Doc# OMA-BCAST-2006-0297R03-CR-XBS-wording-and-clerical-changes.doc[image: image6.jpg]
Change Request

Doc# OMA-BCAST-2006-0297R03-CR-XBS-wording-and-clerical-changes.doc
Change Request

Change Request

	Title:
	XBS wording and clerical changes
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST, BAC-DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	02.10.2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Mercè Serra, merce.serra@iis.fraunhofer.de

Bert Greevenbosch, bert.greevenbosch@iis.fraunhofer.de

	Replaces:
	none

1 Reason for Change

This CR includes 23 changes adding some new abbreviations (DK, NK, SK) and proposing some wording and clerical modifications for consistency and better understanding.
The reason for R03 is an inconsistency found by the XBS editor between this CR and another CR. For this reason, following sentence of change 19 is rephrased:

" Addressing of a unique Device is done using the Unique Device Filter (UDF). Addressing of a Device using its Device ID is not supported when using a BCRO."
In Change 23 one sentence is deleted, that could lead to a missunderstanding.
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The changes are presented for inclusion in the latest version of the DRM TS XBS document.
6 Detailed Change Proposal

Change 1: Section 3.3: Adding Abbreviations
	DK
	Device Key

	NK
	Node Key

	SK
	Session Key

Change 2: Section 6.1, page 16: adding section link
Explanation of the protocol:

· Once the Rights Issuer has the device data from the device [1] via the protocol described in section 6.1.1.1, the RI contacts the Root of Trust (ROT) [3], while the device is entered into registration mode and awaits the registration data [2].

Change 3: Section 6.1.1.1: wording
6.1.1.1 Theory of operation

The offline Notification of Detailed Data protocol is also known as the "offline NDD protocol". The notification of the device data is performed off-line. The device data (device_data_inform() message) is defined in section 6.1.1.3.1

[image: image1.wmf][1] notify device data

[2] enter reg. mode

Service Provider /

RI

Customer / Device

Figure 2: offline NDD protocol

Explanation of the protocol:

· The purpose of this protocol is to transfer device data somehow to the RI, in case the device does not support a return channel to the RI. After the user has let the device know that he wants to register at an RI, the device produces the device_data_inform() message (refer to section 6.1.1.3.1 for details) and make this data available to the user.

· The data of the device_data_inform() message consists of a several series of decimal digits and possibly an alphanumeric character. The user needs to transfer these series somehow to the RI. In order to aid the user in this, the device MAY display a dialogue with instructions. Notifying the device data can be done in various ways, for example by showing the user of the device a dialogue on the screen of the device, displaying the device data and a telephone number to call for vocal notification of the device data. Another example is to display instructions to send an SMS message via a mobile phone to the RI.

An example of a displayed message follows, where the following information is reported back to the RI. Please note that when using displays like in the examples, it is useful to present the numeric fields in the order shown
:

[image: image2.wmf]In order to start service with this device

 please contact customer service at:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

In order to start service with this device

 please send an SMS with the UDN below to the

following phone number:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

An example dialogue showing instructions for

vocal notification of UDN to callcenter

An example dialogue showing instructions for

notification of UDN per SMS to callcenter

Figure 3: examples of notification displays

· If the device does not support a return channel to the RI, the device data (device_data_inform() message) SHALL be notified off-line, using the offline Notification of Detailed Device data protocol. The device data to notify SHALL be reduced by a special protocol (refer to section 6.1.1.2).

· After the notification of the device data, user needs to put the device into registration mode [2]. When put into registration mode, device SHOULD start to listen for the device registration data for a limited time.

Change 4: Section 6.1.1.2.1: clerical change
Note: The UDN SHALL be constructed according to the above mentioned message syntax. When the UDN is displayed or in other ways presented to the end user, a(ny) checksum digit with value “10” SHALL be represented by an alphanumeric character different from {0..9}, for example X or Z. This ensures the RI will always receive 20 “characters” from the end user notification, providing an easy way to count if the information is complete.

Change 5: Section 6.1.1.3.1, definition of longform_udn(): section link missing
longform_udn() - identifies the unique_device_number to the RI. The UDN SHALL be part of the credentials entered into the device, like the private key and the certificate. Refer to section 6.1.1.2 for details.

