Doc# OMA-BCAST-2005-0441-CR-Distr-File-delivery-session-completeness.doc[image: image2.jpg]
Change Request

Doc# OMA-BCAST-2005-0441-CR-Distr-File-delivery-session-completeness.doc
Change Request

Change Request

	Title:
	Determining completeness of the file delivery sessions
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST

	Doc to Change:
	OMA-TS-BCAST-Distribution-V1_0_0 (latest revision)

	Submission Date:
	12 Sep 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Topi Pohjolainen, Nokia, topi.pohjolainen@nokia.com
Martta Seppala, Nokia, martta.seppala@nokia.com

	Replaces:
	n/a

1 Reason for Change

Determining when the file delivery session is complete enough is important for the terminals as it allows the terminals to leave the sessions and save battery. This CR proposes specification text to determine the completeness of different types of file delivery sessions.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR is presented for BAC-BCAST group for agreement.

6 Detailed Change Proposal

Change 1: Specification on how to determine the completeness of different file delivery sessions

5.2.3 Determining File Delivery Session Completeness

It is important to the FD-C in the terminal to know when a given session is assumed to be complete enough for the terminal. A session is complete if the terminal does not expect further data of interest anymore. In that case the terminal SHOULD leave the file delivery session.

Session completeness is well defined in the case of fixed content sessions, where the file list is fixed and the data itself will not change during the session. However, in the cases of static file delivery session, and static file carousel, the files to be delivered may be updated at unknown points of time during the lifetime of the session. Furthermore, in the case of dynamic file delivery session, new files may be added during the lifetime of the session. Also, in the case of file carousels, the end time of the session may be unbounded or may be far in the future. In those cases, it is not possible to define absolute completeness of a session. The notion of complete enough is defined to indicate the point in time where the terminal can assume that no more data of interest will be delivered over the session.

In the following sections, the session completeness criteria for the different session types are defined.

5.2.3.1 Session Completeness for Fixed Content Delivery Sessions

The terminal SHALL consider session to be complete when

· The terminal has received one FDT instance with complete-attribute set; AND;

· For every file declared in that FDT instance:

· the terminal has received all corresponding packets successfully

OR

· the terminal has received at least one packet with the B-flag for that file

OR

· The terminal receives one or more packets with A-flag set.

5.2.3.2 Session Completeness for Static File Delivery Sessions and Static File Delivery Carousels

The terminal SHALL consider session to be complete enough when

· The terminal has received one FDT instance with complete-attribute set; AND;

· For every file declared in that FDT instance:

· the terminal has successfully received all packets of the most up-to-date version (known to the terminal) of that file

OR

· The terminal has received at least one packet with the B-flag for that file

OR

· The terminal receives one or more packets with A-flag set.

5.2.3.3 Session Completeness for Dynamic File Delivery Sessions and Dynamic File Delivery Carousels

The system MAY utilize the smart timeout algorithm to signal the completeness criteria to terminal in form of three timers as described in the following. Consequently, the terminal SHALL support the smart timeout algorithm to determine whether the dynamic session is complete enough.

5.2.3.3.1 Smart Timeout Algorithm

The smart timeout algorithm is used to determine completeness of a dynamic session. The algorithm is based on using three timers (packet wait timer, table wait timer and object wait timer) bound to the file delivery session. These parameters enable the creator and sender to determine the semantics of dynamic file delivery session. When receiving timer values, the receivers know when to assume session to be complete enough.

[image: image1.wmf]

Idle

Wait

Error

To

s

received

Session

complete

1, 2, 3, 4

5, 6

7, 8

9

10, 11

12

13

Figure X, State machine for smart timeout algorithm

The state machine of Figure x above is used to specify the operation for determining the completeness. In the “Wait” state, the receiver is waiting for a TOI, or for a declaration of a TOI. In the “Idle” state, the receiver is idle. In the “TOs received” state, all the declared objects have been fully received. The session may be left in the error state, which indicates that an error has happened, or in “Session complete” state, which indicates that a session is complete.

