are the initial source of consideration for PEL data types.

	C/C++/Java “Supported” Data Types
	Description
	Comments

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.
	Supported as a basic type in C/C++/Java

	int
	4 byte signed: -2147483648 to 2147483647
	Supported as a basic type in C/C++ and as a primitive type in Java.

	unsigned int
	4 byte unsigned integer, 0 to 4294967295
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed int
	4 byte signed integer, -2147483648 to 2147483647
	Supported as a modified basic type in C/C++ and as equivalent to int basic type in Java.

	short int
	2 bytes signed integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned short int
	2 byte unsigned integer, 0 to 65535
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed short int
	2 byte signed Integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as equivalent to short int primitive type in Java.

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as equivalent to long int primitive type in Java.

	float
	Floating-point number, 3.4e +/- 38 (7 digits)
	Supported as a basic type in C/C++ and as a primitive type in Java.

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a basic type in C/C++ and as a primitivetype in Java.

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a modified basic type in C/C++ and only through conversions in Java.

	char
	Character, 1 byte, signed: -128 to 127
	Supported in C/C++ as a basic data type; supported as byte in Java

	unsigned char
	unsigned character, 0 to 255
	Supported in C/C++ as a modified basic data type; supported in Java through different methods, on a case-by-case basis

	signed char
	signed character, -128 to 127
	Supported in C/C++ as a modified basic data type; supported as the equivalent of primitive type byte in Java

	enum
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.
	Supported in C/C++ as derived data types, supported as a class in Java.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	function
	A type that returns object of a given type.
	Supported in C/C++ as derived data types. Supported in Java as “static methods” (class methods).

	struct
	A complex type that contains a sequence of objects of different types.
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	union
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.
	In C/C++, string is not a data type, it simply is an “array of characters” (defined as char [n]). In order to use as a true string (and manipulate it using string libraries, the 1st character shall contain the length of the string, and the last character shall be “null”). Since typically variable strengths need to be supported, string variables are usually declared to be pointers to characters (e.g. char *someString).

In Java, String is achieved through a Class.

	wchar_t
	2 byte Wide character, capable of representing Unicode
	In C, wchar_t is supported it by defining it as an integral type in <stddef.h>

In C++, wchar_t is a basic type.

In Java wchar_t equivalent is the Java char primitive type.

	bool
	A type that can only take the values TRUE or FALSE
	In C, Boolean is supported via declared TRUE and FALSE constant in any program that needs such use.

In C++ bool is a basic data type.

In Java Boolean is a primitive data type.

However, such a list needs to be checked against data types that the protocol bindings selected for PEM-1 can support (Diameter and SOAP/XML). Furthermore, PEL has to start simple, and evolve into something much more complex only if needed, based on true data (policies written using PEL). The following section presents the subset of the identified data types in programming languages, that is likely sufficient for PEL.
E.4 Conclusion: data types needed for PELAppendix
The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types aredictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used.

Furthermore, we have documented in an appendix all possible data types, hence, if need be and a policy may need additional data types, those could be easier added later when needed, rather than including the, now when the need is unknown. The data types that we initially include in PEL are basic data types, selected derived data types, and some more complex types that are likely to be encountered in writing policies. With those we can later on derive others, if needed. Of course, analysis needs to be conducted for the Diameter and XML bindings and assess whether there may be a real need to support data types that those protocols support, and may not be included in the data types that are in a basic data types set, typical for programming languages. That said, limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data types, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

The data types that are initially included in PEL need to be those that are basic data types, some more complex types that are likely to be encountered in writing policies, and the URI data type (a derived data type frequently used). With those data types in place, others can be easily derived later, if needed. Note that CHAR data type has been identified as a basic data type supported in many programming languages. The use of CHAR data type is mainly to support the ASCII character set. However, in order to support internationalization, ASCII character set is insufficient, and the use of UTF-8 or other multiple-octets character sets may be needed instead. Such character sets need the STRING data type for representation, and not the CHAR data type. With this rationale, the following data types are useful in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	bool
	A type that can only take the values TRUE or FALSE

	URI
	A type derived from string, with a well-specified structure as per [RFC 2396]

A typedef construct to facilitate creating additional derived data types is also something that could be considered at a later stage, if policies require the use of such derived data types.

Comparison between PEEM PEL needs and RFC 4745 current features
The following constructs have been agreed for the ruleset option (see section 5):

1) Ruleset

2) Condition

3) Action

4) Variables (of data type integer, float, bool, string, array, struct and URI)

5) Constants (same data types as variables), plus parameterized constants

6) Operators

7) Functions

RFC 4745 [RFC 4745] is combining two authorization systems (for presence and location) into a more generic framework, with mechanisms for extensibility. This general framework is intended to be accompanied and enhanced by other domain-specific policy documents, including presence [] and [WP-LOCRULES].