Change 6: Section 6.1.2.1, definition of short_udn: clerical change
short_udn. The offline notification can be performed faster if the long form UDN is not used, but a shorter form instead. After first time notification of the device data to the RI, the RI MAY issue a short version of the full UDN (called short_form_udn) that is carried in the device_registration_response() message. The short_form_udn number is used to speed up the offline interaction with the RI. If this number is stored into the device, subsequent “requests” by the user of the device can be notified offline much quicker by using the short_form_udn number concatenated by a standardised action code.

Please note: In cases where the device needs to be identified uniquely in another network than its home network where it was registered, the short_udn cannot be used because the (new / different) RI does not have the short_udn in its database. In this case the only possibility for the hosting RI to identify the device uniquely would be via the long_udn. It is the responsibility of the device to decide when it is appropriate to use the long_udn instead, for example by comparing the Service Operations Centre (SOC) ID received with the SOC ID remembered from registration.

Change 7: Section 6.1.2.1.4: set Figure 6 caption to bold

An example of a displayed message follows, where the following information is reported back to the RI
:

[image: image3.wmf]In order to start the requested action

 please contact customer service at:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

token consumption data:

XXXX XXXX XXXX XXXX XXXX

Figure 6: samples of notification displays showing an ARC message

Change 8: Section 6.1.2.1.5: "Checksum" -> "checksum"
checksum – The final digits of the device ID number are check digits, akin to a checksum. The 3 digits allow 1 out of 103 possible errors to remain undetected. The checksum algorithm used is the UDN checksum, see section A.2.2.

Change 9: Section 6.1.3.2.1, page 27 after Table 6: clerical change
The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number are encoded in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

Change 10: Section 6.1.3.2.1, page 30, shortform_domain_id: clerical change
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to 6.1.3.2.2. An addressing scheme used to filter messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).
Change 11: Section 6.1.3.2.2, figure 6: in picture added "keyset"

[image: image4.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 6: device_registration_response() message

Change 12: Section 6.2.4.1.1, page 42, after Table 9: clerical change
The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number are encoded in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b

Change 13: Section 6.2.5.1.1, page 47: clerical change
The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number are encoded in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b

Change 14: Section 6.3.4.1.1, page 52, Table 18: clerical change
Table 18: message error codes

	status value
	meaning

	Success
	The message contains valid token delivery data from the RI.

	NotSupported
	The RI does not support the sending of tokens from the RI. In this message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0.

	TokenConsumptionMessageError
	The RI did receive a token consumption message, but it was erroneous and the device should redo the last token consumption message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

	NoTokenConsumptionMessage
	The RI did not receive a token consumption message yet, but was expecting one, because the present date/time is later than the last latest_token_consumption_time sent to the device in a token delivery response message.

In this token delivery response message, the RI SHALL set the value of token_quantity to zero or SHALL set the token_quantity_flag to 0x0. The RI SHALL use a token_reporting_flag of value 0x1. The RI SHALL use the device_nonce of the last token consumption message that the RI successfully processed or set the response_flag to 0x0 in case no token consumption messages have been successfully processed. The device SHALL generate a token consumption message, reporting on the token consumption from the time of the generation of the token consumption message with the same device_nonce as the device_nonce in this token delivery response message, or from first start-up in case the response_flag was set to 0x0.

Change 15: Section 6.4.2: clerical
6.4.2 protocol overview

The theory of operation results in the specification of several protocols:

· offline protocols (from device to RI)

	protocol
	section
	purpose

	offline Domain Join Request protocol
	6.4.2.1
	request to join a domain

	offline Domain Leave Request protocol
	6.4.2.2
	request to leave a domain

· 1-pass protocols (from RI to device)

	protocol
	section
	purpose

	1-pass binary Push Device Registration protocol
	6.1.3
	transmit registration data to device

	1-pass binary Inform Registered Device protocol
	6.2
	inform device via messages

The protocols interrelate in following way (roundtrip):

	kicking off action…
	…results in

	offline domain join request

(request to join a domain)
	domain_registration_response() message
(transmit registration data to device)

	offline domain leave request

(request to leave a domain)
	domain_update_response() message
(inform device via messages)

	join_domain_msg()

(inform device via messages)
	offline domain join request, which on it’s turn may result in domain_registration_response() as listed above

	leave_domain_msg()

(inform device via messages)
	offline domain leave request, which on it’s turn may result in domain_update_response() as listed above

6.4.2.1 Offline Domain Join Request

When the user of a device might want to join a particular domain, he uses the NSD protocol with the destined action code range (refer to 6.1.2.1).