There are a number of events, which can trigger transition from the “Wait” state. Transition 1 is triggered when an FDT that contains one or more new TOIs, that is TOIs that have not been previously declared, is received. This triggers the setting and starting of a packet wait timer t1 for each of the new TOIs. The transition 1 is to the “Wait” state. Transition 2 is triggered in response to the event of receiving a packet for a TOI that has an active packet wait timer t1. The response is to stop the packet wait timer t1 for that TOI. This transition 2 can occur only if there still are one or more active packet wait timers t1. The transition 2 returns to the “Wait” state. Transition 3 is triggered by the event of receiving an FDT that contains a declaration for a TOI that has an active table wait timer t2. This can occur only if there are still one or more active table wait timers t2. On the transition 3, the active wait table t2 for that TOI is stopped. The third transition 3 is to the “Wait” state. Transition 4 is triggered by the event of receiving a first packet for a TOI, which is not in an FDT table. This triggers the starting of a table wait timer t2 for that TOI. The transition is to the “Wait” state.

Transition 5 is made from the “Wait” state to the “Idle” state in response to the event of receiving a packet for a TOI that has an active packet wait timer t1. The packet wait timer t1 for that TOI is stopped. Transition 6 is triggered by the event of receiving an FTD that contains a declaration for a TOI that has an active table wait timer t2. The table wait timer for that TOI is stopped as a consequence of this transition 6. Transition 6 is from the “Wait” state to the ”Idle” state.

When in the “Idle” state, there are three possible transitions. Transition 7, is in response to the event of receiving a FDT that contains one or more new TOIs. This triggers a packet wait timer t1 to be set and start for each of those new TOIs. The transition is from the “Idle” state to the “Wait” state. Another transition 8 from the “Idle” state to the “Wait” state occurs in response to the receiving a first packet for a TOI which is not an FDT table. This triggers the starting of a table wait timer t2 for that TOI. The transition from 9 from the “idle” state is to the objects “TOs received” state. This transition 9 occurs when the last missing part of the file is received. This triggers the resetting and starting of the object wait timer t3.

When in the “TOs received” state, three transitions are possible. Transition 10 is to the “wait” state, and occurs when an FDT, which contains one or more new TOIs, is received. This triggers the setting and starting of a packet wait timer t1 for each of the new TOIs. Optionally, this transition 10 may cause the object wait timer t3 to be stopped. Transition 11 is to the “Wait” state, and occurs when a packet with a TOI that has not been declared in any received FDT instance so far is received. This triggers the setting and starting of a table wait timer t2 for the received new TOIs. Optionally, this transition 11 may cause the object wait timer t3 to be stopped. Transition 12 is from the “TOs received” state to the session complete state. This transition 12 occurs when the object wait timer t3 expires.

A transition from the “wait” state to the “Error” state occurs when any of the packet wait timers t1 or the table wait timers t2 for any TOIs expires. This transition is labelled 13 in the diagram. A transition 9 from the wait state to the “TOs received” state occurs when the last missing part of the file is received. This resets and starts the object wait timer t3.
5.2.3.3.2 Signalling of three timers associated with Smart Timeout Algorithm

In case the smart timeout algorithm is used to determine the completeness of a file delivery session, a single attribute line of SDP is used within the SDP that is describing the file delivery session. The system MAY use this attribute in the transmitted SDP descriptions while the terminal SHALL support interpreting it. The syntax of the attribute line in ABNF is as follows:

Session-timeout-line = "a" "=" "session-timeout" ":" 1*DIGIT ";" 1*DIGIT ";" 1*DIGIT CRLF

This attribute SHALL appear at session level of the SDP.

Example:

a=session-timeout:100;200;300

Where the first value “100” is the value of packet wait timer; the second value “200” is the value of table wait timer; and the third value “300” is the value of object wait timer in seconds.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

_1175946916.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Session

received

12

10, 11

Error

13

Wait

Idle

9

7, 8

5, 6

1, 2, 3, 4

complete

Tos

_935227290.doc