The current applicability of RFC 4745 [RFC 4745] is not limited to policies controlling access to presence and location information data, but can be extended to other applications domains.

The framework has the basic attributes of a ruleset language option, as needed for PEEM, but they are not fully specified to immediately meet the needs of any generic policy. It may also specify some specific semantics and model of operation for optimization reasons, while PEEM PEL so far allowed for any of such model (largely by not addressing this issue, and leaving it for implementation).

The table below summarizes the PEL needs against the current RFC 4745 [RFC 4745] specification. In the comment column you may also see references to “work in progress” (IETF drafts with the goal of extending this policy framework with specific conditions, actions, transformations):

	PEL need
	RFC 4745 support
	Comment

	<ruleset> element
	yes
	Very similar, if not identical

	<rule>
	yes
	Very similar, if not identical.

	Rule complexity
	Partial match, potential complete match over time
	There are some potential limitations inherent in the framework model. The rule has an implicit behaviour model of supporting permissions rather than denying them (i.e. you can’t write a rule of the type “if X then DENY”).

FFS: Can extensions add semantics to over-write such a model, or allow multiple models, if needed.

	<condition> element
	yes
	The framework only provides a <condition> expression container, and 3 elements. Both the 3 elements provided (identity, sphere, validity) as well as completely new <condition> elements may be needed in future to complement the current <condition> element. This is an incremental process, which can be addressed via RFC 4745 extensibility mechanism, within the work of specific application domains.

This is consistent with the process described in RFC 4745, and with other documents/specifications (e.g. work-in-progress IETF drafts [PresenceAuth] and [WP-LOCRULES]).

	multiple conditions per rule
	yes
	Multiple “child elements” (conditions) per rule are supported. All of the children in a rule need to evaluate to TRUE in order for the condition to evaluate to TRUE.

	Complexity of a single condition
	Partial match, potential complete match over time
	It is difficult to assess to what extent any complex condition can be expressed, since even in the additional documents that extend the framework (e.g. [PresenceAuth] and [WP-LOCRULES], the extensions do not include complex expressions using logical and/or mathematical operators. This does not mean that extensions to support complex expressions are not possible, just that they are not yet readily available.

	<action> element
	yes
	Very similar, if not identical

	multiple actions per rule
	yes
	Multiple “child elements” (actions) per rule are supported. There is an implied “permissions” combining algorithm.

FFS: whether the permissions combining algorithm has limitations, that may be desirable to be changed, over-riden or removed , if need be.

	Complexity of a single action
	Partial match, potential for complete match over time
	It is difficult to assess to what extent any complex action can be expressed, since even in the additional documents that extend the framework (e.g. [PresenceAuth] and [WP-LOCRULES], the extensions do not include complex expressions using logical and/or mathematical operators. This does not mean that extensions to support complex expressions are not possible, just that they are not yet readily available.

In particular, a limitation that is acknowledged in RFC 4745 is the lack of support of actions that may need external support (see more details on the “functions” requirement).

	Variables
	Partial match, potential for complete match over time
	Variables are introduced as part of the introduction of conditions/actions. The data types may be implicit (but most examples available show the use of strings, Boolean, integer).

However, it is likely that new conditions/actions can add variables of any data type (there is no evident restrictions, just lack of a clear statement in that sense).

	Constants
	Partial match, potential for complete match over time
	Same as above

	Parameterized constants
	no
	This concept will definitely need an extension, but it could be achieved as above – in the context of a specific application. When this is done, it should be done in a way that can then be generic for multiple domains.

	Operators
	Difficult to assess, no examples
	The framework does not explicitly state support for operators (logical or mathematical) to be used in expressions, simply because in the framework, and in the other “work-in-progress”, the expressions are reduced to 1 variable. If a new application will require complex conditions and/or actions, than at that time operators would have to be supported as well.

	Functions
	no
	This is apparently the largest gap, and a self-declared one. RFC 4745 states that support for actions extending to external entities is not part of the framework for now. Again, this may be done however as application-specific extensions, and added in a manner that can be generic for multiple application domains.

	<transformation> element does not have an equivalent in PEEM
	Exists in [RFC 4745]
	The framework describes how <action> and <transformation> are to be used, but does not provide any child elements for those. It leaves those for other specifications to be added as extensions. Examples provided in [PresenceAuth] use <action> but no <transformation>. Examples provided in [WP-LOCRULES] use <transformation> but do not use <action>.

FFS: whether both <action> and <transformation> are needed by OMA application domains and/or other resources, or whether the <action> element semantics could be extended in future to include whatever semantics <transformation> carries – for simplification reasons.

	Matching input parameters (via PEM-1) to policy parameter
	Not addressedOut of scope for RFC 4745
	Out-of-scope for RFC 4745.

�Btw, it is also not clear how to do it in any other PEL option (e.g. BPEL). Do we need to address this – or do we leave it to implementation, across the board ?

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