6.4.2.2 Offline Domain Leave Request

When the user of a device might want to leave a particular domain, he uses the NSD protocol with the destined action code range (refer to 6.1.2.1).

Change 16: Section 6.4.3.1.1, page 58: clerical change
The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number are encoded in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

Change 17: Section 6.4.3.1.2, figure 7: in picture added "keyset"

[image: image5.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 7: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.
The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.

2. Concatenate the keyset (LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.8. More than one context is allowed up to the RSA blocksize.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyset_block that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1.

5. Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().
6. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.4.3.1.3 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

Change 18: Section 6.4.3.2.1, page 65: clerical change
The parameter is divided into 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number are encoded in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.
Change 19: Section 7: adapted encryption key names for consistency; modify text for better understanding
7. Broadcast Rights

7.1 Broadcast Rights Objects

7.1.1 Goals and Constraints

The delivery of rights objects over a Broadcast network without return channel necessitates some changes to the current ROAP because of the following reasons:

· the XML encoding according to the ROAP schema is not optimised for size

· the current ROAP does not support a subscription group addressing mechanism

· the current ROAP uses signatures based on the RSA PKI scheme that yield large signatures.

This chapter defines a new format for the delivery of authenticated and integrity protected rights objects called Broadcast Rights Objects (BCROs), in which content encryption keys are cryptographically protected with either:

· Local Domain Key (LDK): to address a domain.
· Unique Group Key (UGK): to address the whole Subscriber Group.
· Derived Encryption Key (DEK): to address a subset of the Subscriber Group.
· Unique Device Key (UDK): to address a unique Device.
The primary design goal is to offer the same or equivalent cryptographic protection on BCROs as is available for ROs obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

7.1.2 Design Considerations and Decisions

The BCROs are intended to be broadcast to receivers in a well-defined repetitive manner. The particular means of delivery is to be defined in the context of the Broadcast system. It is the intention to support devices without a return channel (next to more capable devices), which implies that BCRO will be transmitted repeatedly to increase the chance of a receiver to capture BCROs addressed to that device.

The key-wrapping technique used in standard ROAP to cryptographically bind a MAC and REK to a device or domain will not be used. Instead the domain key or subscription group key is directly used to protect the content encryption keys in the BCRO. The motivation for this is that a REK adds little or no extra security, but adds significant size to a BCRO.
Addressing of a unique Device is done using the Unique Device Filter (UDF). Addressing of a Device using its Device ID is not supported when using a BCRO.
Because subscription group addressing offers the possibility to address a single unique device, BCROs will offer only addressing subscription groups or domains. Addressing a device using its device ID will not be supported with a BCRO.

The broadcast content is protected with a varying encryption key. The encryption keys associated with assets in the BCRO will be applied to decrypt the key stream messages on the key stream layer. Besides decryption, such messages should also be authenticated. To avoid using the rights issuer authentication key for these frequent messages, the BCRO also carries an authentication key to be used for authenticating key stream messages. [This is subject to specifications of the key stream layer in OMA BCAST.]

Change 20: Section 7.2.2: "Section" -> "section" and parenthesis position
7.2.2 Format of bit_access_mask

An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.

The field bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of bit_access_mask is as follows:

class OMADRMBitAccessMask

{

do {

bit(2) subblock_coding_type;

if(subblock_coding_type == 0x1)

{

OMADRMBitmappedBitmask bitmapped_bitmask;

} else if(subblock_coding_type == 0x2)

{

OMADRMBlockCompressedBitmask;

} else if(subblock_coding_type == 0x3)

{

OMADRMOutlierCompressedBitmask;

}

} while(subblock_coding_type != 0x0)

}

subblock_coding_type: 2-bit value indicating how the subblock is coded.

	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in section 7.2.1.1.

	0x2
	the subblock is coded using the Block Compression Method as described in section 7.2.1.2.

	0x3
	the subblock is coded using the Outlier Compression Method as described in section 7.2.1.3.

Bitmapped Bitmask

The bitmapped_bitmask field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask field has the following format:

class OMABitmappedBitmask

{

OMADRMBlockLength
block_length;

bit(block_length+1)
bit_map;

}

block_length: indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See section 7.2.2.4 for more details on the coding of the field block_length.

bit_map: field of block_length+1 bits, that codes the subblock.

For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length contains a value 15 and is coded as 10 1011 (see section 7.2.2.4). It is followed by the 16 bits 0010100101011010.

Block Compression Method

The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask has the following format:

class OMABlockCompressedBitmap

{

bit(1) firstbit;

OMADRMNole nole;

OMADRMBlockLength(nole+1) block_length;

}

firstbit: indicates the value of the first bit.

nole (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in section 7.2.2.3.

block_length: an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.

EXAMPLE of coding a subblock using the Block Compression Method:

Let us consider the following 512 bit subblock:

20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole contains the value 6 and is coded as 00 0110 (see section 7.2.2.3).

Block 1 has a length of 20, therefore its block_length contains the value 19 and is coded as 10 1111, where 1111 is the binary representation of 15=19-4 (see section 7.2.2.4).

Block 2 has a length of 15; its block_length is coded as 10 1010.

Block 3 has a length of 2; its block_length is coded as 0 01.

Block 4 has a length of 80; its block_length is coded as 110 0111011.

Block 5 has a length of 92; its block_length is coded as 110 1000111.

Block 6 has a length of 100; its block_length is coded as 110 1001111.

Block 7 has a length of 203, its block_length is coded as 1110 00000110110

In this example 67 bits are needed in order to specify the subblock.

Outlier Compression Method

The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask has the following format:

class OMAOutlierCompressedBitmap

{

bit(1) range_flag

OMADRMNole nole

OMADRMBlockLength(nole+2) block_length

}

range_flag: indicates the coding type. When it is equal to 0, we have single '1's separated by blocks of '0's. When it equals 1, we have single '0's separated by blocks of '1's. A bit set to the value that is in a minority is called 'outlier'.

nole (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See section 7.2.2.3 for the coding of nole.

block_length: an array that indicates the lengths of the blocks. The first block_length defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See section 7.2.2.4 for more details on the coding of block_length.

EXAMPLE of coding a subblock using the Outlier Compression Method:

Let us consider the following 512-bit bit_access_mask:

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have only 4 '0's in the bit_access_mask.

There are 4 '0's covered by 5 blocks, therefore nole contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see section 7.2.2.3).

Since the 4 '0's are covered by 5 blocks of '1's (although two of these blocks have length 0), five block_length fields follow:

The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length contains 0 and is coded as 0 00.

The second '0' occurs after 90 '1's, therefore the second block_length contains the value 90 and is coded as 110 1000110.

The third block_length contains the value 80 and is coded as 110 0111100.

The third block is followed by two adjacent zeros.

The fourth block_length contains the value 0 and is coded as 0 00.

The fifth block_length contains the value 338, and is coded as 1110 00010111110.

In this example 48 bits are needed in order to specify the bit_access_mask.

Change 21: Section 7.3: "aaan" -> "an"

7.3 Acquisition of Rights Objects over an Interaction Channel

Change 22: Section 9.3.1: add empty space

9.3.1 Introduction

If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a BCRO to such a subset, where the content encryption keys in the BCRO are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the BCRO. All other devices in the group cannot, and therefore cannot access the protected content.

Refer to A.12 for a more detailed introduction to confidentiality in the subscriber group addressing concept.

Change 23: Section 9.3.3.4 Subset Addressing, after Figure 20: wording
Each device gets a set of node keys ((F)SGKs) such that it can apply the key derivation functions ‘left’ and ‘right’ to compute the node keys of all leaf nodes except for the leaf node that is associated with its own position. The relation between subscriber position and associated leaf node number is:

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. Please note: the short UDN will only be displayed after the first registration, when that data MAY be available for display.

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields MUST be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data MAY be available for display).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1179506579.vsd
�

[1] notify device data�

[2] enter reg. mode�

Service Provider / RI�

Customer / Device�

_1189857700.vsd
In order to start the requested action
 please contact customer service at:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX

token consumption data:
XXXX XXXX XXXX XXXX XXXX
�

_1204719758.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“
(encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1172925010.vsd
In order to start service with this device
 please contact customer service at:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

In order to start service with this device
 please send an SMS with the UDN below to the following phone number:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

An example dialogue showing instructions for vocal notification of UDN to callcenter�

An example dialogue showing instructions for notification of UDN per SMS to callcenter�

